1
|
Hashemikamangar SS, Biglari P, Shahidi Z, Chiniforush N. Effect of photodynamic therapy with two photosensitizers on the microtensile bond strength of a universal adhesive to affected dentin. Photodiagnosis Photodyn Ther 2024; 48:104249. [PMID: 38897530 DOI: 10.1016/j.pdpdt.2024.104249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND This study aimed to evaluate the impact of photodynamic therapy (PDT) using two photosensitizers, methylene blue and indocyanine green, on the microtensile bond strength of a universal adhesive to caries-affected dentin. METHODS The occlusal enamel of 60 third molars was cut to expose the inner one-third of the dentin. Artificial caries were induced through a pH cycling process. The samples were divided into three groups: M (Methylene blue+ diode laser), I (Indocyanine green agents+ diode laser irradiation), and control. Each group was further divided into two subgroups according to the adhesive protocol (self-etch, total-etch). After restoring with Gradia composite resin, teeth were sectioned and exposed to 5000 thermal cycles. Microtensile bond strength was measured using a universal testing machine. The data were subjected to two- and one-way ANOVA and paired comparisons were performed by the Tamhane and Tukey tests. RESULTS The study found significant effects of the photosensitizer, etching pattern, and their interactions on the microtensile bond strength of composite resin to caries-affected dentin (P < 0.001). In the self-etching mode, PDT with indocyanine green exhibited significantly higher bond strength values compared to PDT with methylene blue (P = 0.001) and the control groups (P < 0.001). However, no significant differences were observed in the total-etch mode. (P = 0.54). CONCLUSIONS The etching mode played a more significant role in the bond strength when using the universal adhesive alongside PDT with methylene blue and indocyanine green. Employing two photosensitizers in PDT during the self-etch mode significantly increased the bond strength values.
Collapse
Affiliation(s)
- Sedighe Sadat Hashemikamangar
- Dental Research Center, Dentistry Research Institute, Department of Restorative Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Pardis Biglari
- Department of Restorative Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Shahidi
- Department of Restorative Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nasim Chiniforush
- Dentistry Research Institute, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
2
|
Wenzler JS, Wurzel SC, Falk W, Böcher S, Wurzel PP, Braun A. Bactericidal Effect of Different Photochemical-Based Therapy Options on Implant Surfaces-An In Vitro Study. J Clin Med 2024; 13:4212. [PMID: 39064253 PMCID: PMC11278127 DOI: 10.3390/jcm13144212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Objectives: Photochemical systems are frequently recommended as an adjuvant treatment option in peri-implantitis therapy. The aim of the present study was to evaluate the efficacy of these treatment options, as well as a novel curcumin-based option, in a biofilm model on implants. Methods: Eighty dental implants were inoculated with an artificial biofilm of periodontal pathogens and placed in peri-implant pocket models. The following groups were analyzed: I, photodynamic therapy (PDT); II, PDT dye; III, curcumin/DMSO + laser; IV, curcumin/DMSO only; V, dimethyl sulfoxide (DMSO) only; VI, photothermal therapy (PTT); VII, PTT dye; VIII, control. After treatment, remaining bacterial loads were assessed microbiologically using quantitative real-time polymerase chain reaction analysis. Results: The PDT, PTT, and DMSO treatment methods were associated with statistically significant (p < 0.05) improvements in germ reduction in comparison with the other methods and the untreated control group. The mean percentage reductions were as follows: I (PDT) 93.9%, II (PDT dye) 62.9%, III (curcumin/DMSO + laser) 74.8%, IV (curcumin/DMSO only) 67.9%, V (DMSO) 89.4%, VI (PTT) 86.8%, and VII (PTT dye) 66.3%. Conclusions: The commercially available PDT and PTT adjuvant treatment systems were associated with the largest statistically significant reduction in periopathogenic bacteria on implant surfaces. However, activation with laser light at a suitable wavelength is necessary to achieve the bactericidal effects. The use of curcumin as a photosensitizer for 445 nm laser irradiation did not lead to any improvement in antibacterial efficacy in comparison with rinsing with DMSO solution alone.
Collapse
Affiliation(s)
- Johannes-Simon Wenzler
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany (A.B.)
| | - Svenja Caroline Wurzel
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany (A.B.)
| | - Wolfgang Falk
- Center for Dental Microbiology, Oro-Dental Microbiology, Hamburger Chausse 25, 24220 Flintbek, Germany
| | - Sarah Böcher
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany (A.B.)
| | - Piet Palle Wurzel
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany (A.B.)
| | - Andreas Braun
- Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany (A.B.)
| |
Collapse
|
3
|
Takeuchi Y, Aoki A, Hiratsuka K, Chui C, Ichinose A, Aung N, Kitanaka Y, Hayashi S, Toyoshima K, Iwata T, Arakawa S. Application of Different Wavelengths of LED Lights in Antimicrobial Photodynamic Therapy for the Treatment of Periodontal Disease. Antibiotics (Basel) 2023; 12:1676. [PMID: 38136710 PMCID: PMC10740818 DOI: 10.3390/antibiotics12121676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Therapeutic light has been increasingly used in clinical dentistry for surgical ablation, disinfection, bio-stimulation, reduction in inflammation, and promotion of wound healing. Photodynamic therapy (PDT), a type of phototherapy, has been used to selectively destroy tumor cells. Antimicrobial PDT (a-PDT) is used to inactivate causative bacteria in infectious oral diseases, such as periodontitis. Several studies have reported that this minimally invasive technique has favorable therapeutic outcomes with a low probability of adverse effects. PDT is based on the photochemical reaction between light, a photosensitizer, and oxygen, which affects its efficacy. Low-power lasers have been predominantly used in phototherapy for periodontal treatments, while light-emitting diodes (LEDs) have received considerable attention as a novel light source in recent years. LEDs can emit broad wavelengths of light, from infrared to ultraviolet, and the lower directivity of LED light appears to be suitable for plaque control over large and complex surfaces. In addition, LED devices are small, lightweight, and less expensive than lasers. Although limited evidence exists on LED-based a-PDT for periodontitis, a-PDT using red or blue LED light could be effective in attenuating bacteria associated with periodontal diseases. LEDs have the potential to provide a new direction for light therapy in periodontics.
