1
|
Salman AM, Babaei E, Al-Khafaji ASK. Exploring the modulation of MLH1 and MSH2 gene expression in hesperetin-treated breast cancer cells (BT-474). J Adv Pharm Technol Res 2024; 15:43-48. [PMID: 38389973 PMCID: PMC10880915 DOI: 10.4103/japtr.japtr_279_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 02/24/2024] Open
Abstract
The major mortality factor for women globally is breast cancer, and current treatments have several adverse effects. Hesperetin (HSP) is a flavone that occurs naturally with anti-tumor capabilities and has been investigated as a potential treatment for cancer. This study aimed to investigate the cytotoxic and anti-malignant potential of HSP on breast cancer cells (BT-474) and normal cells (MCF-10a). The results indicated that HSP has dose-dependent cytotoxicity in BT-474 and MCF-10a cells. The elevated concentration of HSP lowered cell viability and proliferation. The half-maximal inhibitory concentration (IC50) of HSP in BT-474 cancer cells after a 48-h exposure was 279.2 μM/ml, while the IC50 in normal cells was 855.4 μM/ml. The cytotoxicity of HSP was more significant in cancer cell lines than in normal cell lines and this aspect presents a favorable factor in utilizing the drug for the treatment of breast cancer. The apoptotic effect of HSP in BT-474 cells was investigated, and it was found that the higher the concentration of HSP more the cells underwent apoptosis. Furthermore, the highest concentration of HSP led to overexpression of the MLH1 and MSH2 genes in both breast cancer and normal cell lines. Overall, our study suggests that HSP has an anticancer effect on breast cancer cell lines, and the effect is concentration dependent.
Collapse
Affiliation(s)
- Ahmed Mohammed Salman
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Esmaeil Babaei
- Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq
| | | |
Collapse
|
2
|
Fan YC, Meng ZY, Zhang CS, Wei DW, Wei WS, Xie XD, Huang ML, Jiang LH. DNAJ heat shock protein family member C1 can regulate proliferation and migration in hepatocellular carcinoma. PeerJ 2023; 11:e15700. [PMID: 37520264 PMCID: PMC10386825 DOI: 10.7717/peerj.15700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/14/2023] [Indexed: 08/01/2023] Open
Abstract
Background DNAJ heat shock protein family (Hsp40) member C1(DNAJC1) is a member of the DNAJ family. Some members of the DNAJ gene family had oncogenic properties in many cancers. However, the role of DNAJC1 in hepatocellular carcinoma (HCC) was unclear. Methods In this study, expression and prognostic value of DNAJC1 in HCC were analyzed by bioinformatics. Quantitative real-time PCR and Western blotting were used to verify DNAJC1 expression in liver cancer cell lines. Furthermore, immunohistochemical (IHC) was used to detect DNAJC1 expression in liver cancer tissues. Subsequently, the effect of DNAJC1 on the proliferation, migration, invasion and apoptosis of HCC cells was detected by knocking down DNAJC1. Finally, gene set enrichment analysis (GSEA) was used to investigate the potential mechanism of DNAJC1 and was verified by Western blotting. Results DNAJC1 was highly expressed in HCC and was significantly associated with the prognosis of patients with HCC. Importantly, the proliferation, migration and invasion of Huh7 and MHCC97H cells were inhibited by the knockdown of DNAJC1 and the knockdown of DNAJC1 promoted Huh7 and MHCC97H cell apoptosis. Furthermore, compared to the negative control group, DNAJC1 knockdown in Huh7 and MHCC97H cells promoted the expression of p21, p53, p-p53(Ser20), Bax and E-cadherin proteins, while inhibiting the expression of PARP, MMP9, Vimentin, Snai1, Bcl-2 and N-cadherin proteins. Conclusions DNAJC1 had a predictive value for the prognosis of HCC. Knockdown of DNAJC1 may inhibit HCC cell proliferation, migration and invasion and promote the HCC cell apoptosis through p53 and EMT signaling pathways.
