1
|
Step K, Ndong Sima CAA, Mata I, Bardien S. Exploring the role of underrepresented populations in polygenic risk scores for neurodegenerative disease risk prediction. Front Neurosci 2024; 18:1380860. [PMID: 38859922 PMCID: PMC11163124 DOI: 10.3389/fnins.2024.1380860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/14/2024] [Indexed: 06/12/2024] Open
Affiliation(s)
- Kathryn Step
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Carene Anne Alene Ndong Sima
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ignacio Mata
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
2
|
Zhang Z, Cui X, Zhou N, Zhu L, Zhi Y, Zhang S. Influence of plasma collection tubes on N-glycome in human blood samples. Pract Lab Med 2024; 39:e00383. [PMID: 38463195 PMCID: PMC10924059 DOI: 10.1016/j.plabm.2024.e00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024] Open
Abstract
Background and aims Quantitative analysis of plasma N-glycome is a promising method for identifying disease biomarkers. This study aimed to investigate the impact of using blood collection tubes with different anticoagulants on plasma N-glycome. Materials and methods We used a robust mass spectrometry method to profile plasma N-glycomes in two cohorts of healthy volunteers (cohort 1, n = 16; cohort 2, n = 53). The influence of three commonly used blood collection tubes on fully characterized N-glycomic profiles were explored. Results Principal component analysis revealed distinct clustering of blood samples based on the collection tubes. Pairwise comparisons demonstrated significant differences between EDTA and heparin plasma in 55 out of 82 quantified N-glycan traits, and between EDTA and citrate plasma in 62 out of 82 traits. These differences encompassed various N-glycan features, including glycan type, sialylation, galactosylation, fucosylation, and bisection. Trends in N-glycan variations in citrate and heparin plasma were largely consistent compared to EDTA plasma. In correlation analysis (EDTA vs. heparin; EDTA vs. citrate), Pearson's correlation coefficients were consistently higher than 0.7 for the majority of N-glycan traits. Conclusion Sample matrix variations impact plasma N-glycome measurements. Caution is crucial when comparing samples from different plasma collection tubes in glycomics projects.
Collapse
Affiliation(s)
- Zejian Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Xiangyi Cui
- Department of Allergy & Clinical Immunology, National Clinical Research Center for Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Nan Zhou
- Department of Allergy & Clinical Immunology, National Clinical Research Center for Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Lisi Zhu
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Yuxiang Zhi
- Department of Allergy & Clinical Immunology, National Clinical Research Center for Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| | - Shuyang Zhang
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China
| |
Collapse
|
3
|
Safarlou CW, Jongsma KR, Vermeulen R, Bredenoord AL. The ethical aspects of exposome research: a systematic review. EXPOSOME 2023; 3:osad004. [PMID: 37745046 PMCID: PMC7615114 DOI: 10.1093/exposome/osad004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
In recent years, exposome research has been put forward as the next frontier for the study of human health and disease. Exposome research entails the analysis of the totality of environmental exposures and their corresponding biological responses within the human body. Increasingly, this is operationalized by big-data approaches to map the effects of internal as well as external exposures using smart sensors and multiomics technologies. However, the ethical implications of exposome research are still only rarely discussed in the literature. Therefore, we conducted a systematic review of the academic literature regarding both the exposome and underlying research fields and approaches, to map the ethical aspects that are relevant to exposome research. We identify five ethical themes that are prominent in ethics discussions: the goals of exposome research, its standards, its tools, how it relates to study participants, and the consequences of its products. Furthermore, we provide a number of general principles for how future ethics research can best make use of our comprehensive overview of the ethical aspects of exposome research. Lastly, we highlight three aspects of exposome research that are most in need of ethical reflection: the actionability of its findings, the epidemiological or clinical norms applicable to exposome research, and the meaning and action-implications of bias.