Collapse
Affiliation(s)
- Yasuo Takeuchi
- Department of Lifetime Oral Health Care Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan;
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (A.I.); (S.H.); (K.T.); (T.I.)
| | - Koichi Hiratsuka
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan;
| | | | - Akiko Ichinose
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (A.I.); (S.H.); (K.T.); (T.I.)
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Nay Aung
- Laser Light Dental Clinic Periodontal and Implant Center, Yangon 11241, Myanmar;
| | - Yutaro Kitanaka
- Department of Oral Diagnosis and General Dentistry, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan;
| | - Sakura Hayashi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (A.I.); (S.H.); (K.T.); (T.I.)
| | - Keita Toyoshima
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (A.I.); (S.H.); (K.T.); (T.I.)
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (A.I.); (S.H.); (K.T.); (T.I.)
| | - Shinich Arakawa
- Department of Lifetime Oral Health Care Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan;
| |
Collapse
|
4
|
Kunnumakkara AB, Hegde M, Parama D, Girisa S, Kumar A, Daimary UD, Garodia P, Yenisetti SC, Oommen OV, Aggarwal BB. Role of Turmeric and Curcumin in Prevention and Treatment of Chronic Diseases: Lessons Learned from Clinical Trials. ACS Pharmacol Transl Sci 2023; 6:447-518. [PMID: 37082752 PMCID: PMC10111629 DOI: 10.1021/acsptsci.2c00012] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 03/08/2023]
Abstract
Turmeric (Curcuma longa) has been used for thousands of years for the prevention and treatment of various chronic diseases. Curcumin is just one of >200 ingredients in turmeric. Almost 7000 scientific papers on turmeric and almost 20,000 on curcumin have been published in PubMed. Scientific reports based on cell culture or animal studies are often not reproducible in humans. Therefore, human clinical trials are the best indicators for the prevention and treatment of a disease using a given agent/drug. Herein, we conducted an extensive literature survey on PubMed and Scopus following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The keywords "turmeric and clinical trials" and "curcumin and clinical trials" were considered for data mining. A total of 148 references were found to be relevant for the key term "turmeric and clinical trials", of which 70 were common in both PubMed and Scopus, 44 were unique to PubMed, and 34 were unique to Scopus. Similarly, for the search term "curcumin and clinical trials", 440 references were found to be relevant, of which 70 were unique to PubMed, 110 were unique to Scopus, and 260 were common to both databases. These studies show that the golden spice has enormous health and medicinal benefits for humans. This Review will extract and summarize the lessons learned about turmeric and curcumin in the prevention and treatment of chronic diseases based on clinical trials.
Collapse
Affiliation(s)
- Ajaikumar B. Kunnumakkara
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Mangala Hegde
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Dey Parama
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Sosmitha Girisa
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Aviral Kumar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Uzini Devi Daimary
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Prachi Garodia
- Integrative
Research Center, Miami, Florida 33125, United States
| | - Sarat Chandra Yenisetti
- Department
of Zoology, Drosophila Neurobiology Laboratory, Nagaland University (Central), Lumami, Nagaland-798627, India
| | - Oommen V. Oommen
- Department
of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala-695581, India
| | - Bharat B. Aggarwal
- Inflammation
Research Center, San Diego, California 92109, United States
| |
Collapse
|
5
|
Ferrisse TM, Dias LM, de Oliveira AB, Jordão CC, Mima EGDO, Pavarina AC. EFFICACY OF CURCUMIN-MEDIATED ANTIBACTERIAL PHOTODYNAMIC THERAPY FOR ORAL ANTISEPSIS: A SYSTEMATIC REVIEW AND NETWORK META-ANALYSIS OF RANDOMIZED CLINICAL TRIALS. Photodiagnosis Photodyn Ther 2022; 39:102876. [PMID: 35472640 DOI: 10.1016/j.pdpdt.2022.102876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/09/2022] [Accepted: 04/20/2022] [Indexed: 01/22/2023]
Abstract
BACKGROUND currently, the presence of oral microorganisms resistant to traditional treatment is increasing, thus search for new modalities of therapies is needed. In this context, antimicrobial photodynamic therapy (aPDT) is an alternative approach for the treatment of resistant or not resistant microorganisms. Therefore, the aim of the present study was to conduct a systematic review and meta-analysis of randomized clinical trials of aPDT for oral antisepsis against oral polymicrobial biofilms. METHODS PubMed, Science Direct, Scopus, SciELO, Lilacs, Cochrane Library and Embase databases were searched. In total, five articles were included for qualitative analysis and four articles were used for quantitative analyses. Bias assessment of the eligible articles was made using the RoB 2 criteria. Network meta-analysis was performed using the random-effect model. Subgroup's analysis was also conducted. The groups evaluated were aPDT, exposure to light only and no treatment at all (control group). The quality of evidence was accessed by CINeMA approach. RESULTS aPDT mediated by curcumin had significant results in the reducing bacterial load (0.31-0.49 log10 UFC/ I2=0%) when compared with the control group. The included articles were classified as low risk of bias, despite biases detected by allocation and blinding. Moreover, quantitative analysis between aPDT and control group and between light and control group were classified with low risk of confidence rating, while the results from aPDT versus light were classified as moderate risk of confidence rating. CONCLUSION aPDT has significant efficacy for oral antisepsis, however more randomized clinical trials will be needed to validate the present results.