Collapse
Affiliation(s)
- Yu-Chun Fan
- Medical College, Guangxi University, Nanning, Guangxi, China
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Zhejiang, China
| | - Zhi-Yong Meng
- First Clinical Medical College, Guangxi Traditional Chinese Medical University, Nanning, China
| | - Chao-Sheng Zhang
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - De-Wei Wei
- School of Stomatology, Youjiang Medical University for Nationalities, Baise, China
| | - Wan-Shuo Wei
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Xian-Dong Xie
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Ming-Lu Huang
- School of Stomatology, Youjiang Medical University for Nationalities, Baise, China
| | - Li-He Jiang
- Medical College, Guangxi University, Nanning, Guangxi, China
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Zhejiang, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Shanxi, China
| |
Collapse
|
3
|
Hasan AK, Babaei E, Al-Khafaji ASK. Hesperetin effect on MLH1 and MSH2 expression on breast cancer cells BT-549. J Adv Pharm Technol Res 2023; 14:241-247. [PMID: 37692022 PMCID: PMC10483912 DOI: 10.4103/japtr.japtr_277_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 09/12/2023] Open
Abstract
Due to its genetic and phenotypic heterogeneity, breast cancer is very difficult to eliminate. The harmful consequences of conventional therapies like radiation and chemotherapy have prompted the search for organic-based alternatives. Hesperetin (HSP), a flavonoid, has been discovered to possess the ability to hinder the proliferation of cell associated with breast cancer by acting as an epigenetic agent and modifying gene expression. In this investigation, breast cancer cells (BT-549) and normal cells (MCF-10a) were subjected to the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test and three different doses (200, 400, and 600 μM/mL) of HSP for real-time polymerase chain reaction and flow cytometry to examine its cytotoxic and anti-malignant potential. HSP was shown to be cytotoxic to both normal and breast cancer cells, but had a more pronounced effect on the cancer cell lines. After 48 h of treatment, the half-maximal inhibitory concentration (IC50) for BT-549 was 279.2 μM/mL, whereas the IC50 for MCF-10a was 855.4 μM/mL. At high HSP concentrations, upregulation of the MLH1 and MSH2 genes was observed in both cell lines. The influence of HSP on MLH1 gene expression was concentration dependent. Moreover, HSP had a concentration-dependent effect on MSH2 gene expression in the BT-549 cell line but not in the MCF-10a cell line. Cell death and early apoptosis were shown to be concentration dependent upon the application of HSP, as determined by flow cytometric analysis. HSP's capacity to cause apoptosis and its stronger impact on the malignant cell line when analyzed with the normal cell line imply that it might be useful as an effective therapeutic approach for combating breast cancer.
Collapse
Affiliation(s)
- Assim Khattab Hasan
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Esmaeil Babaei
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
4
|
Fang F, Mo L, Pan X, Yang Z, Huang H, Zhu L, Wang Y, Jiang G. DNAJB4 promotes triple-negative breast cancer cell apoptosis via activation of the Hippo signaling pathway. Discov Oncol 2023; 14:40. [PMID: 37012515 PMCID: PMC10070573 DOI: 10.1007/s12672-023-00645-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is currently the most malignant subtype of breast cancer without effective targeted therapies. DNAJB4 (Dnaj heat shock protein family (Hsp40) member B4) is a member of the human heat shock protein family (Hsp40). The clinical significance of DNAJB4 in breast cancer has been reported in our previous study. However, the biological function of DNAJB4 in TNBC cell apoptosis remains unclear to date. METHODS The expression of DNAJB4 in normal breast cells, breast cancer cells, four-paired TNBC tissues, and adjacent noncancerous tissues was quantified by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assay. The role of DNAJB4 in TNBC cell apoptosis was investigated using a number of gain- and loss-of-function in vitro and in vivo assays. The underlying molecular mechanisms in TNBC cell apoptosis were elucidated via Western blot assay. RESULTS DNAJB4 expression was significantly downregulated in TNBC tissues and cell lines. DNAJB4 knockdown inhibited TNBC cell apoptosis and promoted tumorigenicity in vitro and in vivo, but DNAJB4 overexpression resulted in the opposite. Mechanically, DNAJB4 knockdown inhibited TNBC cell apoptosis through suppression of the Hippo signaling pathway, and the result was reversed after DNAJB4 overexpression. CONCLUSIONS DNAJB4 promotes TNBC cell apoptosis by activating the Hippo signaling pathway. Therefore, DNAJB4 may act as a prognostic biomarker and therapeutic target for TNBC.
Collapse
Affiliation(s)
- Fang Fang
- Department of Surgery, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004, China
- Department of Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Linglong Mo
- Department of Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Xiaofeng Pan
- Department of Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Ziquan Yang
- Department of Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Haoyu Huang
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu, 241001, China
| | - Liangyu Zhu
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu, 241001, China
| | - Yingying Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Guoqin Jiang
- Department of Surgery, The Second Affiliated Hospital of Soochow University, 1055 San-Xiang Road, Suzhou, 215004, China.
