1
|
Wu Y, Lyu Z, Hu F, Yang L, Yang K, Chen M, Wang Y. A chondroitin sulphate hydrogel with sustained release of SDF-1α for extensive cartilage defect repair through induction of cell homing and promotion of chondrogenesis. J Mater Chem B 2024; 12:8672-8687. [PMID: 39115288 DOI: 10.1039/d4tb00624k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Articular cartilage damage represents a prevalent clinical disease in orthopedics, with its regeneration and repair constituting a central focus in ongoing research endeavors. While hydrogel technology has achieved notable progress in the field of cartilage regeneration, addressing the repair of larger cartilage defects remains a significant and formidable challenge. In pursuit of achieving the repair of extensive cartilage defects, this study designed a polydopamine-modified chondroitin sulfate hydrogel loaded with SDF-1α (P-SCMA). This hydrogel, capable of directly providing glycosaminoglycans (GAGs), served as a platform for carrying growth factors and attracting mesenchymal stem cells for the in situ reconstruction of extensive cartilage defects. The results indicate that the P-SCMA hydrogel is capable of not only directly providing GAGs but also sustainably releasing SDF-1α. In the early stages, it promotes cell adhesion and proliferation and induces cell homing, while in the later stages, it further induces chondrogenesis by inhibiting the Wnt/β-catenin pathway. This bioactive hydrogel, which possesses the functions of providing GAGs, promoting cell proliferation, inducing cell homing and chondrogenesis, is capable of promoting cartilage repair in multiple ways, providing new perspectives for the repair of extensive cartilage defects.
Collapse
Affiliation(s)
- Yuezhou Wu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China.
| | - Zhuocheng Lyu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China.
| | - Fei Hu
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China.
| | - Linjun Yang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China.
| | - Ke Yang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China.
| | - Mo Chen
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China.
| | - You Wang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 145 Middle Shandong Road, Shanghai, 200001, China.
| |
Collapse
|
2
|
Tanideh N, Ali Behnam M, Mohit Ghiri S, Koohi-Hosseinabadi O, Khajeh-Zadeh H, Zare S, Azarpira N, Akbarzadeh A, Ashkani-Esfahani S, Ebrahimi A, Habibzadeh A. The effects of combined and independent low-level laser and mesenchymal stem cell therapy on induced knee osteoarthritis: An animal study. Knee 2024; 47:208-218. [PMID: 38422741 DOI: 10.1016/j.knee.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/30/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Mesenchymal stem cell (MSC) injection has emerged as a novel treatment for knee osteoarthritis (OA). In addition, low-level laser therapy (LLLT) has been reported to delay the progression of OA. Thus, the current study on animal models of OA investigated the effectiveness of these methods when administered independently and combined. METHODS Twenty-five guinea pig models of OA were randomly sorted into five study groups. The test groups received intra-articular MSC, LLLT, and a combination of these therapeutics for 8 weeks. Radiological and histopathologic evaluations were carried out for the test groups and the control after the completion of treatments. RESULTS The MSC-treated groups showed better outcomes in terms of all radiological and histological indexes compared with the control, apart from subchondral bone (P < 0.05). Similarly, but to a different extent, the LLLT-treated group showed better results than the controls (P < 0.05). The combination of MSC therapy and LLLT improved the cartilage, surface, matrix, space width, osteophytes, and radiologic OA scores more effectively than each of these methods alone (P < 0.05). CONCLUSIONS According to our results, the combination of intra-articular MSC and LLLT can effectively improve OA in animal models. Further preclinical and clinical studies are recommended to assess the effectiveness of these therapeutics alone and in combination.
Collapse
Affiliation(s)
- Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran; Pharmacology Department, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Mohammad Ali Behnam
- Nano Opto-Electronic Research Center, Electrical and Electronics Engineering Department, Shiraz University of Technology, Shiraz, Islamic Republic of Iran
| | - Sheida Mohit Ghiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Omid Koohi-Hosseinabadi
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Hossein Khajeh-Zadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Armin Akbarzadeh
- Bone and Joints Diseases Research Center, Department of Orthopedic Surgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Soheil Ashkani-Esfahani
- Foot & Ankle Research and Innovation Laboratory (FARIL), Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alireza Ebrahimi
- Foot & Ankle Research and Innovation Laboratory (FARIL), Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Adrina Habibzadeh
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Islamic Republic of Iran.
| |
Collapse
|
3
|
Alam M, Karami S, Mohammadikhah M, Badkoobeh A, Golkar M, Abbasi K, Soufdoost RS, Hakim LK, Talebi S, Namanloo RA, Hussain A, Heboyan A, Tebyaniyan H. The effect of photobiomodulation therapy in common maxillofacial injuries: Current status. Cell Biochem Funct 2024; 42:e3951. [PMID: 38349051 DOI: 10.1002/cbf.3951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/28/2024] [Indexed: 02/15/2024]
Abstract
The use of photobiomodulation therapy (PBMT) may be used for treating trauma to the maxillofacial region. The effects of PBMT on maxillofacial injuries were discussed in this review article. The electronic databases Pubmed, Scopus, and Web of Science were thoroughly searched. This review included in vitro, in vivo, and clinical studies describing how PBMT can be used in maxillofacial tissue engineering and regenerative medicine. Some studies suggest that PBMT may offer a promising therapy for traumatic maxillofacial injuries because it can stimulate the differentiation and proliferation of various cells, including dental pulp cells and mesenchymal stem cells, enhancing bone regeneration and osseointegration. PBMT reduces pain and swelling after oral surgery and tooth extraction in human and animal models of maxillofacial injuries. Patients with temporomandibular disorders also benefit from PBMT in terms of reduced inflammation and symptoms. PBMT still has some limitations, such as the need for standardizing parameters. PBMT must also be evaluated further in randomized controlled trials in various maxillofacial injuries. As a result, PBMT offers a safe and noninvasive treatment option for patients suffering from traumatic maxillofacial injuries. PBMT still requires further research to establish its efficacy in clinical practice and determine the optimal parameters.