Collapse
Affiliation(s)
- Túlio Morandin Ferrisse
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil
| | - Luana Mendonça Dias
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil
| | - Analú Barros de Oliveira
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry São Paulo State University (Unesp), School of Dentistry, Araraquara, SP, Brazil
| | - Claudia Carolina Jordão
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil
| | - Ewerton Garcia de Oliveira Mima
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil
| | - Ana Cláudia Pavarina
- Department of Dental Materials and Prosthodontics, São Paulo State University (Unesp), School of Dentistry, Araraquara, Brazil.
| |
Collapse
|
6
|
Besegato JF, de Melo PBG, Tamae PE, Alves APAR, Rondón LF, Leanse LG, Dos Anjos C, Casarin HH, Chinelatti MA, Faria G, Dai T, Bagnato VS, Rastelli ANDS. How can biophotonics help dentistry to avoid or minimize cross infection by SARS-CoV-2? Photodiagnosis Photodyn Ther 2021; 37:102682. [PMID: 34910994 PMCID: PMC8666148 DOI: 10.1016/j.pdpdt.2021.102682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022]
Abstract
Biophotonics is defined as the combination of biology and photonics (the physical science of the light). It is a general term for all techniques that deal with the interaction between biological tissues/cells and photons (light). Biophotonics offers a great variety of techniques that can facilitate the early detection of diseases and promote innovative theragnostic approaches. As the COVID-19 infection can be transmitted due to the face-to-face communication, droplets and aerosol inhalation and the exposure to saliva, blood, and other body fluids, as well as the handling of sharp instruments, dental practices are at increased risk of infection. In this paper, a literature review was performed to explore the application of Biophotonics approaches in Dentistry focusing on the COVID-19 pandemic and how they can contribute to avoid or minimize the risks of infection in a dental setting. For this, search-related papers were retrieved from PubMED, Scielo, Google Schoolar, and American Dental Association and Centers for Disease Control and Prevention databases. The body of evidence currently available showed that Biophotonics approaches can reduce microorganism load, decontaminate surfaces, air, tissues, and minimize the generation of aerosol and virus spreading by minimally invasive, time-saving, and alternative techniques in general. However, each clinical situation must be individually evaluated regarding the benefits and drawbacks of these approaches, but always pursuing less-invasive and less aerosol-generating procedures, especially during the COVID-19 pandemic.
Collapse
Affiliation(s)
- João Felipe Besegato
- Department of Restorative Dentistry, School of Dentistry, Araraquara, São Paulo State University - UNESP, 1680 Humaitá Street - 3rd floor, Araraquara 14801-903, SP, Brazil
| | - Priscila Borges Gobbo de Melo
- Department of Restorative Dentistry, School of Dentistry, Araraquara, São Paulo State University - UNESP, 1680 Humaitá Street - 3rd floor, Araraquara 14801-903, SP, Brazil
| | - Patrícia Eriko Tamae
- Department of Restorative Dentistry, School of Dentistry, Araraquara, São Paulo State University - UNESP, 1680 Humaitá Street - 3rd floor, Araraquara 14801-903, SP, Brazil
| | - Ana Paula Aparecida Raimundo Alves
- Department of Restorative Dentistry, School of Dentistry, Araraquara, São Paulo State University - UNESP, 1680 Humaitá Street - 3rd floor, Araraquara 14801-903, SP, Brazil
| | - Luis Felipe Rondón
- Department of Restorative Dentistry, School of Dentistry, Araraquara, São Paulo State University - UNESP, 1680 Humaitá Street - 3rd floor, Araraquara 14801-903, SP, Brazil
| | - Leon G Leanse
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, University of Harvard, Boston, MA 02114, USA.
| | - Carolina Dos Anjos
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, University of Harvard, Boston, MA 02114, USA.
| | - Heitor Hussni Casarin
- Dentistry School, Central Paulista University Center - UNICEP, São Carlos 13563-470, SP, Brazil
| | | | - Gisele Faria
- Department of Restorative Dentistry, School of Dentistry, Araraquara, São Paulo State University - UNESP, 1680 Humaitá Street - 3rd floor, Araraquara 14801-903, SP, Brazil.
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, University of Harvard, Boston, MA 02114, USA.
| | | | - Alessandra Nara de Souza Rastelli
- Department of Restorative Dentistry, School of Dentistry, Araraquara, São Paulo State University - UNESP, 1680 Humaitá Street - 3rd floor, Araraquara 14801-903, SP, Brazil.
| |
Collapse
|
7
|
Recent Advances in Photodynamic Therapy against Fungal Keratitis. Pharmaceutics 2021; 13:pharmaceutics13122011. [PMID: 34959293 PMCID: PMC8709008 DOI: 10.3390/pharmaceutics13122011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/14/2021] [Accepted: 11/20/2021] [Indexed: 01/08/2023] Open
Abstract
Fungal keratitis is a serious clinical infection on the cornea caused by fungi and is one of the leading causes of blindness in Asian countries. The treatment options are currently limited to a few antifungal agents. With the increasing incidence of drug-resistant infections, many patients fail to respond to antibiotics. Riboflavin-mediated corneal crosslinking (similar to photodynamic therapy (PDT)) for corneal ectasia was approved in the US in the early 2000s. Current evidence suggests that PDT could have the potential to inhibit fungal biofilm formation and overcome drug resistance by using riboflavin and rose bengal as photosensitizers. However, only a few clinical trials have been initiated in anti-fungal keratitis PDT treatment. Moreover, the removal of the corneal epithelium and repeated application of riboflavin and rose bengal are required to improve drug penetration before and during PDT. Thus, an improvement in trans-corneal drug delivery is mandatory for a successful and efficient treatment. In this article, we review the studies published to date using PDT against fungal keratitis and aim to enhance the understanding and awareness of this research area. The potential of modifying photosensitizers using nanotechnology to improve the efficacy of PDT on fungal keratitis is also briefly reviewed.
Collapse
|
8
|
Abstract
Current strategies of combating bacterial infections are limited and involve the use of antibiotics and preservatives. Each of these agents has generally inadequate efficacy and a number of serious adverse effects. Thus, there is an urgent need for new antimicrobial drugs and food preservatives with higher efficacy and lower toxicity. Edible plants have been used in medicine since ancient times and are well known for their successful antimicrobial activity. Often photosensitizers are present in many edible plants; they could be a promising source for a new generation of drugs and food preservatives. The use of photodynamic therapy allows enhancement of antimicrobial properties in plant photosensitizers. The purpose of this review is to present the verified data on the antimicrobial activities of photodynamic phytochemicals in edible species of the world’s flora, including the various mechanisms of their actions.