| |
Collapse
|
5
|
She K, Yu S, He S, Wang W, Chen B. CircRNA 0009043 suppresses non-small-cell lung cancer development via targeting the miR-148a-3p/DNAJB4 axis. Biomark Res 2022; 10:61. [PMID: 35974419 PMCID: PMC9380299 DOI: 10.1186/s40364-022-00407-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background Circular RNAs (circRNAs) are important regulators of the development and progression of non-small-cell lung cancer (NSCLC) and many other malignancies. The functional importance of circ_0009043 in NSCLC, however, has yet to be established. Methods The expression of circ_0009043, miR-148a-3p, and DnaJ heat shock protein family (Hsp40) member B4 (DNAJB4) in NSCLC cells was assessed via qPCR. The proliferative activity of these cells was examined through EdU uptake and CCK-8 assays, while flow cytometry approaches were used to examine apoptotic cell death rates. Protein expression was measured through Western immunoblotting. Interactions between miR-148a-3p and circ_0009043 or DNAJB4 were detected through RNA immunoprecipitation (RIP) and dual-luciferase reporter assays. The in vivo importance of circ_0009043 as a regulator of oncogenic activity was assessed using murine xenograft models. Results Both NSCLC cells and tissue samples were found to exhibit circ_0009043 upregulation, and lower circ_0009043 expression levels were found to be related to poorer NSCLC patient overall survival. Knocking down circ_0009043 resulted in the enhancement of NSCLC cell proliferative activity and the suppression of apoptotic tumor cell death in vitro, while also driving more rapid in vivo tumorigenesis. Mechanistically, circ_0009043 was found to function as a molecular sponge that sequestered miR-148a-3p, which was in turn able to directly suppress DNAJB4 expression. When miR-148a-3p was overexpressed, this reversed the impact of knocking down circ_0009043 on the apoptotic death and proliferation of NSCLC cells. Conversely, miR-148a-3p inhibition resulted in the suppression of NSCLC cell apoptosis and the enhancement of tumor cell growth, while the downregulation of DNAJB4 reversed these changes. Conclusion Circ_0009043 acts as a tumor suppressor in NSCLC cells, promoting DNAJB4 upregulation via the sequestration of miR-148a-3p.
Collapse
Affiliation(s)
- Kelin She
- Department of Thoracic Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Nomal University, Changsha, Hunan, 410005, China. .,Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China.
| | - Shaoqi Yu
- Department of Thoracic Surgery, The Central Hospital of Shaoyang Affiliated to University of South China, 422000, Shaoyang, China
| | - Shushuai He
- Department of Thoracic Surgery, The Central Hospital of Shaoyang Affiliated to University of South China, 422000, Shaoyang, China
| | - Wen Wang
- Department of Thoracic Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Nomal University, Changsha, Hunan, 410005, China
| | - Biao Chen
- Department of Thoracic Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Nomal University, Changsha, Hunan, 410005, China
| |
Collapse
|
6
|
Huang X, Yao M, Tian P, Wong JYY, Li Z, Liu Z, Zhao JV. Shared genetic etiology and causality between COVID-19 and venous thromboembolism: evidence from genome-wide cross trait analysis and bi-directional Mendelian randomization study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.05.21.22275413. [PMID: 35665015 PMCID: PMC9164523 DOI: 10.1101/2022.05.21.22275413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Venous thromboembolism (VTE) occurs in up to one third patients with COVID-19. VTE and COVID-19 may share a common genetic architecture, which has not been clarified yet. To fill this gap, we leveraged summary-level genetic data from the latest COVID-19 host genetics consortium and UK Biobank and examined the shared genetic etiology and causal relationship between COVID-19 and VTE. The cross-trait analysis identified 8, 11, and 7 shared loci between VTE and severe COVID-19, COVID-19 hospitalization, SARS-CoV-2 infection respectively, in 13 genes involved in coagulation and immune function and enriched in the lung. Co-localization analysis identified eight shared loci in ABO, ADAMTS13 and FUT2 genes. Bi-direction Mendelian randomization suggested that VTE was associated with higher risks of all COVID-19 related traits, and SARS-CoV-2 infection was associated with higher risk of VTE. Our study provided timely evidence and novel insights into the genetic etiology between COVID-19 and VTE.