Collapse
Affiliation(s)
- Caspar W. Safarlou
- Department of Global Public Health and Bioethics, Julius Center for
Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The
Netherlands
| | - Karin R. Jongsma
- Department of Global Public Health and Bioethics, Julius Center for
Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The
Netherlands
| | - Roel Vermeulen
- Department of Global Public Health and Bioethics, Julius Center for
Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The
Netherlands
- Department of Population Health Sciences, Utrecht University,
Utrecht, The Netherlands
| | - Annelien L. Bredenoord
- Department of Global Public Health and Bioethics, Julius Center for
Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The
Netherlands
- Erasmus School of Philosophy, Erasmus University Rotterdam,
Rotterdam, The Netherlands
| |
Collapse
|
4
|
Radzikowska U, Baerenfaller K, Cornejo‐Garcia JA, Karaaslan C, Barletta E, Sarac BE, Zhakparov D, Villaseñor A, Eguiluz‐Gracia I, Mayorga C, Sokolowska M, Barbas C, Barber D, Ollert M, Chivato T, Agache I, Escribese MM. Omics technologies in allergy and asthma research: An EAACI position paper. Allergy 2022; 77:2888-2908. [PMID: 35713644 PMCID: PMC9796060 DOI: 10.1111/all.15412] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023]
Abstract
Allergic diseases and asthma are heterogenous chronic inflammatory conditions with several distinct complex endotypes. Both environmental and genetic factors can influence the development and progression of allergy. Complex pathogenetic pathways observed in allergic disorders present a challenge in patient management and successful targeted treatment strategies. The increasing availability of high-throughput omics technologies, such as genomics, epigenomics, transcriptomics, proteomics, and metabolomics allows studying biochemical systems and pathophysiological processes underlying allergic responses. Additionally, omics techniques present clinical applicability by functional identification and validation of biomarkers. Therefore, finding molecules or patterns characteristic for distinct immune-inflammatory endotypes, can subsequently influence its development, progression, and treatment. There is a great potential to further increase the effectiveness of single omics approaches by integrating them with other omics, and nonomics data. Systems biology aims to simultaneously and longitudinally understand multiple layers of a complex and multifactorial disease, such as allergy, or asthma by integrating several, separated data sets and generating a complete molecular profile of the condition. With the use of sophisticated biostatistics and machine learning techniques, these approaches provide in-depth insight into individual biological systems and will allow efficient and customized healthcare approaches, called precision medicine. In this EAACI Position Paper, the Task Force "Omics technologies in allergic research" broadly reviewed current advances and applicability of omics techniques in allergic diseases and asthma research, with a focus on methodology and data analysis, aiming to provide researchers (basic and clinical) with a desk reference in the field. The potential of omics strategies in understanding disease pathophysiology and key tools to reach unmet needs in allergy precision medicine, such as successful patients' stratification, accurate disease prognosis, and prediction of treatment efficacy and successful prevention measures are highlighted.
Collapse
Affiliation(s)
- Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Christine‐Kühne Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - Katja Baerenfaller
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Swiss Institute of Bioinformatics (SIB)DavosSwitzerland
| | - José Antonio Cornejo‐Garcia
- Research LaboratoryIBIMA, ARADyAL Instituto de Salud Carlos III, Regional University Hospital of Málaga, UMAMálagaSpain
| | - Cagatay Karaaslan
- Department of Biology, Molecular Biology SectionFaculty of ScienceHacettepe UniversityAnkaraTurkey
| | - Elena Barletta
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Swiss Institute of Bioinformatics (SIB)DavosSwitzerland
| | - Basak Ezgi Sarac
- Department of Biology, Molecular Biology SectionFaculty of ScienceHacettepe UniversityAnkaraTurkey
| | - Damir Zhakparov
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Swiss Institute of Bioinformatics (SIB)DavosSwitzerland
| | - Alma Villaseñor
- Centre for Metabolomics and Bioanalysis (CEMBIO)Department of Chemistry and BiochemistryFacultad de FarmaciaUniversidad San Pablo‐CEU, CEU UniversitiesMadridSpain,Institute of Applied Molecular Medicine Nemesio Diaz (IMMAND)Department of Basic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain
| | - Ibon Eguiluz‐Gracia
- Allergy UnitHospital Regional Universitario de MálagaMálagaSpain,Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| | - Cristobalina Mayorga
- Allergy UnitHospital Regional Universitario de MálagaMálagaSpain,Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain,Andalusian Centre for Nanomedicine and Biotechnology – BIONANDMálagaSpain