Collapse
|
9
|
Etemadi A, Hamidain M, Parker S, Chiniforush N. Blue Light Photodynamic Therapy With Curcumin and Riboflavin in the Management of Periodontitis: A Systematic Review. J Lasers Med Sci 2021; 12:e15. [PMID: 34733738 DOI: 10.34172/jlms.2021.15] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: The aim of this article was to evaluate reports in the scientific literature that used antimicrobial photodynamic therapy (aPDT) with a blue light source and curcumin and riboflavin as photosensitizers in the management of periodontitis. Methods: The search was conducted in electronic databases, including PubMed, Web of Science, and Scopus, with the keywords "photodynamic therapy", "antimicrobial photodynamic therapy", "laser activated disinfection", "photoactivated disinfection", "light activated disinfection" "LED", "Periodontitis", "Curcumin", "Riboflavin", and "periodontitis" from 2012 to 2020. Results: After evaluating a total of 24 relevant articles, 13 articles were selected, full texts were read, and the data were extracted and placed in a table. Conclusion: Reviewing articles showed that curcumin as a photosensitizer activated by a blue wavelength is effective in the elimination of the various bacterial species involved in periodontal disease, and to the best of our knowledge, there is no study that has shown this substance does not reduce bacteria. According to the result of the articles, riboflavin as a photosensitizer activated by blue light can reduce bacteria that are involved in periodontitis, but other studies have reported that blue light alone can also reduce bacteria significantly. Therefore, more in-vitro and clinical trial studies are needed to give a more conclusive opinion on the effectiveness of riboflavin as a photosensitizer in the treatment of periodontitis.
Collapse
Affiliation(s)
- Ardavan Etemadi
- Department of Periodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Laser Research Center of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Hamidain
- Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Steven Parker
- Leicester School of Pharmacy, De Montfort University, Leicester UK
| | - Nasim Chiniforush
- Dental Implant Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
da Silva FC, Rosa LP, de Jesus IM, de Oliveira Santos GP, Inada NM, Blanco KC, Araújo TSD, Bagnato VS. Total mouth photodynamic therapy mediated by red LED and porphyrin in individuals with AIDS. Lasers Med Sci 2021; 37:1227-1234. [PMID: 34387786 DOI: 10.1007/s10103-021-03377-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022]
Abstract
Due to the immune changes resulting from HIV/AIDS infection, systemic and local infections throughout the body are common. The use of high activity antiretroviral therapy has been widely used during treatment, which, added to the use of antibiotics, antifungals, and the patients' own immunocompromised state, cause important changes in the oral microbiota. The emergence of pathological microorganisms and with high resistance to drug therapies are frequent and cause serious damage to the oral health of these patients. In this sense, antimicrobial photodynamic therapy (aPDT) appears as a promising alternative in the control of these oral infections. The aim of the study was to test the effectiveness of a therapeutic protocol for total oral aPDT mediated by a 660-nm red LED (light-emitting diode) associated with porphyrin in individuals with AIDS. Patients were selected by exclusion criteria and randomly distributed into groups to test the effectiveness of antimicrobial aPDT with 50 µg/ml porphyrin associated with the red LED. Before and after the treatments, saliva samples were collected and processed in duplicate in selective culture media. Colonies were counted and the results obtained in Log10 CFU/ml and tested statistically. It was concluded that aPDT was effective in reducing oral enterobacteria, in addition to reducing Streptococcus spp. and general count of microorganisms, when considering the numbers of TCD4 and TCD8 lymphocytes.
Collapse
Affiliation(s)
- Francine Cristina da Silva
- Multidisciplinary Health Institute, Federal University of Bahia, Rio de Contas Street, 58, Candeias, Vitória da Conquista, BA, 450029-094, Brazil
| | - Luciano Pereira Rosa
- Multidisciplinary Health Institute, Federal University of Bahia, Rio de Contas Street, 58, Candeias, Vitória da Conquista, BA, 450029-094, Brazil
| | - Iasmym Mendes de Jesus
- Multidisciplinary Health Institute, Federal University of Bahia, Rio de Contas Street, 58, Candeias, Vitória da Conquista, BA, 450029-094, Brazil.
| | - Gabriel Pinto de Oliveira Santos
- Multidisciplinary Health Institute, Federal University of Bahia, Rio de Contas Street, 58, Candeias, Vitória da Conquista, BA, 450029-094, Brazil
| | | | | | - Thalita Santos Dantas Araújo
- Multidisciplinary Health Institute, Federal University of Bahia, Rio de Contas Street, 58, Candeias, Vitória da Conquista, BA, 450029-094, Brazil
| | | |
Collapse
|
11
|
Cusicanqui Méndez DA, Cardenas Cuéllar MR, Feliz Pedrinha V, Velásquez Espedilla EG, Bombarda de Andrade F, Rodrigues PDA, Cruvinel T. Effects of curcumin-mediated antimicrobial photodynamic therapy associated to different chelators against Enterococcus faecalis biofilms. Photodiagnosis Photodyn Ther 2021; 35:102464. [PMID: 34320428 DOI: 10.1016/j.pdpdt.2021.102464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The aim of this study was to evaluate curcumin-mediated antimicrobial photodynamic therapy (aPDT) action combined or not with ethylenediaminetetraacetic acid (EDTA) and hydroxyethylidene bisphosphonate (HEBP) on Enterococcus faecalis biofilms. METHODS Enterococcus faecalis biofilms were grown on dentin bovine discs in brain heart infusion (BHI) medium with 1% glucose, in aerobic conditions at 37°C for 7 days. Then, they were randomly distributed to one of experimental conditions, as follows: control, 75 J.cm-2 LED, 600 μmol.L-1 curcumin, 17% EDTA, 18% HEBP, 600 μmol.L-1 curcumin plus 75 J.cm-2 LED, 600 μmol.L-1 curcumin plus 17% EDTA, 600 μmol.L-1 curcumin plus 18% HEBP, 600 μmol.L-1 curcumin plus 17% EDTA and 75 J.cm-2 LED or 600 μmol.L-1 curcumin plus 18% HEBP and 75 J.cm-2 LED. The viability of microorganisms and the vitality of biofilms were determined by colony forming unit counts and confocal scanning laser microscopy (CSLM), respectively. Statistical analysis was conducted by Kruskal Wallis and Dunn's post-hoc tests (α = 0.05). RESULTS The results showed that all combinations of aPDT with chelators significantly reduced the viability of microbial cells and the vitality of biofilms in comparison to control, even when considering deeper layers of biofilms. CONCLUSION The combination of curcumin with EDTA and HEBP similarly improved the effect of aPDT on E. faecalis biofilms.