Collapse
|
7
|
Asgharzadeh F, Moradi-Marjaneh R, Marjaneh MM. The role of heat shock protein 40 in carcinogenesis and biology of colorectal cancer. Curr Pharm Des 2022; 28:1457-1465. [PMID: 35570564 DOI: 10.2174/1381612828666220513124603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/31/2022] [Indexed: 11/22/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Despite the enormous amount of effort in the diagnosis and treatment of CRC, the overall survival rate of patients remains low. The precise molecular and cellular basis underlying CRC has not been completely understood yet. Over time, new genes and molecular pathways involved in the pathogenesis of the disease are being identified. Accurate discovery of these genes and signaling pathways are important and urgent missions for the next generation of anticancer therapy research. Chaperone DnaJ, also known as Hsp40 (heat shock protein 40), has been of particular interest in CRC pathogenesis, as it is involved in the fundamental cell activities for maintaining cellular homeostasis. Evidence show that protein family members of DnaJ/Hsp40 play both roles; enhancing and reducing the growth of CRC cells. In the present review, we focus on the current knowledge on the molecular mechanisms responsible for the role of DnaJ/Hsp40 in CRC carcinogenesis and biology.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Moradi-Marjaneh
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahdi Moradi Marjaneh
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Somekh J, Lotan N, Sussman E, Yehuda GA. Predicting mechanical ventilation effects on six human tissue transcriptomes. PLoS One 2022; 17:e0264919. [PMID: 35271646 PMCID: PMC8912236 DOI: 10.1371/journal.pone.0264919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 02/21/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Mechanical ventilation (MV) is a lifesaving therapy used for patients with respiratory failure. Nevertheless, MV is associated with numerous complications and increased mortality. The aim of this study is to define the effects of MV on gene expression of direct and peripheral human tissues. METHODS Classification models were applied to Genotype-Tissue Expression Project (GTEx) gene expression data of six representative tissues-liver, adipose, skin, nerve-tibial, muscle and lung, for performance comparison and feature analysis. We utilized 18 prediction models using the Random Forest (RF), XGBoost (eXtreme Gradient Boosting) decision tree and ANN (Artificial Neural Network) methods to classify ventilation and non-ventilation samples and to compare their prediction performance for the six tissues. In the model comparison, the AUC (area under receiver operating curve), accuracy, precision, recall, and F1 score were used to evaluate the predictive performance of each model. We then conducted feature analysis per each tissue to detect MV marker genes followed by pathway enrichment analysis for these genes. RESULTS XGBoost outperformed the other methods and predicted samples had undergone MV with an average accuracy for the six tissues of 0.951 and average AUC of 0.945. The feature analysis detected a combination of MV marker genes per each tested tissue, some common across several tissues. MV marker genes were mainly related to inflammation and fibrosis as well as cell development and movement regulation. The MV marker genes were significantly enriched in inflammatory and viral pathways. CONCLUSION The XGBoost method demonstrated clear enhanced performance and feature analysis compared to the other models. XGBoost was helpful in detecting the tissue-specific marker genes for identifying transcriptomic changes related to MV. Our results show that MV is associated with reduced development and movement in the tissues and higher inflammation and injury not only in direct tissues such as the lungs but also in peripheral tissues and thus should be carefully considered before being implemented.
Collapse
Affiliation(s)
- Judith Somekh
- Department of Information Systems, University of Haifa, Haifa, Israel
- * E-mail:
| | - Nir Lotan
- Department of Information Systems, University of Haifa, Haifa, Israel
| | - Ehud Sussman
- Department of Information Systems, University of Haifa, Haifa, Israel
| | - Gur Arye Yehuda
- Department of Information Systems, University of Haifa, Haifa, Israel
| |
Collapse
|
9
|
Damiani V, Cufaro MC, Fucito M, Dufrusine B, Rossi C, Del Boccio P, Federici L, Turco MC, Sallese M, Pieragostino D, De Laurenzi V. Proteomics Approach Highlights Early Changes in Human Fibroblasts-Pancreatic Ductal Adenocarcinoma Cells Crosstalk. Cells 2022; 11:1160. [PMID: 35406724 PMCID: PMC8997741 DOI: 10.3390/cells11071160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer mortality worldwide. Non-specific symptoms, lack of biomarkers in the early stages, and drug resistance due to the presence of a dense fibrous stroma all contribute to the poor outcome of this disease. The extracellular matrix secreted by activated fibroblasts contributes to the desmoplastic tumor microenvironment formation. Given the importance of fibroblast activation in PDAC pathology, it is critical to recognize the mechanisms involved in the transformation of normal fibroblasts in the early stages of tumorigenesis. To this aim, we first identified the proteins released from the pancreatic cancer cell line MIA-PaCa2 by proteomic analysis of their conditioned medium (CM). Second, normal fibroblasts were treated with MIA-PaCa2 CM for 24 h and 48 h and their proteostatic changes were detected by proteomics. Pathway analysis indicated that treated fibroblasts undergo changes compatible with the activation of migration, vasculogenesis, cellular homeostasis and metabolism of amino acids and reduced apoptosis. These biological activities are possibly regulated by ITGB3 and TGFB1/2 followed by SMAD3, STAT3 and BAG3 activation. In conclusion, this study sheds light on the crosstalk between PDAC cells and associated fibroblasts. Data are available via ProteomeXchange with identifier PXD030974.