Collapse
Affiliation(s)
- Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Meysam Mohammadikhah
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Golkar
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Sahar Talebi
- Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ahmed Hussain
- School of Dentistry, Edmonton Clinic Health Academy, University of Alberta, Edmonton, Canada
| | - Artak Heboyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| |
Collapse
|
4
|
Kováč J, Priščáková P, Gbelcová H, Heydari A, Žiaran S. Bioadhesive and Injectable Hydrogels and Their Correlation with Mesenchymal Stem Cells Differentiation for Cartilage Repair: A Mini-Review. Polymers (Basel) 2023; 15:4228. [PMID: 37959908 PMCID: PMC10648146 DOI: 10.3390/polym15214228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
Injectable bioadhesive hydrogels, known for their capacity to carry substances and adaptability in processing, offer great potential across various biomedical applications. They are especially promising in minimally invasive stem cell-based therapies for treating cartilage damage. This approach harnesses readily available mesenchymal stem cells (MSCs) to differentiate into chondrocytes for cartilage regeneration. In this review, we investigate the relationship between bioadhesion and MSC differentiation. We summarize the fundamental principles of bioadhesion and discuss recent trends in bioadhesive hydrogels. Furthermore, we highlight their specific applications in conjunction with stem cells, particularly in the context of cartilage repair. The review also encompasses a discussion on testing methods for bioadhesive hydrogels and direct techniques for differentiating MSCs into hyaline cartilage chondrocytes. These approaches are explored within both clinical and laboratory settings, including the use of genetic tools. While this review offers valuable insights into the interconnected aspects of these topics, it underscores the need for further research to fully grasp the complexities of their relationship.
Collapse
Affiliation(s)
- Ján Kováč
- Medical Vision, Záhradnícka 55, 821 08 Bratislava, Slovakia; (J.K.); (P.P.); (H.G.); (A.H.)
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Petra Priščáková
- Medical Vision, Záhradnícka 55, 821 08 Bratislava, Slovakia; (J.K.); (P.P.); (H.G.); (A.H.)
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Helena Gbelcová
- Medical Vision, Záhradnícka 55, 821 08 Bratislava, Slovakia; (J.K.); (P.P.); (H.G.); (A.H.)
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Abolfazl Heydari
- Medical Vision, Záhradnícka 55, 821 08 Bratislava, Slovakia; (J.K.); (P.P.); (H.G.); (A.H.)
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia
| | - Stanislav Žiaran
- Medical Vision, Záhradnícka 55, 821 08 Bratislava, Slovakia; (J.K.); (P.P.); (H.G.); (A.H.)
- Department of Urology, Faculty of Medicine, Comenius University, Limbová 5, 833 05 Bratislava, Slovakia
| |
Collapse
|
5
|
El-Qashty R, Elkashty OA, Hany E. Photobiostimulation conjugated with stem cells or their secretome for temporomandibular joint arthritis in a rat model. BMC Oral Health 2023; 23:720. [PMID: 37798702 PMCID: PMC10552280 DOI: 10.1186/s12903-023-03466-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Temporomandibular joint (TMJ) arthritis is a debilitating, challenging condition and different methods have been implicated for its treatment. This study aimed to test the therapeutic potentials of low-level laser therapy (LLLT) associated with adipose derived stem cells (ADSC) or their derived secretome on a murine model induced arthritis. METHODS Forty eight rats were divided into four groups where group I was the sham control, the rest of animals were subjected to arthritis induction using complete Freund's adjuvant, then divided as follows: group II received phosphate buffered saline (PBS) intraarticular injection and irradiation of 0 j/cm2, group III received ADSCs derived secretome and irradiation of 38 j/cm2, and group IV received ADSCs and irradiation of 38 j/cm2 as well. One and three weeks after treatment, animals were euthanized, and paraffin blocks were processed for histological assessment by hematoxylin and eosin stain with histomorphometrical analysis. Histochemical evaluation of joint proteoglycan content was performed through toluidine blue stain, and immunohistochemical staining by the proinflammatory marker tumor necrosis factor-α (TNF-α) was performed followed by the relevant statistical tests. RESULTS The arthritis group showed histological signs of joint injury including cartilage atrophy, articular disc fibrosis, irregular osteochondral interface, and condylar bone resorption together with high inflammatory reaction and defective proteoglycan content. In contrast, the treated groups III and IV showed much restoration of the joint structure with normal cartilage and disc thickness. The inflammation process was significantly suppressed especially after three weeks as confirmed by the significant reduction in TNF-α positive immunostaining compared to the arthritic group, and the cartilage proteoglycan content also showed significant increase relative to the arthritic group. However, no significant difference between the results of the two treated groups was detected. CONCLUSION LLLT conjugated with ADSCs or ADSCs derived secretome can efficiently enhance the healing of arthritic TMJs. Stem cell secretome can be applied as a safe, potent therapy. However, further investigations are required to unravel its mechanism of action and pave its way as a safe, novel, cell free therapy.
Collapse
Affiliation(s)
- Rana El-Qashty
- Oral Biology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Osama A Elkashty
- Oral Pathology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Eman Hany
- Oral Biology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
6
|
Shokri A, Moradhaseli H, Fekrazad R, Jazaeri M, Farhadian M. Effect of photobiomodulation therapy with different wavelengths on bone mineral density in osteoporotic rats. Lasers Med Sci 2023; 38:59. [PMID: 36723764 DOI: 10.1007/s10103-023-03714-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023]
Abstract
Osteoporosis is associated with severe pain, bone deformity, fracture, and bone loss. It is important to find strategies to prevent bone resorption and treat osteoporosis. This study sought to assess the effect of photobiomodulation therapy (PBMT) with different wavelengths on bone mineral density (BMD) in osteoporotic rats. This animal study evaluated 63 adult female rats. The rats underwent ovariectomy to induce osteoporosis. Ovariectomized rats were randomly divided into 9 groups of control (OC), treatment with zoledronic acid alone (0.02 mg/kg), and treatment with 660 nm, 810 nm, and 940 nm PBMT alone (3 times a week for 6 weeks, energy density of 4 J/cm2), and combined with zoledronic acid. The healthy control group (HC) only underwent sham surgery. The rats underwent cone-beam computed tomography (CBCT) 52 days after the first treatment session to measure their BMD according to the gray value (GV) of images. To assess the biomechanical properties of bone, the resected bones were subjected to 3-point bending test (3-PBT). The experimental groups had significant differences with the OC group regarding radiographic and biomechanical properties of bone (P < 0.05), indicating a healing course. No significant difference was noted between the experimental groups treated with different laser wavelengths and those treated with zoledronic acid (P > 0.05). In the condition of this study, it was found that PBMT at a constant energy density of 4 J/cm2 with 660-, 810-, and 940-nm wavelengths is effective for enhancement of bone mineral density and biomechanical properties. No significant difference was noted between different wavelengths of diode laser regarding radiographic and biomechanical properties of bone.
