1
|
Wang S, Wu B, Todhanakasem T. Expanding the horizons of levan: from microbial biosynthesis to applications and advanced detection methods. World J Microbiol Biotechnol 2024; 40:214. [PMID: 38789837 DOI: 10.1007/s11274-024-04023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Levan, a β-(2,6)-linked fructose polymer, exhibits diverse properties that impart versatility, rendering it a highly sought-after biopolymer with various industrial applications. Levan can be produced by various microorganisms using sucrose, food industry byproducts and agricultural wastes. Microbial levan represents the most potent cost-effective process for commercial-scale levan production. This study reviews the optimization of levan production by understanding its biosynthesis, physicochemical properties and the fermentation process. In addition, genetic and protein engineering for its increased production and emerging methods for its detection are introduced and discussed. All of these comprehensive studies could serve as powerful tools to optimize levan production and broaden its applications across various industries.
Collapse
Affiliation(s)
- Sijie Wang
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Bo Wu
- Biomass Energy Technology Research Center, Biogas Institute of Ministry of Agriculture and Rural Affairs, Renmin Rd. S 4-13, Chengdu, 610041, China
| | - Tatsaporn Todhanakasem
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| |
Collapse
|
2
|
Turanli B, Gulfidan G, Aydogan OO, Kula C, Selvaraj G, Arga KY. Genome-scale metabolic models in translational medicine: the current status and potential of machine learning in improving the effectiveness of the models. Mol Omics 2024; 20:234-247. [PMID: 38444371 DOI: 10.1039/d3mo00152k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The genome-scale metabolic model (GEM) has emerged as one of the leading modeling approaches for systems-level metabolic studies and has been widely explored for a broad range of organisms and applications. Owing to the development of genome sequencing technologies and available biochemical data, it is possible to reconstruct GEMs for model and non-model microorganisms as well as for multicellular organisms such as humans and animal models. GEMs will evolve in parallel with the availability of biological data, new mathematical modeling techniques and the development of automated GEM reconstruction tools. The use of high-quality, context-specific GEMs, a subset of the original GEM in which inactive reactions are removed while maintaining metabolic functions in the extracted model, for model organisms along with machine learning (ML) techniques could increase their applications and effectiveness in translational research in the near future. Here, we briefly review the current state of GEMs, discuss the potential contributions of ML approaches for more efficient and frequent application of these models in translational research, and explore the extension of GEMs to integrative cellular models.
Collapse
Affiliation(s)
- Beste Turanli
- Marmara University, Faculty of Engineering, Department of Bioengineering, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| | - Gizem Gulfidan
- Marmara University, Faculty of Engineering, Department of Bioengineering, Istanbul, Turkey.
| | - Ozge Onluturk Aydogan
- Marmara University, Faculty of Engineering, Department of Bioengineering, Istanbul, Turkey.
| | - Ceyda Kula
- Marmara University, Faculty of Engineering, Department of Bioengineering, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| | - Gurudeeban Selvaraj
- Concordia University, Centre for Research in Molecular Modeling & Department of Chemistry and Biochemistry, Quebec, Canada
- Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospital, Department of Biomaterials, Bioinformatics Unit, Chennai, India
| | - Kazim Yalcin Arga
- Marmara University, Faculty of Engineering, Department of Bioengineering, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
- Marmara University, Genetic and Metabolic Diseases Research and Investigation Center, Istanbul, Turkey
| |
Collapse
|
3
|
Immanuel A, Yennamalli RM, Ulaganathan V. Targeting the Bottlenecks in Levan Biosynthesis Pathway in Bacillus subtilis and Strain Optimization by Computational Modeling and Omics Integration. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:49-58. [PMID: 38315781 DOI: 10.1089/omi.2023.0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Levan is a fructan polymer with many industrial applications such as the formulation of hydrogels, drug delivery, and wound healing, among others. To this end, metabolic systems engineering is a valuable method to improve the yield of a specific metabolite in a wide range of bacterial and eukaryotic organisms. In this study, we report a systems biology approach integrating genomics data for the Bacillus subtilis model, wherein the metabolic pathway for levan biosynthesis is unpacked. We analyzed a revised genome-scale enzyme-constrained metabolic model (ecGEM) and performed simulations to increase levan biopolymer production capacity in B. subtilis. We used the model ec_iYO844_lvn to (1) identify the essential genes and bottlenecks in levan production, and (2) specifically design an engineered B. subtilis strain capable of producing higher levan yields. The FBA and FVA analysis showed the maximal growth rate of the organism up to 0.624 hr-1 at 20 mmol gDw-1 hr-1 of sucrose intake. Gene knockout analyses were performed to identify gene knockout targets to increase the levan flux in B. subtilis. Importantly, we found that the pgk and ctaD genes are the two target genes for the knockout. The perturbation of these two genes has flux gains for levan production reactions with 1.3- and 1.4-fold the relative flux span in the mutant strains, respectively, compared to the wild type. In all, this work identifies the bottlenecks in the production of levan and possible ways to overcome them. Our results provide deeper insights on the bacterium's physiology and new avenues for strain engineering.