Collapse
Affiliation(s)
- Verena Damiani
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| | - Maria Concetta Cufaro
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Maurine Fucito
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| | - Beatrice Dufrusine
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| | - Claudia Rossi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Department of Psychological, Health and Territory Sciences, School of Medicine and Health Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Del Boccio
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Luca Federici
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| | - Maria Caterina Turco
- Department of Medicine, Surgery and Dentistry Schola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy;
- R&D Division, BIOUNIVERSA s.r.l., 84081 Baronissi, Italy
| | - Michele Sallese
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| | - Damiana Pieragostino
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (V.D.); (M.F.); (B.D.); (C.R.); (L.F.); (M.S.); (V.D.L.)
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.C.C.); (P.D.B.)
| |
Collapse
|
10
|
Cyran AM, Zhitkovich A. Heat Shock Proteins and HSF1 in Cancer. Front Oncol 2022; 12:860320. [PMID: 35311075 PMCID: PMC8924369 DOI: 10.3389/fonc.2022.860320] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Fitness of cells is dependent on protein homeostasis which is maintained by cooperative activities of protein chaperones and proteolytic machinery. Upon encountering protein-damaging conditions, cells activate the heat-shock response (HSR) which involves HSF1-mediated transcriptional upregulation of a group of chaperones - the heat shock proteins (HSPs). Cancer cells experience high levels of proteotoxic stress due to the production of mutated proteins, aneuploidy-induced excess of components of multiprotein complexes, increased translation rates, and dysregulated metabolism. To cope with this chronic state of proteotoxic stress, cancers almost invariably upregulate major components of HSR, including HSF1 and individual HSPs. Some oncogenic programs show dependence or coupling with a particular HSR factor (such as frequent coamplification of HSF1 and MYC genes). Elevated levels of HSPs and HSF1 are typically associated with drug resistance and poor clinical outcomes in various malignancies. The non-oncogene dependence ("addiction") on protein quality controls represents a pancancer target in treating human malignancies, offering a potential to enhance efficacy of standard and targeted chemotherapy and immune checkpoint inhibitors. In cancers with specific dependencies, HSR components can serve as alternative targets to poorly druggable oncogenic drivers.
Collapse
Affiliation(s)
- Anna M Cyran
- Legoretta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Anatoly Zhitkovich
- Legoretta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| |
Collapse
|
11
|
Fang SQ, Liu YH, Zhao KP, Zhang HX, Wang HW, Deng YH, Zhou YX, Ge GB, Ni HM, Chen QL. Transcriptional profiling and network pharmacology analysis identify the potential biomarkers from Chinese herbal formula Huosu Yangwei Formula treated gastric cancer in vivo. Chin J Nat Med 2021; 19:944-953. [PMID: 34961592 DOI: 10.1016/s1875-5364(22)60154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Indexed: 02/07/2023]
Abstract
Huosu Yangwei (HSYW) Formula is a traditioanl Chinese herbal medicine that has been extensively used to treat chronic atrophic gastritis, precancerous lesions of gastric cancer and advanced gastric cancer. However, the effective compounds of HSYW and its related anti-tumor mechanisms are not completely understood. In the current study, 160 ingredients of HSYW were identified and 64 effective compounds were screened by the ADMET evaluation. Furthermore, 64 effective compounds and 2579 potential targets were mapped based on public databases. Animal experiments demonstrated that HSYW significantly inhibited tumor growth in vivo. Transcriptional profiles revealed that 81 mRNAs were differentially expressed in HSYW-treated N87-bearing Balb/c mice. Network pharmacology and PPI network showed that 12 core genes acted as potential markers to evaluate the curative effects of HSYW. Bioinformatics and qRT-PCR results suggested that HSYW might regulate the mRNA expression of DNAJB4, CALD, AKR1C1, CST1, CASP1, PREX1, SOCS3 and PRDM1 against tumor growth in N87-bearing Balb/c mice.