Collapse
Affiliation(s)
- Abbas Shokri
- Dental Implants Research Center, Department of Oral and Maxillofacial Radiology, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Reza Fekrazad
- Radiation Sciences Research Center, International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research, Network (USERN), AJA University of Medical Sciences, Tehran, Iran
| | - Mina Jazaeri
- Department of Oral Medicine, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Farhadian
- Department of Biostatistics, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
7
|
Bikmulina P, Kosheleva N, Shpichka A, Yusupov V, Gogvadze V, Rochev Y, Timashev P. Photobiomodulation in 3D tissue engineering. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220027VRR. [PMID: 36104833 PMCID: PMC9473299 DOI: 10.1117/1.jbo.27.9.090901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE The method of photobiomodulation (PBM) has been used in medicine for a long time to promote anti-inflammation and pain-resolving processes in different organs and tissues. PBM triggers numerous cellular pathways including stimulation of the mitochondrial respiratory chain, alteration of the cytoskeleton, cell death prevention, increasing proliferative activity, and directing cell differentiation. The most effective wavelengths for PBM are found within the optical window (750 to 1100 nm), in which light can permeate tissues and other water-containing structures to depths of up to a few cm. PBM already finds its applications in the developing fields of tissue engineering and regenerative medicine. However, the diversity of three-dimensional (3D) systems, irradiation sources, and protocols intricate the PBM applications. AIM We aim to discuss the PBM and 3D tissue engineered constructs to define the fields of interest for PBM applications in tissue engineering. APPROACH First, we provide a brief overview of PBM and the timeline of its development. Then, we discuss the optical properties of 3D cultivation systems and important points of light dosimetry. Finally, we analyze the cellular pathways induced by PBM and outcomes observed in various 3D tissue-engineered constructs: hydrogels, scaffolds, spheroids, cell sheets, bioprinted structures, and organoids. RESULTS Our summarized results demonstrate the great potential of PBM in the stimulation of the cell survival and viability in 3D conditions. The strategies to achieve different cell physiology states with particular PBM parameters are outlined. CONCLUSIONS PBM has already proved itself as a convenient and effective tool to prevent drastic cellular events in the stress conditions. Because of the poor viability of cells in scaffolds and the convenience of PBM devices, 3D tissue engineering is a perspective field for PBM applications.
Collapse
Affiliation(s)
- Polina Bikmulina
- Sechenov First Moscow State Medical University, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Moscow, Russia
| | - Nastasia Kosheleva
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| | - Anastasia Shpichka
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| | - Vladimir Yusupov
- Institute of Photon Technologies of FSRC “Crystallography and Photonics” RAS, Troitsk, Russia
| | - Vladimir Gogvadze
- Lomonosov Moscow State University, Faculty of Medicine, Moscow, Russia
- Karolinska Institutet, Institute of Environmental Medicine, Division of Toxicology, Stockholm, Sweden
| | - Yury Rochev
- National University of Ireland, Galway, Galway, Ireland
| | - Peter Timashev
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| |
Collapse
|
8
|
Shestovskaya MV, Bozhkova SA, Sopova JV, Khotin MG, Bozhokin MS. Methods of Modification of Mesenchymal Stem Cells and Conditions of Their Culturing for Hyaline Cartilage Tissue Engineering. Biomedicines 2021; 9:biomedicines9111666. [PMID: 34829895 PMCID: PMC8615732 DOI: 10.3390/biomedicines9111666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/24/2022] Open
Abstract
The use of mesenchymal stromal cells (MSCs) for tissue engineering of hyaline cartilage is a topical area of regenerative medicine that has already entered clinical practice. The key stage of this procedure is to create conditions for chondrogenic differentiation of MSCs, increase the synthesis of hyaline cartilage extracellular matrix proteins by these cells and activate their proliferation. The first such works consisted in the indirect modification of cells, namely, in changing the conditions in which they are located, including microfracturing of the subchondral bone and the use of 3D biodegradable scaffolds. The most effective methods for modifying the cell culture of MSCs are protein and physical, which have already been partially introduced into clinical practice. Genetic methods for modifying MSCs, despite their effectiveness, have significant limitations. Techniques have not yet been developed that allow studying the effectiveness of their application even in limited groups of patients. The use of MSC modification methods allows precise regulation of cell culture proliferation, and in combination with the use of a 3D biodegradable scaffold, it allows obtaining a hyaline-like regenerate in the damaged area. This review is devoted to the consideration and comparison of various methods used to modify the cell culture of MSCs for their use in regenerative medicine of cartilage tissue.
Collapse
Affiliation(s)
- Maria V. Shestovskaya
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (M.V.S.); (J.V.S.); (M.G.K.)
| | - Svetlana A. Bozhkova
- Vreden National Medical Research Center of Traumatology and Orthopedics, Academica Baykova Str., 8, 195427 St. Petersburg, Russia;
| | - Julia V. Sopova
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (M.V.S.); (J.V.S.); (M.G.K.)
- Center of Transgenesis and Genome Editing, St. Petersburg State University, Universitetskaja Emb., 7/9, 199034 St. Petersburg, Russia
| | - Mikhail G. Khotin
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (M.V.S.); (J.V.S.); (M.G.K.)
| | - Mikhail S. Bozhokin
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia; (M.V.S.); (J.V.S.); (M.G.K.)
- Vreden National Medical Research Center of Traumatology and Orthopedics, Academica Baykova Str., 8, 195427 St. Petersburg, Russia;
- Correspondence:
| |
Collapse
|
9
|
Pinto H, Goñi Oliver P, Sánchez-Vizcaíno Mengual E. The Effect of Photobiomodulation on Human Mesenchymal Cells: A Literature Review. Aesthetic Plast Surg 2021; 45:1826-1842. [PMID: 33616715 DOI: 10.1007/s00266-021-02173-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/03/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Mesenchymal stem cell-based therapy is known to have the potential to induce angiogenesis. However, there are still some limitations regarding their clinical application. Photomodulation/photobiomodulation is non-invasive and non-toxic phototherapy able to stimulate cell viability, proliferation, differentiation, and migration, when the right irradiation parameters are applied. A review of the published articles on human conditioned-by-photobiomodulation mesenchymal cells in an in vitro set up was carried out. Our aim was to describe the studies' results and identify any possible tendency that might highlight the most suitable procedures. METHODS A search in English of the PubMed database was carried out with the search criteria: photobiomodulation or photoactivation or photomodulation, and mesenchymal cells. All irradiations applied in vitro, on human mesenchymal cells, with wavelengths ranged from 600 to 1000 nm. RESULTS The search yielded 42 original articles and five reviews. Finally, 37 articles were selected with a total of 43 procedures. Three procedures (7.0%) from 620 to 625 nm; 26 procedures (60.5%) from 625 to 740 nm; 13 procedures (30.2%) from 740 to 1000 nm; and one procedure (2.3%) with combinations of wavelengths. Of the 43 procedures, 14 assessed cell viability (n = 14/43, 32.6%); 34 cell proliferation (n = 34/43, 79.1%); 19 cell differentiation (n = 19/43, 44.2%); and three cell migration (n = 3/43, 7.0%). CONCLUSIONS Photobiomodulation is a promising technology that can impact on cell viability, differentiation, proliferation, or migration, leading to enhance its regenerative capacity. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Hernán Pinto
- Instituto de Investigaciones Biomédicas i2e3, Santa Coloma de Gramenet, Barcelona, Spain
| | - Paloma Goñi Oliver
- Instituto de Investigaciones Biomédicas i2e3, Santa Coloma de Gramenet, Barcelona, Spain
| | | |
Collapse
|
10
|
Etemadi A, Sadatmansouri S, Sodeif F, Jalalishirazi F, Chiniforush N. Photobiomodulation Effect of Different Diode Wavelengths on the Proliferation of Human Gingival Fibroblast Cells. Photochem Photobiol 2021; 97:1123-1128. [PMID: 34107547 DOI: 10.1111/php.13463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/16/2021] [Accepted: 06/02/2021] [Indexed: 12/01/2022]
Abstract
This study is focused on comparing the effect of various energy densities and wavelengths of diode lasers on the proliferation of human gingival fibroblast (HGF) cells in vitro. In this study, 204 sample cells were examined in 4 test groups (laser radiation) and 1 control group (non-laser radiation). The proliferation rate of radiated cells with wavelengths of 635, 660, 808 and 980 nm and the densities of 1, 1.5, 2.5 and 4 J cm-2 was measured after 1, 3 and 5 days using the MTT assay. The proliferation rate of human gingival fibroblast (HGF) cells in test groups was increased on day 1 at wavelengths of 635, 808 and 980 nm and on day 3 at the wavelength of 980 nm compared with the control group. Our findings denoted that the photobiomodulation therapy increased the proliferation rate of HGF. The most desirable laser radiation setting, which led to the highest proliferation rate of the cells, included 980 nm wavelength with 1, 1.5 and 4 J cm-2 energy densities and 635 nm wavelength with 4 J cm-2 energy density.