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Christine‐Kühne Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO)Department of Chemistry and BiochemistryFacultad de FarmaciaUniversidad San Pablo‐CEU, CEU UniversitiesMadridSpain
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diaz (IMMAND)Department of Basic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain
| | - Markus Ollert
- Department of Infection and ImmunityLuxembourg Institute of HealthyEsch‐sur‐AlzetteLuxembourg,Department of Dermatology and Allergy CenterOdense Research Center for AnaphylaxisOdense University Hospital, University of Southern DenmarkOdenseDenmark
| | - Tomas Chivato
- Institute of Applied Molecular Medicine Nemesio Diaz (IMMAND)Department of Basic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain,Department of Clinic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain
| | | | - Maria M. Escribese
- Institute of Applied Molecular Medicine Nemesio Diaz (IMMAND)Department of Basic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain
| |
Collapse
|
5
|
Spoladore J, Gimenes I, Bachinski R, Negherbon JP, Hartung T, Granjeiro JM, Alves GG. Standardized pyrogen testing of medical products with the bacterial endotoxin test (BET) as a substitute for rabbit Pyrogen testing (RPT): A scoping review. Toxicol In Vitro 2021; 74:105160. [PMID: 33831473 DOI: 10.1016/j.tiv.2021.105160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 11/18/2022]
Abstract
The Bacterial Endotoxin Test (BET) is a method for exclusion of endotoxin-related pyrogen contamination in pharmaceutical products, as an alternative to the Rabbit Pyrogen Test (RPT). However, BET does not detect a broad range of biologically relevant pyrogens, and interferences can limit its practical use for different medical products. This work aimed to scope the evidence in the scientific literature for case-by-case validity assessments of BET in different uses for medical products. A search strategy was conducted in PubMed, Scopus, and Web of Science in April 2020, according to the PRISMA-ScR statement. Twenty-two references were included, evaluating medical products for endotoxin contamination through both BET and RPT according to standardized protocols. A critical appraisal was performed through ToxRTool, followed by data extraction and qualitative synthesis of outcomes and methodological issues. Four classes of products assessed by BET were identified, including nanoparticles, drugs, blood and biological products. A considerable variation was observed on the BET methods used. Collectively, the evidence indicates different factors influencing the outcome of BET, including the chemical nature of samples that may cause interference depending on the selected method. While some applications to medical products appear adequate, others, such as nanoparticles, may require the use of different in vitro pyrogen testing methods, reinforcing the need for case-by-case validation for each BET method and type of medical product.
Collapse
Affiliation(s)
- Janaína Spoladore
- Post-Graduation Program in Science and Biotechnology, Fluminense Federal University, Niteroi, Brazil
| | - Izabela Gimenes
- Post-Graduation Program in Science and Biotechnology, Fluminense Federal University, Niteroi, Brazil
| | - Róber Bachinski
- Post-Graduation Program in Science and Biotechnology, Fluminense Federal University, Niteroi, Brazil; 1R Institute, Rio de Janeiro, Brazil
| | - Jesse P Negherbon
- The John's Hopkins Bloomberg School of Public Health, Center for Alternatives to Animal Testing, Baltimore, MD, USA
| | - Thomas Hartung
- The John's Hopkins Bloomberg School of Public Health, Center for Alternatives to Animal Testing, Baltimore, MD, USA
| | - José Mauro Granjeiro
- National Institute of Metrology, Quality, and Technology (INMETRO), Rio de Janeiro, Brazil
| | - Gutemberg Gomes Alves
- 1R Institute, Rio de Janeiro, Brazil; Cell and Molecular Biology Department, Institute of Biology, Fluminense Federal University, Niteroi, Brazil.
| |
Collapse
|
6
|
Lemieux VL, Hofman D, Hamouda H, Batista D, Kaur R, Pan W, Costanzo I, Regier D, Pollard S, Weymann D, Fraser R. Having Our “Omic” Cake and Eating It Too?: Evaluating User Response to Using Blockchain Technology for Private and Secure Health Data Management and Sharing. FRONTIERS IN BLOCKCHAIN 2021. [DOI: 10.3389/fbloc.2020.558705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This paper reports on end users' perspectives on the use of a blockchain solution for private and secure individual “omics” health data management and sharing. This solution is one output of a multidisciplinary project investigating the social, data, and technical issues surrounding application of blockchain technology in the context of personalized healthcare research. The project studies potential ethical, legal, social, and cognitive constraints of self-sovereign healthcare data management and sharing, and whether such constraints can be addressed through careful design of a blockchain solution.