Collapse
Affiliation(s)
- Sheng-Quan Fang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yue-Han Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kun-Peng Zhao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hui-Xing Zhang
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong-Wei Wang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yu-Hai Deng
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yu-Xuan Zhou
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong-Mei Ni
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Qi-Long Chen
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
12
|
Kaida A, Iwakuma T. Regulation of p53 and Cancer Signaling by Heat Shock Protein 40/J-Domain Protein Family Members. Int J Mol Sci 2021; 22:13527. [PMID: 34948322 PMCID: PMC8706882 DOI: 10.3390/ijms222413527] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/27/2022] Open
Abstract
Heat shock proteins (HSPs) are molecular chaperones that assist diverse cellular activities including protein folding, intracellular transportation, assembly or disassembly of protein complexes, and stabilization or degradation of misfolded or aggregated proteins. HSP40, also known as J-domain proteins (JDPs), is the largest family with over fifty members and contains highly conserved J domains responsible for binding to HSP70 and stimulation of the ATPase activity as a co-chaperone. Tumor suppressor p53 (p53), the most frequently mutated gene in human cancers, is one of the proteins that functionally interact with HSP40/JDPs. The majority of p53 mutations are missense mutations, resulting in acquirement of unexpected oncogenic activities, referred to as gain of function (GOF), in addition to loss of the tumor suppressive function. Moreover, stability and levels of wild-type p53 (wtp53) and mutant p53 (mutp53) are crucial for their tumor suppressive and oncogenic activities, respectively. However, the regulatory mechanisms of wtp53 and mutp53 are not fully understood. Accumulating reports demonstrate regulation of wtp53 and mutp53 levels and/or activities by HSP40/JDPs. Here, we summarize updated knowledge related to the link of HSP40/JDPs with p53 and cancer signaling to improve our understanding of the regulation of tumor suppressive wtp53 and oncogenic mutp53 GOF activities.
Collapse
Affiliation(s)
- Atsushi Kaida
- Department of Oral Radiation Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Pediatrics, Children’s Mercy Research Institute, Kansas City, MO 64108, USA
| |
Collapse
|
13
|
Jayarathna DK, Rentería ME, Sauret E, Batra J, Gandhi NS. Identifying Complex lncRNA/Pseudogene-miRNA-mRNA Crosstalk in Hormone-Dependent Cancers. BIOLOGY 2021; 10:biology10101014. [PMID: 34681112 PMCID: PMC8533463 DOI: 10.3390/biology10101014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary Competing endogenous RNAs (ceRNAs) have gained attention in cancer research owing to their involvement in microRNA-mediated gene regulation. Here, we identified a shared ceRNA network across five hormone-dependent (HD) cancers (prostate, breast, colon, rectal, and endometrial), that contain two long non-coding RNAs, nine mRNAs, and seventy-four microRNAs. Among them, two mRNAs and forty-one microRNAs were associated with at least one HD cancer survival. A similar analytical approach can be applied to identify shared ceRNAs across a group of related cancers, which will significantly contribute to understanding their shared disease biology. Abstract The discovery of microRNAs (miRNAs) has fundamentally transformed our understanding of gene regulation. The competing endogenous RNA (ceRNA) hypothesis postulates that messenger RNAs and other RNA transcripts, such as long non-coding RNAs and pseudogenes, can act as natural miRNA sponges. These RNAs influence each other’s expression levels by competing for the same pool of miRNAs through miRNA response elements on their target transcripts, thereby modulating gene expression and protein activity. In recent years, these ceRNA regulatory networks have gained considerable attention in cancer research. Several studies have identified cancer-specific ceRNA networks. Nevertheless, prior bioinformatic analyses have focused on long-non-coding RNA-associated ceRNA networks. Here, we identify an extended ceRNA network (including both long non-coding RNAs and pseudogenes) shared across a group of five hormone-dependent (HD) cancers, i.e., prostate, breast, colon, rectal, and endometrial cancers, using data from The Cancer Genome Atlas (TCGA). We performed a functional enrichment analysis for differentially expressed genes in the shared ceRNA network of HD cancers, followed by a survival analysis to determine their prognostic ability. We identified two long non-coding RNAs, nine genes, and seventy-four miRNAs in the shared ceRNA network across five HD cancers. Among them, two genes and forty-one miRNAs were associated with at least one HD cancer survival. This study is the first to investigate pseudogene-associated ceRNAs across a group of related cancers and highlights the value of this approach to understanding the shared molecular pathogenesis in a group of related diseases.
Collapse
Affiliation(s)
- Dulari K. Jayarathna
- Centre for Genomics and Personalised Health, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia; (D.K.J.); (J.B.)
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
| | - Miguel E. Rentería
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Emilie Sauret
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Jyotsna Batra
- Centre for Genomics and Personalised Health, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia; (D.K.J.); (J.B.)
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Neha S. Gandhi
- Centre for Genomics and Personalised Health, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia; (D.K.J.); (J.B.)