Collapse
Affiliation(s)
- Ardavan Etemadi
- Department of Periodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Laser Research Center of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Sadatmansouri
- Department of Periodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Sodeif
- Department of Periodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Jalalishirazi
- Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Chiniforush
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| |
Collapse
|
11
|
Khorsandi K, Hosseinzadeh R, Abrahamse H, Fekrazad R. Biological Responses of Stem Cells to Photobiomodulation Therapy. Curr Stem Cell Res Ther 2021; 15:400-413. [PMID: 32013851 DOI: 10.2174/1574888x15666200204123722] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/26/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Stem cells have attracted the researchers interest, due to their applications in regenerative medicine. Their self-renewal capacity for multipotent differentiation, and immunomodulatory properties make them unique to significantly contribute to tissue repair and regeneration applications. Recently, stem cells have shown increased proliferation when irradiated with low-level laser therapy or Photobiomodulation Therapy (PBMT), which induces the activation of intracellular and extracellular chromophores and the initiation of cellular signaling. The purpose of this study was to evaluate this phenomenon in the literature. METHODS The literature investigated the articles written in English in four electronic databases of PubMed, Scopus, Google Scholar and Cochrane up to April 2019. Stem cell was searched by combining the search keyword of "low-level laser therapy" OR "low power laser therapy" OR "low-intensity laser therapy" OR "photobiomodulation therapy" OR "photo biostimulation therapy" OR "LED". In total, 46 articles were eligible for evaluation. RESULTS Studies demonstrated that red to near-infrared light is absorbed by the mitochondrial respiratory chain. Mitochondria are significant sources of reactive oxygen species (ROS). Mitochondria play an important role in metabolism, energy generation, and are also involved in mediating the effects induced by PBMT. PBMT may result in the increased production of (ROS), nitric oxide (NO), adenosine triphosphate (ATP), and cyclic adenosine monophosphate (cAMP). These changes, in turn, initiate cell proliferation and induce the signal cascade effect. CONCLUSION The findings of this review suggest that PBMT-based regenerative medicine could be a useful tool for future advances in tissue engineering and cell therapy.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran;
and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Hosseinzadeh
- Department of Medical Laser, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran
| | - Heidi Abrahamse
- Laser Research Centre, NRF SARChI Chair: Laser Applications in Health, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Reza Fekrazad
- Department of Periodontology, Dental Faculty - Radiation Sciences Research Center, Laser Research
Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran,International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
12
|
Wound Healing and Cell Dynamics Including Mesenchymal and Dental Pulp Stem Cells Induced by Photobiomodulation Therapy: An Example of Socket-Preserving Effects after Tooth Extraction in Rats and a Literature Review. Int J Mol Sci 2020; 21:ijms21186850. [PMID: 32961958 PMCID: PMC7555322 DOI: 10.3390/ijms21186850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
High-intensity laser therapy (HILT) and photobiomodulation therapy (PBMT) are two types of laser treatment. According to recent clinical reports, PBMT promotes wound healing after trauma or surgery. In addition, basic research has revealed that cell differentiation, proliferation, and activity and subsequent tissue activation and wound healing can be promoted. However, many points remain unclear regarding the mechanisms for wound healing induced by PBMT. Therefore, in this review, we present an example from our study of HILT and PBMT irradiation of tooth extraction wounds using two types of lasers with different characteristics (diode laser and carbon dioxide laser). Then, the effects of PBMT on the wound healing of bone tissues are reviewed from histological, biochemical, and cytological perspectives on the basis of our own study of the extraction socket as well as studies by other researchers. Furthermore, we consider the feasibility of treatment in which PBMT irradiation is applied to stem cells including dental pulp stem cells, the theme of this Special Issue, and we discuss research that has been reported on its effect.
Collapse
|
13
|
Photo biostimulatory effect of low dose photodynamic therapy on human mesenchymal stem cells. Photodiagnosis Photodyn Ther 2020; 31:101886. [PMID: 32574798 DOI: 10.1016/j.pdpdt.2020.101886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Tissue engineering is one treatment to regenerate bone . Stem cell proliferation or differentiation can be stimulated by adjunctive approaches like photobiomodulation. Some studies suggested that, photodynamic therapy with low concentration of photosensitizers can stimulate cell differentiation as a photobiomodulation approach. METHODS Human bone marrow mesenchymal stem cell was isolated and then cultured in sterile medium. Two photosensitizer drugs as 5- aminolevulenic acid (1 mM) (5-ALA) and Methylene blue (1μM) (MB) were used in incubation culture media. In order to activate the photosensitizers, 630 and 660 nm wavelengths were irradiated with 1 J/cm2 energy density, respectively. Cell viability was assessed using MTT assay before and after laser irradiation, and also Alizarin red histologic test was used for calcium nodule formation. RESULTS performing the MTT test before irradiation showed that, the optimum concentrations were 1 mM for 5-ALA and 1μM for MB that were optimized. After laser irradiation, ALA group showed no osseous differentiation. In contrast, there was a significant calcium nodule formation in MB group compared with the control one. CONCLUSIONS Photodynamic therapy with low photosensitizer concentration and low doses of laser energy density may improve osteogenic differentiation. Accordingly, MB had stimulatory effect on bone marrow derived mesenchymal stem cells. However, 5-ALA did not show this effect.