Collapse
Affiliation(s)
| | - Maricel Rosario Cardenas Cuéllar
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, SP, Brazil
| | - Victor Feliz Pedrinha
- Laboratory of Dental Materials, Graduate Program in Dentistry, School of Dentistry, Federal University of Pará, Pará, Brazil
| | | | - Flaviana Bombarda de Andrade
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, SP, Brazil
| | - Patrícia de Almeida Rodrigues
- Laboratory of Dental Materials, Graduate Program in Dentistry, School of Dentistry, Federal University of Pará, Pará, Brazil
| | - Thiago Cruvinel
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, SP, Brazil.
| |
Collapse
|
12
|
Pereira AO, Lopes IMI, Silva TR, Corrêa TQ, Paschoalin RT, Inada NM, Iermak I, van Riel Neto F, Araujo-Chaves JC, Marletta A, Tozoni JR, Mattoso LHC, Bagnato VS, Nantes-Cardoso IL, Oliveira ON, Campana PT. Bacterial Photoinactivation Using PLGA Electrospun Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31406-31417. [PMID: 34185501 DOI: 10.1021/acsami.1c02686] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of ultraviolet (UV) and blue irradiation to sterilize surfaces is well established, but commercial applications would be enhanced if the light source is replaced with ambient light. In this paper, it is shown that nanofibers can be explored as an alternative methodology to UV and blue irradiation for bacterial inactivation. It is demonstrated that this is indeed possible using spun nanofibers of poly[lactic-co-(glycolic acid)] (PLGA). This work shows that PLGA spun scaffolds can promote photoinactivation of Staphylococcus aureus and Escherichia coli bacteria with ambient light or with laser irradiation at 630 nm. With the optimized scaffold composition of PLGA85:15 nanofibers, the minimum intensity required to kill the bacteria is much lower than in antimicrobial blue light applications. The enhanced effect introduced by PLGA scaffolds is due to their nanofiber structures since PLGA spun nanofibers were able to inactivate both S. aureus and E. coli bacteria, but cast films had no effect. These findings pave the way for an entirely different method to sterilize surfaces, which is less costly and environmentally friendly than current procedures. In addition, the scaffolds could also be used in cancer treatment with fewer side effects since photosensitizers are not required.
Collapse
Affiliation(s)
- Aline O Pereira
- School of Arts, Sciences and Humanities, University of São Paulo (USP), Arlindo Bettio Av., 1000, São Paulo 03828-000, Brazil
| | - Isabella M I Lopes
- School of Arts, Sciences and Humanities, University of São Paulo (USP), Arlindo Bettio Av., 1000, São Paulo 03828-000, Brazil
| | - Thiago R Silva
- School of Arts, Sciences and Humanities, University of São Paulo (USP), Arlindo Bettio Av., 1000, São Paulo 03828-000, Brazil
| | - Thaila Q Corrêa
- Sao Carlos Institute of Physics, University of São Paulo (USP), Trabalhador São-Carlense Av., 400, Sao Carlos 13560-970, Brazil
| | - Rafaella T Paschoalin
- Sao Carlos Institute of Physics, University of São Paulo (USP), Trabalhador São-Carlense Av., 400, Sao Carlos 13560-970, Brazil
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, 15 de Novembro St., 1452, São Carlos 13560-970, Brazil
| | - Natalia M Inada
- Sao Carlos Institute of Physics, University of São Paulo (USP), Trabalhador São-Carlense Av., 400, Sao Carlos 13560-970, Brazil
| | - Ievgeniia Iermak
- Sao Carlos Institute of Physics, University of São Paulo (USP), Trabalhador São-Carlense Av., 400, Sao Carlos 13560-970, Brazil
| | - Francisco van Riel Neto
- Institute of Physics, Federal University of Uberlândia (UFU), João Naves de Ávila Av., 2121, Uberlândia 38408-100, Brazil
| | - Juliana C Araujo-Chaves
- Center of Natural Sciences and HumanitiesFederal University of ABC (UFABC), dos Estados Av., 5001, Santo André 09210-580, Brazil
| | - Alexandre Marletta
- Institute of Physics, Federal University of Uberlândia (UFU), João Naves de Ávila Av., 2121, Uberlândia 38408-100, Brazil
| | - José R Tozoni
- Institute of Physics, Federal University of Uberlândia (UFU), João Naves de Ávila Av., 2121, Uberlândia 38408-100, Brazil
| | - Luiz Henrique C Mattoso
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, 15 de Novembro St., 1452, São Carlos 13560-970, Brazil
| | - Vanderlei S Bagnato
- Sao Carlos Institute of Physics, University of São Paulo (USP), Trabalhador São-Carlense Av., 400, Sao Carlos 13560-970, Brazil
| | - Iseli L Nantes-Cardoso
- Center of Natural Sciences and HumanitiesFederal University of ABC (UFABC), dos Estados Av., 5001, Santo André 09210-580, Brazil
| | - Osvaldo N Oliveira
- Sao Carlos Institute of Physics, University of São Paulo (USP), Trabalhador São-Carlense Av., 400, Sao Carlos 13560-970, Brazil
| | - Patricia T Campana
- School of Arts, Sciences and Humanities, University of São Paulo (USP), Arlindo Bettio Av., 1000, São Paulo 03828-000, Brazil
| |
Collapse
|
13
|
Li Y, Jiao J, Qi Y, Yu W, Yang S, Zhang J, Zhao J. Curcumin: A review of experimental studies and mechanisms related to periodontitis treatment. J Periodontal Res 2021; 56:837-847. [PMID: 34173676 DOI: 10.1111/jre.12914] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/14/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Curcumin is the main active ingredient of turmeric, which has a wide range of pharmacological effects, including antitumor, antibacterial, anti-inflammatory, anti-oxidation, immune regulation, and so on. Periodontitis is a prevalent oral inflammatory disease caused by a variety of factors. In recent years, many studies have shown that curcumin has a potential role on the treatment of periodontitis. Curcumin has been used in research related to the treatment of periodontitis in the form of solution, chip, gel, and capsule. Combined with other periodontitis treatment methods, such as scaling and root planing (SRP) and photodynamic therapy (PDT), can enhance curcumin's efficacy in treating periodontitis. In addition to natural curcumin, chemically modified curcumin, such as 4-phenylaminocarbonyl bis-demethoxy curcumin (CMC 2.24) and 4-methoxycarbonyl curcumin (CMC 2.5), have also been used in animal models of periodontitis. Here, this paper reviews the research progress of curcumin on the treatment of periodontitis and its related mechanisms.