Collapse
Affiliation(s)
- Aruldoss Immanuel
- Molecular Motors Lab, Department of Biotechnology, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Ragothaman M Yennamalli
- Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Venkatasubramanian Ulaganathan
- Molecular Motors Lab, Department of Biotechnology, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
- Department of Bioinformatics, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
4
|
Oyewusi HA, Akinyede KA, Abdul Wahab R, Huyop F. In silico analysis of a putative dehalogenase from the genome of halophilic bacterium Halomonas smyrnensis AAD6T. J Biomol Struct Dyn 2023; 41:319-335. [PMID: 34854349 DOI: 10.1080/07391102.2021.2006085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Microbial-assisted removal of natural or synthetic pollutants is the prevailing green, low-cost technology to treat polluted environments. However, the challenge with enzyme-assisted bioremediation is the laborious nature of dehalogenase-producing microorganisms' bioprospecting. This bottleneck could be circumvented by in-silico analysis of certain microorganisms' whole-genome sequences to predict their protein functions and enzyme versatility for improved biotechnological applications. Herein, this study performed structural analysis on a dehalogenase (DehHsAAD6) from the genome of Halomonas smyrnensis AAD6 by molecular docking and molecular dynamic (MD) simulations. Other bioinformatics tools were also employed to identify substrate preference (haloacids and haloacetates) of the DehHsAAD6. The DehHsAAD6 preferentially degraded haloacids and haloacetates (-3.2-4.8 kcal/mol) and which formed three hydrogen bonds with Tyr12, Lys46, and Asp182. MD simulations data revealed the higher stability of DehHsAAD6-haloacid- (RMSD 0.22-0.3 nm) and DehHsAAD6-haloacetates (RMSF 0.05-0.14 nm) complexes, with the DehHsAAD6-L-2CP complex being the most stable. The detail of molecular docking calculations ranked complexes with the lowest binding free energies as: DehHsAAD6-L-2CP complex (-4.8 kcal/mol) = DehHsAAD6-MCA (-4.8 kcal/mol) < DehHsAAD6-TCA (-4.5 kcal/mol) < DehHsAAD6-2,3-DCP (-4.1 kcal/mol) < DehHsAAD6-D-2CP (-3.9 kcal/mol) < DehHsAAD6-2,2-DCP (-3.5 kcal/mol) < DehHsAAD6-3CP (-3.2 kcal/mol). In a nutshell, the study findings offer valuable perceptions into the elucidation of possible reaction mechanisms of dehalogenases for extended substrate specificity and higher catalytic activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Habeebat Adekilekun Oyewusi
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia.,Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia.,Department of Science Technology, Biochemistry unit, The Federal Polytechnic P.M.B, Ado Ekiti, Ekiti State, Nigeria
| | - Kolajo Adedamola Akinyede
- Department of Science Technology, Biochemistry unit, The Federal Polytechnic P.M.B, Ado Ekiti, Ekiti State, Nigeria.,Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town, South Africa
| | - Roswanira Abdul Wahab
- Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia.,Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Fahrul Huyop
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia.,Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| |
Collapse
|
5
|
Erkorkmaz BA, Kırtel O, Abaramak G, Nikerel E, Öner ET. UV and Chemically Induced Halomonas smyrnensis Mutants for Enhanced Levan Productivity. J Biotechnol 2022; 356:19-29. [PMID: 35914617 DOI: 10.1016/j.jbiotec.2022.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/14/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Halomonas smyrnensis AAD6T is a moderately halophilic bacterium proven to be a powerful biotechnological tool with its ability to accumulate valuable biopolymers such as levan and poly(3-hydroxybutyrate) (PHB). Levan is a fructose homopolymer with β-2,6 fructofuranosidic linkages on the polymer backbone, and its distinctive applications in various industries such as food, pharmaceutical, medical, and chemical have been well-defined. On the other hand, PHB is a promising raw material to produce biodegradable plastics. Although it was shown in our previous studies that H. smyrnensis AAD6T exhibits one of the highest conversion yields of sucrose to levan reported to date, novel strategies are required to overcome high costs of levan production. In this study, we aimed at increasing levan productivity of H. smyrnensis AAD6T cultures using random mutagenesis