Collapse
|
7
|
Eye-Tracking in Infants and Young Children at Risk for Autism Spectrum Disorder: A Systematic Review of Visual Stimuli in Experimental Paradigms. J Autism Dev Disord 2020; 51:2578-2599. [DOI: 10.1007/s10803-020-04731-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Reproducibility of animal research in light of biological variation. Nat Rev Neurosci 2020; 21:384-393. [PMID: 32488205 DOI: 10.1038/s41583-020-0313-3] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2020] [Indexed: 12/16/2022]
Abstract
Context-dependent biological variation presents a unique challenge to the reproducibility of results in experimental animal research, because organisms' responses to experimental treatments can vary with both genotype and environmental conditions. In March 2019, experts in animal biology, experimental design and statistics convened in Blonay, Switzerland, to discuss strategies addressing this challenge. In contrast to the current gold standard of rigorous standardization in experimental animal research, we recommend the use of systematic heterogenization of study samples and conditions by actively incorporating biological variation into study design through diversifying study samples and conditions. Here we provide the scientific rationale for this approach in the hope that researchers, regulators, funders and editors can embrace this paradigm shift. We also present a road map towards better practices in view of improving the reproducibility of animal research.
Collapse
|
9
|
Brumfield KD, Huq A, Colwell RR, Olds JL, Leddy MB. Microbial resolution of whole genome shotgun and 16S amplicon metagenomic sequencing using publicly available NEON data. PLoS One 2020; 15:e0228899. [PMID: 32053657 PMCID: PMC7018008 DOI: 10.1371/journal.pone.0228899] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/24/2020] [Indexed: 01/01/2023] Open
Abstract
Microorganisms are ubiquitous in the biosphere, playing a crucial role in both biogeochemistry of the planet and human health. However, identifying these microorganisms and defining their function are challenging. Widely used approaches in comparative metagenomics, 16S amplicon sequencing and whole genome shotgun sequencing (WGS), have provided access to DNA sequencing analysis to identify microorganisms and evaluate diversity and abundance in various environments. However, advances in parallel high-throughput DNA sequencing in the past decade have introduced major hurdles, namely standardization of methods, data storage, reproducible interoperability of results, and data sharing. The National Ecological Observatory Network (NEON), established by the National Science Foundation, enables all researchers to address queries on a regional to continental scale around a variety of environmental challenges and provide high-quality, integrated, and standardized data from field sites across the U.S. As the amount of metagenomic data continues to grow, standardized procedures that allow results across projects to be assessed and compared is becoming increasingly important in the field of metagenomics. We demonstrate the feasibility of using publicly available NEON soil metagenomic sequencing datasets in combination with open access Metagenomics Rapid Annotation using the Subsystem Technology (MG-RAST) server to illustrate advantages of WGS compared to 16S amplicon sequencing. Four WGS and four 16S amplicon sequence datasets, from surface soil samples prepared by NEON investigators, were selected for comparison, using standardized protocols collected at the same locations in Colorado between April-July 2014. The dominant bacterial phyla detected across samples agreed between sequencing methodologies. However, WGS yielded greater microbial resolution, increased accuracy, and allowed identification of more genera of bacteria, archaea, viruses, and eukaryota, and putative functional genes that would have gone undetected using 16S amplicon sequencing. NEON open data will be useful for future studies characterizing and quantifying complex ecological processes associated with changing aquatic and terrestrial ecosystems.