Collapse
Affiliation(s)
- Yongli Li
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Junjie Jiao
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuanzheng Qi
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Wanqi Yu
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Shihui Yang
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Jingjie Zhang
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Jinghui Zhao
- Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
14
|
Souza EQM, da Rocha TE, Toro LF, Guiati IZ, Freire JDOA, Ervolino E, Brandini DA, Garcia VG, Theodoro LH. Adjuvant effects of curcumin as a photoantimicrobial or irrigant in the non-surgical treatment of periodontitis: Systematic review and meta-analysis. Photodiagnosis Photodyn Ther 2021; 34:102265. [PMID: 33781908 DOI: 10.1016/j.pdpdt.2021.102265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/16/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
AIM Curcumin (CUR) has been used clinically in several studies as a subgingival irrigant or as a photoantimicrobial in combination with a blue light-emitting diode (LED) in antimicrobial photodynamic therapy (aPDT) adjuvant to scaling and root planing (SRP). The aim of this study was to assess the effectiveness of CUR as an irrigant or as a photoantimicrobial in conjunction with the blue LED in aPDT adjuvant to SRP, compared to SRP as conventional mechanical treatment. MATERIALS AND METHODS Fifteen randomized controlled trials (RCT) were included in a qualitative analysis after researching the databases: PubMed / MEDLINE, SCOPUS, EMBASE, Cochrane Central, Web of Science and Scielo. Manual searches were also performed. Five studies were submitted to quantitative analysis, evaluating periodontal clinical parameters such as probing depth (PD) and clinical attachment level (CAL). RESULTS The obtained results have shown clinical benefits in PD reduction and CAL gains at 3 months with the use of CUR as adjuvant therapy to SRP, both as an irrigant or photoantimicrobial, in comparison with SRP monotherapy. CONCLUSION Currently, there is evidence that treatment with CUR applied as irrigant or in conjunction with the blue LED as aPDT presents superior clinical results in the short term, for clinical periodontics parameters like as PD reduction and CAL gain, when compared to SRP monotherapy in the non-surgical treatment of periodontitis. However, these results cannot be proven in the long term.
Collapse
Affiliation(s)
- Eduardo Quintão Manhanini Souza
- Department of Diagnostic and Surgery, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, SP, Brazil.
| | - Tiago Esgalha da Rocha
- Department of Diagnostic and Surgery, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, SP, Brazil.
| | - Luan Felipe Toro
- Institute of Biosciences of Botucatu - IBB (UNESP), Botucatu, SP, Brazil.
| | | | | | - Edilson Ervolino
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, SP, Brazil.
| | - Daniela Atili Brandini
- Department of Diagnostic and Surgery, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, SP, Brazil.
| | - Valdir Gouveia Garcia
- Latin American Institute of Dental Research and Education (ILAPEO), Curitiba, PR, Brazil.
| | - Letícia Helena Theodoro
- Department of Diagnostic and Surgery, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, SP, Brazil.
| |
Collapse
|
15
|
Dias LD, Blanco KC, Mfouo-Tynga IS, Inada NM, Bagnato VS. Curcumin as a photosensitizer: From molecular structure to recent advances in antimicrobial photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2020.100384] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Rocha MP, Santos MS, Rodrigues PLF, Araújo TSD, de Oliveira JM, Rosa LP, Bagnato VS, da Silva FC. Photodynamic therapry with curcumin in the reduction of enterococcus faecalis biofilm in bone cavity: rMicrobiological and spectral fluorescense analysis. Photodiagnosis Photodyn Ther 2020; 33:102084. [PMID: 33176181 DOI: 10.1016/j.pdpdt.2020.102084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Antimicrobial photodynamic therapy (PDT) has emerged as a therapeutic strategy to conventional procedures using antibiotics. OBJECTIVE To evaluate the antimicrobial effectiveness of PDT using blue light emitting diode (LED) associated with curcumin on biofilms of Enterococcus faecalis in bovine bone cavities and also to analyze the presence of these biofilms through spectral fluorescence. MATERIALS AND METHODS Standardized suspensions of E. faecalis (ATCC 29212) were incubated in artificial bone cavities for 14 days at 36 °C ± 1 °C for biofilm formation. The test specimens were distributed among the four experimental groups (n = 10): L-C- (control), L + C- (LED for 5 min), L-C+ (curcumin for 5 min) and L + C+ (PDT). Aliquots were collected from the bone cavities after treatments and seeded on BHI agar for 24 h at 36 °C ± 1 °C for CFU count. Before and after each treatment the specimens were submitted to spectral fluorescence, whose images were compared in the Image J program. The log10 CFU/mL results were submitted to the Kruskal-Wallis test (5%) and the biofilm fluorescence spectroscopy results were submitted to the Wilcoxon test (5%). RESULTS All treatments presented statistical difference when compared to the control, and PDT was responsible for the largest reduction (1.92 log10 CFU/mL). There was a reduction in the fluorescence emitted after the treatments, with greater statistical difference in the PDT group. CONCLUSION PDT was efficient in the reduction of E. faecalis biofilms. In all groups post treatment there was a significant reduction of biofilms in the fluorescence spectroscopy images with greater reduction in the PDT group.