techniques combined (i.e., ethyl methanesulfate treatment and/or ultraviolet irradiation). After several consecutive treatments, mutant strains BAE2, BAE5 and BAE6 were selected as efficient levan producers, as BAE2 standing out as the most efficient one not only in sucrose utilization and levan production rates, but also in final PHB concentrations. The mutants' whole genome sequences were analysed to determine the mutations occurred. Several mutations in genes related to central carbon metabolism and osmoregulation were found. Our results suggest that random mutagenesis can be a facile and efficient strategy to enhance the performance of extremophiles in adverse conditions.
Collapse
Affiliation(s)
- Burak Adnan Erkorkmaz
- Industrial Biotechnology and Systems Biology Research Group-IBSB, Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Onur Kırtel
- Industrial Biotechnology and Systems Biology Research Group-IBSB, Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey
| | - Gülbahar Abaramak
- Industrial Biotechnology and Systems Biology Research Group-IBSB, Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey
| | - Emrah Nikerel
- Department of Genetics and Bioengineering, Yeditepe University, 34755 Istanbul, Turkey
| | - Ebru Toksoy Öner
- Industrial Biotechnology and Systems Biology Research Group-IBSB, Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey.
| |
Collapse
|
6
|
Halomonas as a chassis. Essays Biochem 2021; 65:393-403. [PMID: 33885142 PMCID: PMC8314019 DOI: 10.1042/ebc20200159] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 01/04/2023]
Abstract
With the rapid development of systems and synthetic biology, the non-model bacteria, Halomonas spp., have been developed recently to become a cost-competitive platform for producing a variety of products including polyesters, chemicals and proteins owing to their contamination resistance and ability of high cell density growth at alkaline pH and high salt concentration. These salt-loving microbes can partially solve the challenges of current industrial biotechnology (CIB) which requires high energy-consuming sterilization to prevent contamination as CIB is based on traditional chassis, typically, Escherichia coli, Bacillus subtilis, Pseudomonas putida and Corynebacterium glutamicum. The advantages and current status of Halomonas spp. including their molecular biology and metabolic engineering approaches as well as their applications are reviewed here. Moreover, a systematic strain engineering streamline, including product-based host development, genetic parts mining, static and dynamic optimization of modularized pathways and bioprocess-inspired cell engineering are summarized. All of these developments result in the term called next-generation industrial biotechnology (NGIB). Increasing efforts are made to develop their versatile cell factories powered by synthetic biology to demonstrate a new biomanufacturing strategy under open and continuous processes with significant cost-reduction on process complexity, energy, substrates and fresh water consumption.
Collapse
|
7
|
Liu C, Baffoe DK, Zhan Y, Zhang M, Li Y, Zhang G. Halophile, an essential platform for bioproduction. J Microbiol Methods 2019; 166:105704. [PMID: 31494180 DOI: 10.1016/j.mimet.2019.105704] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/25/2019] [Accepted: 08/27/2019] [Indexed: 11/24/2022]
Abstract
Industrial biotechnology aims to compete as a stronger alternative ensuring environmental friendly microbial-based production that seeks to curb the predicament of pollution. However, the high cost of bioprocessing is a severe drawback, and therefore, new approaches must be developed to overcome this challenge. Halophiles have shown potentials of overcoming this challenge and are of much preference for unsterile and continuous contamination-free bioprocess due to their unique ability to grow under harsh environmental conditions. Recent advances in genetic manipulations have been established to better the performance of halophiles for industrial applications. Many researchers produced various products such as polyhydroxyalkanoates (PHA), ectoines, biosurfactants, and antioxidants using halophiles, and further efforts have been established to develop halophiles as the foundation for low-cost bioprocess. This paper provides a useful reference for researchers on the merits, drawbacks, achievements, and application of halophiles for bioproduction.