Collapse
|
14
|
Franco WF, Galdino MVB, Capeletti LR, Sberowsky BH, Vieira RA, Figueiredo AC, Ramalho KM, Dos Santos FCA, Biancardi MF, de Marco P, Marques MR. Photobiomodulation and Mandibular Advancement Modulates Cartilage Thickness and Matrix Deposition in the Mandibular Condyle. Photobiomodul Photomed Laser Surg 2020; 38:3-10. [PMID: 31855093 DOI: 10.1089/photob.2019.4640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objective: We evaluated the effects of photobiomodulation (PBM), mandibular advancement (MA), and the combination of both treatments (PBM+MA) on condylar growth, by the analysis of cartilage and bone formation, fibrillar collagen deposition, proteoglycan content, cell proliferation, and clastic cell index (CCI). Methods: Forty male Wistar rats were randomly assigned to CONTROL, PBM, positive control-MA, and PBM+MA groups. The appliance was worn 10 h/day. Laser was irradiated bilaterally on mandibular condyles in 8 alternate days (1 irradiation point per condyle) using the following parameters: 780 nm, 10 J/cm2, 40 mW, 1 W/cm2, 10 sec/point, 0.4 J/point, and cumulative dose per point: 3.2 J. PBM+MA received both treatments simultaneously. After 15 days, the animals were euthanized and the condyles dissected and embedded in paraffin. Histological sections from the intermediate portion of the condyle were used for morphometric analysis. The relative frequency (%) of fibrillar collagens was determined in sections stained with picrosirius red-hematoxylin under polarized light or Gömöri's method for reticular fibers. Proteoglycan content was evaluated by computerized photocolorimetric analysis. CCI was determined by tartrate-resistant acid phosphatase (TRAP), and proliferating cell nuclear antigen (PCNA) was detected by immunohistochemistry. Results: PBM and MA influenced condylar cartilage thickeness and matrix deposition, but none of the treatments affected significantly the area of the condyle. CCI were not influenced by the treatments, but clastic cells distribution was influenced by MA and PBM+MA treatments. There was no significant difference in proliferating cells among the groups. Conclusions: This study demonstrated that PBM and MA stimulates matrix deposition and cartilage thickening in the mandibular condyle, but was not able to demonstrate a synergistic effect between the treatments. Additional studies should be conducted to evaluate the possible synergistic effect between PBM and MA.
Collapse
Affiliation(s)
| | - Marcos Vinicios Borges Galdino
- Biological Sciences Institute, Department of Histology, Embryology and Cell Biology, Federal University of Goiás, Goiânia, Brazil
| | | | | | | | - Augusto César Figueiredo
- Biological Sciences Institute, Department of Histology, Embryology and Cell Biology, Federal University of Goiás, Goiânia, Brazil
| | | | | | - Manoel Francisco Biancardi
- Biological Sciences Institute, Department of Histology, Embryology and Cell Biology, Federal University of Goiás, Goiânia, Brazil
| | - Paulo de Marco
- Biological Sciences Institute, Department of Ecology, Federal University of Goiás, Goiânia, Brazil
| | - Mara Rubia Marques
- Biological Sciences Institute, Department of Histology, Embryology and Cell Biology, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
15
|
Maglio M, Brogini S, Pagani S, Giavaresi G, Tschon M. Current Trends in the Evaluation of Osteochondral Lesion Treatments: Histology, Histomorphometry, and Biomechanics in Preclinical Models. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4040236. [PMID: 31687388 PMCID: PMC6803751 DOI: 10.1155/2019/4040236] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/23/2019] [Accepted: 09/05/2019] [Indexed: 01/07/2023]
Abstract
Osteochondral lesions (OCs) are typically of traumatic origins but are also caused by degenerative conditions, in primis osteoarthritis (OA). On the other side, OC lesions themselves, getting worse over time, can lead to OA, indicating that chondral and OC defects represent a risk factor for the onset of the pathology. Many animal models have been set up for years for the study of OC regeneration, being successfully employed to test different treatment strategies, from biomaterials and cells to physical and biological adjuvant therapies. These studies rely on a plethora of post-explant investigations ranging from histological and histomorphometric analyses to biomechanical ones. The present review aims to analyze the methods employed for the evaluation of OC treatments in each animal model by screening literature data within the last 10 years. According to the selected research criteria performed in two databases, 60 works were included. Data revealed that lapine (50% of studies) and ovine (23% of studies) models are predominant, and knee joints are the most used anatomical locations for creating OC defects. Analyses are mostly conducted on paraffin-embedded samples in order to perform histological/histomorphometric analyses by applying semiquantitative scoring systems and on fresh samples in order to perform biomechanical investigations by indentation tests on articular cartilage. Instead, a great heterogeneity is pointed out in terms of OC defect dimensions and animal's age. The choice of experimental times is generally adequate for the animal models adopted, although few studies adopt very long experimental times. Improvements in data reporting and in standardization of protocols would be desirable for a better comparison of results and for ethical reasons related to appropriate and successful animal experimentation.
Collapse
Affiliation(s)
- M. Maglio
- IRCCS-Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, via di Barbiano 1/10, 40136 Bologna, Italy
| | - S. Brogini
- IRCCS-Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, via di Barbiano 1/10, 40136 Bologna, Italy
| | - S. Pagani
- IRCCS-Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, via di Barbiano 1/10, 40136 Bologna, Italy
| | - G. Giavaresi
- IRCCS-Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, via di Barbiano 1/10, 40136 Bologna, Italy
| | - M. Tschon
- IRCCS-Istituto Ortopedico Rizzoli, Laboratory of Preclinical and Surgical Studies, via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
16
|
Atik OS, Sezgin EA. Is There a Role for Photobiomodulation in Treating Damaged Articular Cartilage Due to Injury or Degeneration? PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 38:1-2. [PMID: 31584321 DOI: 10.1089/photob.2019.4666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- O Sahap Atik
- Turkish Joint Diseases Foundation, Orthopedic Surgery, Ankara, Turkey
| | - Erdem Aras Sezgin
- Orthopedic Surgery and Traumatology, Medical Faculty, Gazi University, Ankara, Turkey
| |
Collapse
|
17
|
Felizatti AL, do Bomfim FRC, Bovo JL, de Aro AA, do Amaral MEC, Esquisatto MAM. Effects of low-level laser therapy on the organization of articular cartilage in an experimental microcrystalline arthritis model. Lasers Med Sci 2019; 34:1401-1412. [PMID: 30762197 DOI: 10.1007/s10103-019-02740-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/29/2019] [Indexed: 12/27/2022]
Abstract
The aim of this study was to evaluate the effects of low-level laser therapy using the gallium arsenide laser (λ = 830 nm) on the articular cartilage (AC) organization from knee joint in an experimental model of microcrystalline arthritis in adult male Wistar rats. Seventy-two animals were divided into three groups: A (control), B (induced arthritis), and C (induced arthritis + laser therapy). The arthritis was induced in the right knee using 2 mg of Na4P2O7 in 0.5 mL of saline solution. The treatments were daily applied in the patellar region of the right knee after 48 h of induction. On the 7th, 14th, and 21st days of treatment, the animals were euthanized and their right knees were removed and processed for structural and biochemical analysis of the AC. The chondrocytes positively labeled for the TUNEL reaction were lower in C than in B on the 14th and 21st days. The content of glycosaminoglycans and hydroxyproline in A and C was higher than B on the 21st day. The amount of tibial TNF-α in B and C was lower than in A. The amount of tibial BMP-7 in B and C was higher than in A. The femoral MMP-13 was lower in B and C than for A. The tibial TGF-β for C was higher than the others. The femoral ADAMT-S4 content of A and C presented similar and inferior data to B on the 21st day. The AsGa-830 nm therapy preserved the content of glycosaminoglycans, reduced the cellular changes and the inflammatory process compared to the untreated group.