Collapse
Affiliation(s)
- Kyle D. Brumfield
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland, United States of America
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
| | - Rita R. Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland, United States of America
- CosmosID Inc., Rockville, MD, United States of America
| | - James L. Olds
- Schar School, George Mason University, Arlington, Virginia, United States of America
| | - Menu B. Leddy
- Essential Environmental and Engineering Systems, Huntington Beach, California, United States of America
| |
Collapse
|
10
|
In vitro assessment of hepatotoxicity by metabolomics: a review. Arch Toxicol 2018; 92:3007-3029. [DOI: 10.1007/s00204-018-2286-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/13/2018] [Indexed: 02/08/2023]
|
11
|
A Perspective on Brain-Gut Communication: The American Gastroenterology Association and American Psychosomatic Society Joint Symposium on Brain-Gut Interactions and the Intestinal Microenvironment. Psychosom Med 2017; 79:847-856. [PMID: 27922565 DOI: 10.1097/psy.0000000000000431] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Alterations in brain-gut communication and the intestinal microenvironment have been implicated in a variety of medical and neuropsychiatric diseases. Three central areas require basic and clinical research: (1) how the intestinal microenvironment interacts with the host immune system, central nervous system, and enteric nervous system; (2) the role of the intestinal microenvironment in the pathogenesis of medical and neuropsychiatric disease; and (3) the effects of diet, prebiotics, probiotics, and fecal microbiota transplantation on the intestinal microenvironment and the treatment of disease. METHODS This review article is based on a symposium convened by the American Gastroenterology Association and the American Psychosomatic Society to foster interest in the role of the intestinal microenvironment in brain-gut communication and pathogenesis of neuropsychiatric and biopsychosocial disorders. The aims were to define the state of the art of the current scientific knowledge base and to identify guidelines and future directions for new research in this area. RESULTS This review provides a characterization of the intestinal microbial composition and function. We also provide evidence for the interactions between the intestinal microbiome, the host, and the environment. The role of the intestinal microbiome in medical and neuropsychiatric diseases is reviewed as well as the treatment effects of manipulation of the intestinal microbiome. CONCLUSIONS Based on this review, opportunities and challenges for conducting research in the field are described, leading to potential avenues for future research.
Collapse
|
12
|
Ramirez T, Daneshian M, Kamp H, Bois FY, Clench MR, Coen M, Donley B, Fischer SM, Ekman DR, Fabian E, Guillou C, Heuer J, Hogberg HT, Jungnickel H, Keun HC, Krennrich G, Krupp E, Luch A, Noor F, Peter E, Riefke B, Seymour M, Skinner N, Smirnova L, Verheij E, Wagner S, Hartung T, van Ravenzwaay B, Leist M. Metabolomics in toxicology and preclinical research. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2013; 30:209-25. [PMID: 23665807 DOI: 10.14573/altex.2013.2.209] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metabolomics, the comprehensive analysis of metabolites in a biological system, provides detailed information about the biochemical/physiological status of a biological system, and about the changes caused by chemicals. Metabolomics analysis is used in many fields, ranging from the analysis of the physiological status of genetically modified organisms in safety science to the evaluation of human health conditions. In toxicology, metabolomics is the -omics discipline that is most closely related to classical knowledge of disturbed biochemical pathways. It allows rapid identification of the potential targets of a hazardous compound. It can give information on target organs and often can help to improve our understanding regarding the mode-of-action of a given compound. Such insights aid the discovery of biomarkers that either indicate pathophysiological conditions or help the monitoring of the efficacy of drug therapies. The first toxicological applications of metabolomics were for mechanistic research, but different ways to use the technology in a regulatory context are being explored. Ideally, further progress in that direction will position the metabolomics approach to address the challenges of toxicology of the 21st century. To address these issues, scientists from academia, industry, and regulatory bodies came together in a workshop to discuss the current status of applied metabolomics and its potential in the safety assessment of compounds. We report here on the conclusions of three working groups addressing questions regarding 1) metabolomics for in vitro studies 2) the appropriate use of metabolomics in systems toxicology, and 3) use of metabolomics in a regulatory context.