Collapse
Affiliation(s)
- Changli Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| | - Dennis Kingsley Baffoe
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| | - Yuanlong Zhan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| | - Mengying Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| | - Yahui Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| | - Guocai Zhang
- School of Forestry, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China.
| |
Collapse
|
8
|
Wang J, Goh KM, Salem DR, Sani RK. Genome analysis of a thermophilic exopolysaccharide-producing bacterium - Geobacillus sp. WSUCF1. Sci Rep 2019; 9:1608. [PMID: 30733471 PMCID: PMC6367360 DOI: 10.1038/s41598-018-36983-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/16/2018] [Indexed: 11/23/2022] Open
Abstract
Geobacillus sp. WSUCF1 is a Gram-positive, spore-forming, aerobic and thermophilic bacterium, isolated from a soil sample obtained from a compost facility. Strain WSUCF1 demonstrated EPS producing capability using different sugars as the carbon source. The whole-genome analysis of WSUCF1 was performed to disclose the essential genes correlated with nucleotide sugar precursor biosynthesis, assembly of monosaccharide units, export of the polysaccharide chain, and regulation of EPS production. Both the biosynthesis pathway and export mechanism of EPS were proposed based on functional annotation. Additionally, the genome description of strain WSUCF1 suggests sophisticated systems for its adaptation under thermophilic conditions. The presence of genes associated with CRISPR-Cas system, quorum quenching lactonase, polyketide synthesis and arsenic resistance makes this strain a potential candidate for various applications in biotechnology and biomedicine. The present study indicates that strain WSUCF1 has promise as a thermophilic EPS producer for a broad range of industrial applications. To the best of our knowledge, this is the first report on genome analysis of a thermophilic Geobacillus species focusing on its EPS biosynthesis and transportation, which will likely pave the way for both enhanced yield and tailor-made EPS production by thermophilic bacteria.
Collapse
Affiliation(s)
- Jia Wang
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
| | - Kian Mau Goh
- Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, 81300, Malaysia
| | - David R Salem
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
- Department of Materials and Metallurgical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
- Composite and Nanocomposite Advanced Manufacturing - Biomaterials Center (CNAM-Bio Center), Rapid City, SD, 57701, USA.
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
- Composite and Nanocomposite Advanced Manufacturing - Biomaterials Center (CNAM-Bio Center), Rapid City, SD, 57701, USA.
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
| |
Collapse
|
9
|
Extremophilic exopolysaccharides: A review and new perspectives on engineering strategies and applications. Carbohydr Polym 2019; 205:8-26. [DOI: 10.1016/j.carbpol.2018.10.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/20/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
|
10
|
Halomonas smyrnensis as a cell factory for co-production of PHB and levan. Int J Biol Macromol 2018; 118:1238-1246. [DOI: 10.1016/j.ijbiomac.2018.06.197] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/26/2018] [Accepted: 06/30/2018] [Indexed: 11/19/2022]
|
11
|
Kirtel O, Menéndez C, Versluys M, Van den Ende W, Hernández L, Toksoy Öner E. Levansucrase from Halomonas smyrnensis AAD6T: first halophilic GH-J clan enzyme recombinantly expressed, purified, and characterized. Appl Microbiol Biotechnol 2018; 102:9207-9220. [DOI: 10.1007/s00253-018-9311-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022]
|
12
|
Erkorkmaz BA, Kırtel O, Ateş Duru Ö, Toksoy Öner E. Development of a cost-effective production process for Halomonas levan. Bioprocess Biosyst Eng 2018; 41:1247-1259. [DOI: 10.1007/s00449-018-1952-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/06/2018] [Indexed: 12/20/2022]
|