Collapse
Affiliation(s)
- Airton Luiz Felizatti
- Programa de Pós-graduação em Ciências Biomédicas, Centro Universitário da Fundação Hermínio Ometto - FHO, Av. Dr. Maximiliano Baruto, 500 Jd. Universitário, Araras, SP, 13607-339, Brazil
| | - Fernando Russo Costa do Bomfim
- Programa de Pós-graduação em Ciências Biomédicas, Centro Universitário da Fundação Hermínio Ometto - FHO, Av. Dr. Maximiliano Baruto, 500 Jd. Universitário, Araras, SP, 13607-339, Brazil
| | - Julia Leme Bovo
- Programa de Pós-graduação em Ciências Biomédicas, Centro Universitário da Fundação Hermínio Ometto - FHO, Av. Dr. Maximiliano Baruto, 500 Jd. Universitário, Araras, SP, 13607-339, Brazil
| | - Andrea Aparecida de Aro
- Programa de Pós-graduação em Ciências Biomédicas, Centro Universitário da Fundação Hermínio Ometto - FHO, Av. Dr. Maximiliano Baruto, 500 Jd. Universitário, Araras, SP, 13607-339, Brazil
| | - Maria Esméria Corezzola do Amaral
- Programa de Pós-graduação em Ciências Biomédicas, Centro Universitário da Fundação Hermínio Ometto - FHO, Av. Dr. Maximiliano Baruto, 500 Jd. Universitário, Araras, SP, 13607-339, Brazil
| | - Marcelo Augusto Marretto Esquisatto
- Programa de Pós-graduação em Ciências Biomédicas, Centro Universitário da Fundação Hermínio Ometto - FHO, Av. Dr. Maximiliano Baruto, 500 Jd. Universitário, Araras, SP, 13607-339, Brazil.
| |
Collapse
|
18
|
Fekrazad R, Asefi S, Eslaminejad MB, Taghiar L, Bordbar S, Hamblin MR. Photobiomodulation with single and combination laser wavelengths on bone marrow mesenchymal stem cells: proliferation and differentiation to bone or cartilage. Lasers Med Sci 2019; 34:115-126. [PMID: 30264177 PMCID: PMC6344244 DOI: 10.1007/s10103-018-2620-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/15/2018] [Indexed: 12/21/2022]
Abstract
Tissue engineering aims to take advantage of the ability of undifferentiated stem cells to differentiate into multiple cell types to repair damaged tissue. Photobiomodulation uses either lasers or light-emitting diodes to promote stem cell proliferation and differentiation. The present study aimed to investigate single and dual combinations of laser wavelengths on mesenchymal stem cells (MSCs). MSCs were derived from rabbit iliac bone marrow. One control and eight laser irradiated groups were designated as Infrared (IR, 810 nm), Red (R, 660 nm), Green (G, 532 nm), Blue (B, 485 nm), IR-R, IR-B, R-G, and B-G. Irradiation was repeated daily for 21 days and cell proliferation, osseous, or cartilaginous differentiation was then measured. RT-PCR biomarkers were SOX9, aggrecan, COL 2, and COL 10 expression for cartilage and ALP, COL 1, and osteocalcin expression for bone. Cellular proliferation was increased in all irradiated groups except G. All cartilage markers were significantly increased by IR and IR-B except COL 10 which was suppressed by IR-B combination. ALP expression was highest in R and IR groups during osseous differentiation. ALP was decreased by combinations of IR with B and with R, and also by G alone. R and B-G groups showed stimulated COL 1 expression; however, COL 1 was suppressed in IR-B, IR-R, and G groups. IR significantly increased osteocalcin expression, but in B, B-G, and G groups it was reduced. Cartilage differentiation was stimulated by IR and IR-B laser irradiation. The effects of single or combined laser irradiation were not clear-cut on osseous differentiation. Stimulatory effects on osteogenesis were seen for R and IR lasers, while G laser had inhibitory effects.
Collapse
Affiliation(s)
- Reza Fekrazad
- Periodontics Department, Dentistry School, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran.
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and ResearchNetwork (USERN), Tehran, Iran.
| | - Sohrab Asefi
- Orthodontic Department, Dentistry School, International Campus of Tehran University of Medical Sciences, Tehran, Iran
| | | | - Leila Taghiar
- Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sima Bordbar
- Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
19
|
Zomer HD, Roballo KC, Lessa TB, Bressan FF, Gonçalves NN, Meirelles FV, Trentin AG, Ambrósio CE. Distinct features of rabbit and human adipose-derived mesenchymal stem cells: implications for biotechnology and translational research. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2018; 11:43-54. [PMID: 30425533 PMCID: PMC6204872 DOI: 10.2147/sccaa.s175749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction Owing to their similarity with humans, rabbits are useful for multiple applications in biotechnology and translational research from basic to preclinical studies. In this sense, mesenchymal stem cells (MSCs) are known for their therapeutic potential and promising future in regenerative medicine. As many studies have been using rabbit adipose-derived MSCs (ASCs) as a model of human ASCs (hASCs), it is fundamental to compare their characteristics and understand how distinct features could affect the translation to human medicine. Objective The aim of this study was to comparatively characterize rabbit ASCs (rASCs) and hASCs to further uses in biotechnology and translational studies. Materials and methods rASCs and hASCs were isolated and characterized by their immunophenotype, differentiation potential, proliferative profile, and nuclear stability in vitro. Results and discussion Both ASCs presented differentiation potential to osteocytes, chondrocytes, and adipocytes and shared similar immunophenotype expression to CD105+, CD34−, and CD45−, but rabbit cells expressed significantly lower CD73 and CD90 than human cells. In addition, rASCs presented greater clonogenic potential and proliferation rate than hASCs but no difference in nuclear alterations. Conclusion The distinct features of rASCs and hASCs can positively or negatively affect their use for different applications in biotechnology (such as cell reprogramming) and translational studies (such as cell transplantation, tissue engineering, and pharmacokinetics). Nevertheless, the particularities between rabbit and human MSCs should not prevent rabbit use in preclinical models, but care should be taken to interpret results and properly translate animal findings to medicine.