- Translational Research Institute, Brisbane, QLD 4102, Australia
- Correspondence:
| |
Collapse
|
14
|
Wang K, Wu P, Chen D, Zhou J, Yang X, Jiang A, Xiao W, Qiu X, Zeng Y, Xu X, Tang G. Detecting the selection signatures in Chinese Duroc,Landrace, Yorkshire, Liangshan, and Qingyu pigs. Funct Integr Genomics 2021; 21:655-664. [PMID: 34606016 DOI: 10.1007/s10142-021-00809-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/23/2020] [Accepted: 09/18/2021] [Indexed: 10/20/2022]
Abstract
Here we used two kinds of chips data from 5 pig breeds, Chinese Duroc (DD), Landrace (LL), Yorkshire (YY), Liangshan (LS), and Qingyu pigs (QY) in China to identify genes which show evidence of selection during domestication. Four breed pairs, LS-YY, QY-YY, DD-YY, and LL-YY pair, were performed to detect selection signatures using the Fst method. Then we identified a list of genes that played key roles in domestication and artificial selection. For example, the PTPRM gene was shared in LS-YY, QY-YY, and DD-YY pairs and it regulates a variety of cellular processes including cell growth, differentiation as signaling molecules. The HACD3 gene was shared in QY-YY and DD-YY pairs, and the HACD3 protein is involved in the production of very long-chain fatty acids of different chain lengths. Besides, the MYH11 gene that related to muscle contraction was found in LS-YY and LL-YY pair. These results suggested that genes related to immunity, disease resistance, and metabolism were subjected to strong selection pressure in Chinese domestic pigs in the progress of domestication and evolution; however, genes related to appearance, production performance, and reproduction were undergone strong artificial selection in commercial pig breeds.
Collapse
Affiliation(s)
- Kai Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Pingxian Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dejuan Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jie Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xidi Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Anan Jiang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Weihang Xiao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaotian Qiu
- National Animal Husbandry Service, BeijingBeijing, 100125, China
| | - Yangshuang Zeng
- Sichuan Animal Husbandry Station, Chengdu, 610041, Sichuan, China
| | - Xu Xu
- Sichuan Animal Husbandry Station, Chengdu, 610041, Sichuan, China
| | - Guoqing Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
15
|
Friedlander JE, Shen N, Zeng A, Korm S, Feng H. Failure to Guard: Mitochondrial Protein Quality Control in Cancer. Int J Mol Sci 2021; 22:ijms22158306. [PMID: 34361072 PMCID: PMC8348654 DOI: 10.3390/ijms22158306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are energetic and dynamic organelles with a crucial role in bioenergetics, metabolism, and signaling. Mitochondrial proteins, encoded by both nuclear and mitochondrial DNA, must be properly regulated to ensure proteostasis. Mitochondrial protein quality control (MPQC) serves as a critical surveillance system, employing different pathways and regulators as cellular guardians to ensure mitochondrial protein quality and quantity. In this review, we describe key pathways and players in MPQC, such as mitochondrial protein translocation-associated degradation, mitochondrial stress responses, chaperones, and proteases, and how they work together to safeguard mitochondrial health and integrity. Deregulated MPQC leads to proteotoxicity and dysfunctional mitochondria, which contributes to numerous human diseases, including cancer. We discuss how alterations in MPQC components are linked to tumorigenesis, whether they act as drivers, suppressors, or both. Finally, we summarize recent advances that seek to target these alterations for the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Joseph E. Friedlander
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Ning Shen
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
- Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Aozhuo Zeng
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Sovannarith Korm
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
| | - Hui Feng
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA; (J.E.F.); (N.S.); (A.Z.); (S.K.)