Collapse
Affiliation(s)
- Marisol Porto Rocha
- Multidisciplinary Institute in Health, Federal University of Bahia - UFBA, Brazil.
| | - Mariana Sousa Santos
- Multidisciplinary Institute in Health, Federal University of Bahia - UFBA, Brazil.
| | | | | | | | - Luciano Pereira Rosa
- Multidisciplinary Institute in Health, Federal University of Bahia - UFBA, Brazil.
| | | | | |
Collapse
|
17
|
Pérez-Pacheco CG, Fernandes NAR, Primo FL, Tedesco AC, Bellile E, Retamal-Valdes B, Feres M, Guimarães-Stabili MR, Rossa C. Local application of curcumin-loaded nanoparticles as an adjunct to scaling and root planing in periodontitis: Randomized, placebo-controlled, double-blind split-mouth clinical trial. Clin Oral Investig 2020; 25:3217-3227. [PMID: 33125518 DOI: 10.1007/s00784-020-03652-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Assess a single local application of curcumin-loaded nanoparticles as an adjunct to scaling and root planing (SRP) in nonsurgical periodontal treatment (NPT). MATERIALS AND METHODS Twenty healthy subjects with periodontitis received SRP+PLGA/PLA nanoparticles loaded with 50 μg of curcumin (N-Curc) or SRP+empty nanoparticles. Probing pocket depth (PPD), clinical attachment level (CAL), and bleeding on probing (BOP) were monitored at baseline, 30, 90, and 180 days. IL-1α, IL-6, TNFα, and IL-10 in the gingival crevicular fluid (GCF) were assessed by ELISA, and counts of 40 bacterial species were determined by DNA hybridization at baseline, 3, 7, and 15 days post-therapy. RESULTS PPD, CAL, and BOP were similarly and significantly improved in both experimental groups. There was no difference in GCF cytokine levels between experimental groups, although IL-6 was decreased at 3 days only in the N-Curc group. NPT reduced counts of red complex bacterial species in both groups. Veillonella Parvula counts increased significantly only in N-Curc group at 7 days, whereas Aggregatibacter actinomycetemcomitans counts increased significantly only in the control group from day 3 to day 15. CONCLUSION We conclude that a single local administration of nanoencapsulated curcumin in periodontally diseased sites had no additive benefits to NPT. CLINICAL RELEVANCE Our results showed that a single local application of curcumin-loaded nanoparticles associated with nonsurgical periodontal therapy did not improve clinical outcomes. Hence, our findings do not support the use of curcumin as an adjunct to nonsurgical periodontal therapy.
Collapse
Affiliation(s)
- Cindy Grace Pérez-Pacheco
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Natalie Ap Rodrigues Fernandes
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Fernando Lucas Primo
- Department of Bioprocess and Biotechnology, Faculty of Pharmaceutical Sciences of Araraquara, Sao Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering- Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Emily Bellile
- Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Belen Retamal-Valdes
- Department of Periodontology and Oral Implantology, Dental Research Division, Universidade de Guarulhos - UNG, Sao Paulo, SP, Brazil
| | - Magda Feres
- Department of Periodontology and Oral Implantology, Dental Research Division, Universidade de Guarulhos - UNG, Sao Paulo, SP, Brazil
| | | | - Carlos Rossa
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Araraquara, SP, Brazil.
| |
Collapse
|
18
|
Laser-Assisted aPDT Protocols in Randomized Controlled Clinical Trials in Dentistry: A Systematic Review. Dent J (Basel) 2020; 8:dj8030107. [PMID: 32971996 PMCID: PMC7558404 DOI: 10.3390/dj8030107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/13/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Antimicrobial photodynamic therapy (aPDT) has been proposed as an effective alternative method for the adjunctive treatment of all classes of oral infections. The multifactorial nature of its mechanism of action correlates with various influencing factors, involving parameters concerning both the photosensitizer and the light delivery system. This study aims to critically evaluate the recorded parameters of aPDT applications that use lasers as the light source in randomized clinical trials in dentistry. METHODS PubMed and Cochrane search engines were used to identify human clinical trials of aPDT therapy in dentistry. After applying specific keywords, additional filters, inclusion and exclusion criteria, the initial number of 7744 articles was reduced to 38. RESULTS Almost one-half of the articles presented incomplete parameters, whilst the others had different protocols, even with the same photosensitizer and for the same field of application. CONCLUSIONS No safe recommendation for aPDT protocols can be extrapolated for clinical use. Further research investigations should be performed with clear protocols, so that standardization for their potential dental applications can be achieved.
Collapse
|
19
|
Cristina Da Silva F, Rosa LP, Santos GPDO, Inada NM, Blanco KC, Araújo TSD, Bagnato VS. Total mouth photodynamic therapy mediated by blue led and curcumin in individuals with AIDS. Expert Rev Anti Infect Ther 2020; 18:689-696. [PMID: 32336177 DOI: 10.1080/14787210.2020.1756774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To test the effectiveness of an efficient therapeutic protocol for the total mouth antimicrobial photodynamic therapy (aPDT) mediated by 450 nm blue LED associated with curcumin in individuals with AIDS. METHODS Patients were selected by exclusion criteria and randomly distributed in groups to test the effectiveness of antimicrobial aPDT with curcumin 0.75 mg/mL associated with the blue LED (67 mW/cm2, 20.1 J/cm2). Before and after the treatments, samples were collected from the saliva being processed in duplicate in selective culture media. The colonies were counted and the results obtained in log10 CFU/mL were statistically tested (T-paired statistical test, 5%). RESULTS The log10 CFU/mL of Streptococcus spp., Staphylococcus spp., and total count of microorganisms showed statistically significant (p = 0.023; p = 0.001 and p = 0.017, respectively) reduction after treatment in patients with aPDT. CONCLUSION aPDT was effective in reducing Streptococcusspp. in addition to reducing Staphylococcusspp., enterobacteria and the total count of microorganisms when considering the numbers of TCD4 and TCD8 lymphocytes. The aPDT in the studied protocol was able to control clinically important intraoral microorganisms for AIDS patients, both those with TCD4 lymphocytes above or below 25% of normal and those with TCD8 lymphocytes above 25% of normal.