Collapse
Affiliation(s)
- Helena Debiazi Zomer
- Department of Cell Biology, Embryology and Genetic, Faculty of Biological Sciences, Santa Catarina Federal University (UFSC), Florianópolis, Brazil.,Department of Surgery, Sector Anatomy, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil,
| | - Kelly Cs Roballo
- Department of Surgery, Sector Anatomy, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil,
| | - Thais Borges Lessa
- Department of Surgery, Sector Anatomy, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil,
| | - Fabiana Fernandes Bressan
- Department of Surgery, Sector Anatomy, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil,
| | - Natália Nardeli Gonçalves
- Department of Surgery, Sector Anatomy, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil,
| | - Flávio Vieira Meirelles
- Department of Surgery, Sector Anatomy, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil, .,Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil,
| | - Andrea Gonçalves Trentin
- Department of Cell Biology, Embryology and Genetic, Faculty of Biological Sciences, Santa Catarina Federal University (UFSC), Florianópolis, Brazil
| | - Carlos Eduardo Ambrósio
- Department of Surgery, Sector Anatomy, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil, .,Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil,
| |
Collapse
|
20
|
Taghiyar L, Hosseini S, Safari F, Bagheri F, Fani N, Stoddart MJ, Alini M, Eslaminejad MB. New insight into functional limb regeneration: A to Z approaches. J Tissue Eng Regen Med 2018; 12:1925-1943. [PMID: 30011424 DOI: 10.1002/term.2727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 02/19/2018] [Accepted: 07/06/2018] [Indexed: 12/31/2022]
Abstract
Limb/digit amputation is a common event in humans caused by trauma, medical illness, or surgery. Although the loss of a digit is not lethal, it affects quality of life and imposes high costs on amputees. In recent years, the increasing interest in limb regeneration has led to enhanced scientific knowledge. However, the limited ability to develop functional limb regeneration in the clinical setting suggests that a challenging issue remains in limb regeneration. Recently, the emergence of regenerative engineering is a promising field to address this challenge and close the gap between science and clinical applications. Cell signalling and molecular mechanisms involved in the limb regeneration process have been extensively studied; however, there is still insufficient data on cell therapy and tissue engineering for limb regeneration. In this review, we intend to focus on therapeutic approaches for limb regeneration that are closely related to gene, immune, and stem cell therapies, as well as tissue engineering approaches that take into consideration the peculiar developmental properties of the limbs. In addition, we attempt to identify the challenges of these strategies for limb regeneration studies in terms of clinical settings and as a road map to accomplish the goal of functional human limb regeneration.
Collapse
Affiliation(s)
- Leila Taghiyar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Safari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Nesa Fani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
21
|
Comparative efficacy of stem cells and secretome in articular cartilage regeneration: a systematic review and meta-analysis. Cell Tissue Res 2018; 375:329-344. [PMID: 30084022 DOI: 10.1007/s00441-018-2884-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022]
Abstract
Articular cartilage defect remains the most challenging joint disease due to limited intrinsic healing capacity of the cartilage that most often progresses to osteoarthritis. In recent years, stem cell therapy has evolved as therapeutic strategies for articular cartilage regeneration. However, a number of studies have shown that therapeutic efficacy of stem cell transplantation is attributed to multiple secreted factors that modulate the surrounding milieu to evoke reparative processes. This systematic review and meta-analysis aim to evaluate and compare the therapeutic efficacy of stem cell and secretome in articular cartilage regeneration in animal models. We systematically searched the PubMed, CINAHL, Cochrane Library, Ovid Medline and Scopus databases until August 2017 using search terms related to stem cells, cartilage regeneration and animals. A random effect meta-analysis of the included studies was performed to assess the treatment effects on new cartilage formation on an absolute score of 0-100% scale. Subgroup analyses were also performed by sorting studies independently based on similar characteristics. The pooled analysis of 59 studies that utilized stem cells significantly improved new cartilage formation by 25.99% as compared with control. Similarly, the secretome also significantly increased cartilage regeneration by 26.08% in comparison to the control. Subgroup analyses revealed no significant difference in the effect of stem cells in new cartilage formation. However, there was a significant decline in the effect of stem cells in articular cartilage regeneration during long-term follow-up, suggesting that the duration of follow-up is a predictor of new cartilage formation. Secretome has shown a similar effect to stem cells in new cartilage formation. The risk of bias assessment showed poor reporting for most studies thereby limiting the actual risk of bias assessment. The present study suggests that both stem cells and secretome interventions improve cartilage regeneration in animal trials. Graphical abstract ᅟ.
Collapse
|
22
|
Ayuk SM, Houreld NN, Abrahamse H. Effect of 660 nm visible red light on cell proliferation and viability in diabetic models in vitro under stressed conditions. Lasers Med Sci 2018. [PMID: 29520687 DOI: 10.1007/s10103-017-2432-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The current study evaluated the photobiomodulatory effect of visible red light on cell proliferation and viability in various fibroblast diabetic models in vitro, namely, unstressed normal (N) and stressed normal wounded (NW), diabetic wounded (DW), hypoxic wounded (HW) and diabetic hypoxic wounded (DHW). Cells were irradiated at a wavelength of 660 nm with a fluence of 5 J/cm2 (11.23 mW/cm2), which related to an irradiation time of 7 min and 25 s. Control cells were not irradiated (0 J/cm2). Cells were incubated for 48 h and cellular proliferation was determined by measuring 5-bromo-2'-deoxyuridine (BrdU) in the S-phase (flow cytometry), while viability was assessed by the Trypan blue exclusion test and Apoptox-glo triplex assay. In comparison with the respective controls, PBM increased viability in N- (P ≤ 0.001), HW- (P ≤ 0.01) and DHW-cells (P ≤ 0.05). HW-cells showed a significant progression in the S-phase (P ≤ 0.05). Also, there was a decrease in the G2M phase in HW- and DHW-cells (P ≤ 0.05 and P ≤ 0.05, respectively). This study concludes that hypoxic wounded and diabetic hypoxic wounded models responded positively to PBM, and PBM does not damage stressed cells but has a stimulatory effect on cell viability and proliferation to promote repair and wound healing. This suggests that the more stressed the cells are the better they responded to photobiomodulation (PBM).