- Department of Medicine, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA 02118, USA
- Correspondence: ; Tel.: +1-617-358-4688; Fax: +1-617-358-1599
| |
Collapse
|
16
|
Buttacavoli M, Di Cara G, D’Amico C, Geraci F, Pucci-Minafra I, Feo S, Cancemi P. Prognostic and Functional Significant of Heat Shock Proteins (HSPs) in Breast Cancer Unveiled by Multi-Omics Approaches. BIOLOGY 2021; 10:biology10030247. [PMID: 33810095 PMCID: PMC8004706 DOI: 10.3390/biology10030247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary In this study, we investigated the expression pattern and prognostic significance of the heat shock proteins (HSPs) family members in breast cancer (BC) by using several bioinformatics tools and proteomics investigations. Our results demonstrated that, collectively, HSPs were deregulated in BC, acting as both oncogene and onco-suppressor genes. In particular, two different HSP-clusters were significantly associated with a poor or good prognosis. Interestingly, the HSPs deregulation impacted gene expression and miRNAs regulation that, in turn, affected important biological pathways involved in cell cycle, DNA replication, and receptors-mediated signaling. Finally, the proteomic identification of several HSPs members and isoforms revealed much more complexity of HSPs roles in BC and showed that their expression is quite variable among patients. In conclusion, we elaborated two panels of HSPs that could be further explored as potential biomarkers for BC progression and prognosis. Abstract Heat shock proteins (HSPs) are a well-characterized molecular chaperones protein family, classified into six major families, according to their molecular size. A wide range of tumors have been shown to express atypical levels of one or more HSPs, suggesting that they could be used as biomarkers. However, the collective role and the possible coordination of HSP members, as well as the prognostic significance and the functional implications of their deregulated expression in breast cancer (BC) are poorly investigated. Here, we used a systematic multi-omics approach to assess the HSPs expression, the prognostic value, and the underlying mechanisms of tumorigenesis in BC. By using data mining, we showed that several HSPs were deregulated in BC and significantly correlated with a poor or good prognosis. Functional network analysis of HSPs co-expressed genes and miRNAs highlighted their regulatory effects on several biological pathways involved in cancer progression. In particular, these pathways concerned cell cycle and DNA replication for the HSPs co-expressed genes, and miRNAs up-regulated in poor prognosis and Epithelial to Mesenchymal Transition (ETM), as well as receptors-mediated signaling for the HSPs co-expressed genes up-regulated in good prognosis. Furthermore, the proteomic expression of HSPs in a large sample-set of breast cancer tissues revealed much more complexity in their roles in BC and showed that their expression is quite variable among patients and confined into different cellular compartments. In conclusion, integrative analysis of multi-omics data revealed the distinct impact of several HSPs members in BC progression and indicate that collectively they could be useful as biomarkers and therapeutic targets for BC management.
Collapse
Affiliation(s)
- Miriam Buttacavoli
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.B.); (G.D.C.); (C.D.); (F.G.); (S.F.)
| | - Gianluca Di Cara
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.B.); (G.D.C.); (C.D.); (F.G.); (S.F.)
| | - Cesare D’Amico
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.B.); (G.D.C.); (C.D.); (F.G.); (S.F.)
| | - Fabiana Geraci
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.B.); (G.D.C.); (C.D.); (F.G.); (S.F.)
| | | | - Salvatore Feo
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.B.); (G.D.C.); (C.D.); (F.G.); (S.F.)
| | - Patrizia Cancemi
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.B.); (G.D.C.); (C.D.); (F.G.); (S.F.)
- Experimental Center of Onco Biology (COBS), 90145 Palermo, Italy;
- Correspondence: ; Tel.: +39-091-2389-7330
| |
Collapse
|
17
|
Mo L, Liu J, Yang Z, Gong X, Meng F, Zou R, Hou L, Fang F. DNAJB4 identified as a potential breast cancer marker: evidence from bioinformatics analysis and basic experiments. Gland Surg 2020; 9:1955-1972. [PMID: 33447546 DOI: 10.21037/gs-20-431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Breast cancer (BC) is the leading cause of tumor-related death in women worldwide, but its pathogenesis is not clear. The efficient screening of new therapeutic targets for BC through bioinformatics and biological experimental techniques has become a hot topic in BC research. Methods The bioinformatics method was used to analyze the gene chips and obtain the hub genes, playing an important role in the development of BC. The biological processes (BP) involved in the hub genes were analyzed by Bingo, and the impact of each hub gene on disease-free survival (DFS) and overall survival (OS) in BC patients was evaluated in the Kaplan-Meier Plotter database. The expression of DNAJB4, the hub gene with the greatest degree and having an effect on the prognosis of BC patients, was detected in BC cell lines and clinicopathological specimens. And DNAJB4 was selected for further biological experiments and clinical prognosis verification. Results Ten hub genes including DNAJB4, the greatest degree genes, were found by bioinformatics analysis of BC gene chips. DNAJB4 expressions in both BC cell lines and clinicopathological specimens were detected and the results showed that DNAJB4 was significantly down-regulated in BC cell lines and tissues. After interfering with the expression of DNAJB4, it was found that the invasion and migration ability of MDA-MB-231 cell line was significantly enhanced in vitro. The clinical survival data of BC patients showed that patients with high DNAJB4 expression had longer DFS. Conclusions DNAJB4 may be a tumor suppressor gene in BC as it could regulate invasion and migration of BC cells and its expression level is related to the prognosis of BC patients. Nevertheless, further researches are still necessary to verify its role in BC so as to provide evidences for clinical guidance regarding diagnosis and treatment.
Collapse
Affiliation(s)
- Linlong Mo
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jiayou Liu
- Human Anatomy Department of School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, China
| | - Ziquan Yang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Xun Gong
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Fanlun Meng
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Rongyang Zou
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Lingmi Hou
- Department of Breast and Thyroid Surgery, Hepatobiliary and pancreatic institution, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Fang Fang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|