Collapse
Affiliation(s)
- Tzutzuy Ramirez
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Villamón E, Piqueras M, Meseguer J, Blanquer I, Berbegall AP, Tadeo I, Hernández V, Navarro S, Noguera R. NeuPAT: an intranet database supporting translational research in neuroblastic tumors. Comput Biol Med 2013; 43:219-28. [PMID: 23290604 DOI: 10.1016/j.compbiomed.2012.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 11/08/2012] [Accepted: 11/22/2012] [Indexed: 01/01/2023]
Abstract
Translational research in oncology is directed mainly towards establishing a better risk stratification and searching for appropriate therapeutic targets. This research generates a tremendous amount of complex clinical and biological data needing speedy and effective management. The authors describe the design, implementation and early experiences of a computer-aided system for the integration and management of data for neuroblastoma patients. NeuPAT facilitates clinical and translational research, minimizes the workload in consolidating the information, reduces errors and increases correlation of data through extensive coding. This design can also be applied to other tumor types.
Collapse
Affiliation(s)
- Eva Villamón
- Department of Pathology, Medical School, University of Valencia, and Research Foundation of Hospital Clínico Universitario of Valencia, Valencia 46010, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yang R, Du Z, Han Y, Zhou L, Song Y, Zhou D, Cui Y. Omics strategies for revealing Yersinia pestis virulence. Front Cell Infect Microbiol 2012; 2:157. [PMID: 23248778 PMCID: PMC3521224 DOI: 10.3389/fcimb.2012.00157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 11/27/2012] [Indexed: 01/12/2023] Open
Abstract
Omics has remarkably changed the way we investigate and understand life. Omics differs from traditional hypothesis-driven research because it is a discovery-driven approach. Mass datasets produced from omics-based studies require experts from different fields to reveal the salient features behind these data. In this review, we summarize omics-driven studies to reveal the virulence features of Yersinia pestis through genomics, trascriptomics, proteomics, interactomics, etc. These studies serve as foundations for further hypothesis-driven research and help us gain insight into Y. pestis pathogenesis.
Collapse
Affiliation(s)
- Ruifu Yang
- Beijing Institute of Microbiology and Epidemiology Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Sugimoto M, Kawakami M, Robert M, Soga T, Tomita M. Bioinformatics Tools for Mass Spectroscopy-Based Metabolomic Data Processing and Analysis. Curr Bioinform 2012; 7:96-108. [PMID: 22438836 PMCID: PMC3299976 DOI: 10.2174/157489312799304431] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 10/25/2011] [Accepted: 12/07/2011] [Indexed: 01/04/2023]
Abstract
Biological systems are increasingly being studied in a holistic manner, using omics approaches, to provide quantitative and qualitative descriptions of the diverse collection of cellular components. Among the omics approaches, metabolomics, which deals with the quantitative global profiling of small molecules or metabolites, is being used extensively to explore the dynamic response of living systems, such as organelles, cells, tissues, organs and whole organisms, under diverse physiological and pathological conditions. This technology is now used routinely in a number of applications, including basic and clinical research, agriculture, microbiology, food science, nutrition, pharmaceutical research, environmental science and the development of biofuels. Of the multiple analytical platforms available to perform such analyses, nuclear magnetic resonance and mass spectrometry have come to dominate, owing to the high resolution and large datasets that can be generated with these techniques. The large multidimensional datasets that result from such studies must be processed and analyzed to render this data meaningful. Thus, bioinformatics tools are essential for the efficient processing of huge datasets, the characterization of the detected signals, and to align multiple datasets and their features. This paper provides a state-of-the-art overview of the data processing tools available, and reviews a collection of recent reports on the topic. Data conversion, pre-processing, alignment, normalization and statistical analysis are introduced, with their advantages and disadvantages, and comparisons are made to guide the reader.
Collapse
Affiliation(s)
- Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-8520, Japan
- Graduate School of Medicine and Faculty of Medicine Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masato Kawakami
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Department of Environment and Information Studies, Keio University, Fujisawa, Kanagawa 252-8520, Japan
| | - Martin Robert
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-8520, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Department of Environment and Information Studies, Keio University, Fujisawa, Kanagawa 252-8520, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
- Department of Environment and Information Studies, Keio University, Fujisawa, Kanagawa 252-8520, Japan
| |
Collapse
|