Collapse
Affiliation(s)
- S M Ayuk
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| | - N N Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa.
| | - H Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, 2028, South Africa
| |
Collapse
|
23
|
Ateş GB, Ak A, Garipcan B, Gülsoy M. Methylene blue mediated photobiomodulation on human osteoblast cells. Lasers Med Sci 2017; 32:1847-1855. [PMID: 28776111 DOI: 10.1007/s10103-017-2286-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/12/2017] [Indexed: 11/28/2022]
Abstract
Photobiomodulation (PBM) and photodynamic therapy (PDT) are two major methods, which use light in medicine and dentistry. PBM uses low-level laser light to induce cell proliferation and activity. In contrast, PDT use laser light combined with a photosensitizer (PS) to cause cell death. Due to similar, not fully understood mechanisms and biphasic response of light, unexpected and complex outcomes may be observed. In the present study, the effect of 635 nm laser light, with power density 50 mW/cm2, at three different energy densities (0.5, 1, and 2 J/cm2 which last 10, 20, and 40 s, respectively) mediated by methylene blue (MB) on the human osteoblast cell line (ATCC-CRL-11372, Rockville, MD, USA) was investigated. Cell viability (MTT assay and acridine orange/propidium iodide staining) and proliferation (Alamar Blue assay) were assessed at 24, 48, and 72 h post irradiation. Alkaline phosphatase (ALP) activity, mineralization (Alizarin Red staining) and gene expressions (RT-PCR analysis) were analyzed at 7th and 14th days after treatment. Five groups were formed as the control group (no MB, no irradiation), MB (only 0.05 μM MB), MB + 0.5 J/cm2, MB + 1 J/cm2, and MB + 2 J/cm2. Cell viability was decreased at 72 h (ANOVA; p < 0.05) for MB + 0.5 J/cm2, MB + 1 J/cm2, and MB + 2 J/cm2 groups. Although proliferation does not seem to be effected by MB-mediated laser application, osteo-anabolic activity is altered. ALP activity was significantly increased at day 7 (ANOVA; p < 0.05) for MB-combined laser groups; on the other hand, mineralization was significantly decreased (ANOVA; p < 0.05) in all treatment groups. Alkaline phosphatase and collagen-I expressions were upregulated in MB + 2 J/cm2 group at 7th and 14th days, respectively. These results may contribute to the low-dose PDT researches and understanding PBM effects on osteoblast behavior but further studies are needed since inappropriate conditions may lead to undesirable results for both therapies.
Collapse
Affiliation(s)
- Gamze Bölükbaşı Ateş
- Institute of Biomedical Engineering, Bogazici University, Uskudar, 34684, Istanbul, Turkey.
| | - Ayşe Ak
- Engineering Faculty, Biomedical Engineering, Erzincan University, 24100, Erzincan, Turkey
| | - Bora Garipcan
- Institute of Biomedical Engineering, Bogazici University, Uskudar, 34684, Istanbul, Turkey
| | - Murat Gülsoy
- Institute of Biomedical Engineering, Bogazici University, Uskudar, 34684, Istanbul, Turkey
| |
Collapse
|
24
|
Buchaim DV, Andreo JC, Ferreira Junior RS, Barraviera B, Rodrigues ADC, Macedo MDC, Rosa Junior GM, Shinohara AL, Santos German IJ, Pomini KT, Buchaim RL. Efficacy of Laser Photobiomodulation on Morphological and Functional Repair of the Facial Nerve. Photomed Laser Surg 2017; 35:442-449. [PMID: 28557664 DOI: 10.1089/pho.2016.4204] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Evaluate the efficacy of low-level laser therapy (LLLT) on qualitative, quantitative, and functional aspects in the facial nerve regeneration process. MATERIALS AND METHODS Forty-two male Wistar rats were used, randomly divided into a control group (CG; n = 10), in which the facial nerve without lesion was collected, and four experimental groups: (1) suture experimental group (SEG) and (2) fibrin experimental group (FEG), consisting of 16 animals in which the buccal branch of the facial nerve was sectioned on both sides of the face; an end-to-end epineural suture was performed on the right side, and a fibrin sealant was used on the left side for coaptation of the stumps; and (3) laser suture experimental group (LSEG) and (4) laser fibrin experimental group (LFEG), consisting of 16 animals that underwent the same surgical procedures as SEG and FEG with the addition of laser application at three different points along the surgical site (pulsed laser of 830 nm wavelength, optical output power of 30 mW, power density of 0.2586 W/cm2, energy density of 6.2 J/cm2, beam area of 0.116 cm2, exposure time of 24 sec per point, total energy per session of 2.16 J, and cumulative dose of 34.56 J). The animals were submitted to functional analysis (subjective observation of whisker movement) and the data obtained were compared using Fisher's exact test. Euthanasia was performed at 5 and 10 weeks postoperative. The total number and density of regenerated axons were analyzed using the unpaired t-test (p < 0.05). RESULTS Laser therapy resulted in a significant increase in the number and density of regenerated axons. The LSEG and LFEG presented better scores in functional analysis in comparison with the SEG and FEG. CONCLUSIONS LLLT enhanced axonal regeneration and accelerated functional recovery of the whiskers, and both repair techniques allowed the growth of axons.
Collapse
Affiliation(s)
| | - Jesus Carlos Andreo
- 2 Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo , Bauru, Brazil
| | - Rui Seabra Ferreira Junior
- 3 Center for the Study of Venoms and Venomous Animals, São Paulo State University (UNESP-Univ Estadual Paulista) , Botucatu, Brazil
| | - Benedito Barraviera
- 3 Center for the Study of Venoms and Venomous Animals, São Paulo State University (UNESP-Univ Estadual Paulista) , Botucatu, Brazil
| | - Antonio de Castro Rodrigues
- 2 Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo , Bauru, Brazil
| | - Mariana de Cássia Macedo
- 2 Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo , Bauru, Brazil
| | | | - Andre Luis Shinohara
- 2 Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo , Bauru, Brazil
| | - Iris Jasmin Santos German
- 2 Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo , Bauru, Brazil
| | - Karina Torres Pomini
- 2 Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo , Bauru, Brazil
| | - Rogerio Leone Buchaim
- 2 Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo , Bauru, Brazil
| |
Collapse
|
25
|
Arany PR. Photobiomodulation Therapy: Communicating with Stem Cells for Regeneration? Photomed Laser Surg 2016; 34:497-499. [DOI: 10.1089/pho.2016.4203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Praveen R. Arany
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, New York
| |
Collapse
|