Collapse
Affiliation(s)
| | - Luciano Pereira Rosa
- Federal University of Bahia, Multidisciplinary Health Institute , Vitória Da Conquista, BA, Brazil
| | | | | | | | | | | |
Collapse
|
20
|
Maya R, Ladeira LLC, Maya JEP, Mail LMG, Bussadori SK, Paschoal MAB. The Combination of Antimicrobial Photodynamic Therapy and Photobiomodulation Therapy for the Treatment of Palatal Ulcers: A Case Report. J Lasers Med Sci 2020; 11:228-233. [PMID: 32273968 DOI: 10.34172/jlms.2020.38] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: One of the unexpected side effects of the Haas type palatal expander is ulcers progressing to necrotic lesions in the palatal area due to poor hygiene. The use of antibiotic therapy is mandatory. However, long periods of healing/pain and the need for a systemic host response with the aid of metabolization, especially in children, are issues that should be taken into account in the management of this type of injury. Since phototherapy modalities (antimicrobial photodynamic therapy [aPDT] and photobiomodulation therapy [PBMT]) are able to enhance and accelerate the healing process and reduce the bacterial load, this case report aimed to describe the use of the above-mentioned therapies to treat palatal ulcers occurring during orthodontic expansion. Case Report: The patient, a 10-year-old boy, with a chief complaint of bleeding and continuous pain in the region of his expander was verified on a follow-up visit. After a dental examination, the expander was removed and two necrotic lesions which were in contact with the acrylic part of the tooth-tissue expander were found in the palatal region. The proposal was to use one aPDT session with methylene blue followed by 4 sessions of PBMT with a red laser diode. On the 5th day, reorganized tissue was verified, with the absence of bleeding, swelling, and pain. On the 20th day of follow-up, the area showed no signs of inflammation, healthy tissue without any pathological clinical symptoms, and complete wound healing. Conclusion: The concomitant use of PBMT and aPDT therapies may be considered feasible as an adjunct treatment to manage palatal ulcers resulting from the incorrect use of tooth-tissue types of expanders.
Collapse
Affiliation(s)
- Rafael Maya
- Florence Institute of Superior Teaching, São Luís - MA, Brazil
| | | | | | | | - Sandra Kalil Bussadori
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho - UNINOVE, São Paulo - SP, Brazil
| | - Marco Aurélio Benini Paschoal
- Department of Pediatric Dentistry and Orthodontics, Federal University of Minas Gerais - UFMG, Belo Horizonte - MG, Brazil
| |
Collapse
|
21
|
Gao J, Matthews KR. Effects of the photosensitizer curcumin in inactivating foodborne pathogens on chicken skin. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106959] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Kunnumakkara AB, Harsha C, Banik K, Vikkurthi R, Sailo BL, Bordoloi D, Gupta SC, Aggarwal BB. Is curcumin bioavailability a problem in humans: lessons from clinical trials. Expert Opin Drug Metab Toxicol 2019; 15:705-733. [DOI: 10.1080/17425255.2019.1650914] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Rajesh Vikkurthi
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Bethsebie L. Sailo
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Subash C. Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
23
|
Corrêa TQ, Blanco KC, Soares JM, Inada NM, Kurachi C, Golim MDA, Deffune E, Bagnato VS. Photodynamic inactivation for in vitro decontamination of Staphylococcus aureus in whole blood. Photodiagnosis Photodyn Ther 2019; 28:58-64. [PMID: 31412273 DOI: 10.1016/j.pdpdt.2019.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Blood can be the target of microbial cells in the human body. Erythrocytes, platelets, and plasma concentrates in blood bags used in hemotherapy for blood transfusion are contamination targets, which can trigger serious diseases in blood. These infections can cause septicemia that can lead to death if not recognized rapidly and treated adequately. The aim of this study was to evaluate the photodynamic inactivation in the in vitro decontamination of Staphylococcus aureus in whole blood, erythrocytes and platelet-rich plasma. METHODS Photodynamic inactivation using light doses of 10, 15 and 30 J/cm2 at 630 nm and an hematoporphyrin-derivative photosensitizer (Photogem®) solutions at 25 and 50 μg/mL were evaluated. Toxicity of treatment was determined by hemolysis and cell viability assays. RESULTS The S. aureus reduction in phosphate buffered saline (PBS), whole blood, erythrocytes and platelet-rich plasma at 15 J/cm2 and 50 μg/mL were 7.2, 1.0, 1.3 and 0.4 log CFU/mL, respectively. Quantitative and qualitative analyses were performed in whole blood samples, and Photogem® showed a low risk of hemolysis (10.7%) in whole blood. However, 100% of erythrocytes suffered hemolysis in the absence of plasma. The cell viability assay showed 13.9% of apoptosis in erythrocytes, but normal platelet viability. CONCLUSION S. aureus inactivation of whole blood samples using 50 μg/mL Photogem® and 15 J/cm2 resulted in better outcomes, providing promising indications for treatment of bacterial contamination of blood, and in this work, alternative possibilities to apply the technique for blood decontamination are discussed.
Collapse
Affiliation(s)
- Thaila Quatrini Corrêa
- PPG Biotec, Federal University of São Carlos, 13565-905, São Carlos, São Paulo, Brazil; São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970, São Carlos, São Paulo, Brazil.
| | - Kate Cristina Blanco
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970, São Carlos, São Paulo, Brazil
| | - Jennifer Machado Soares
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970, São Carlos, São Paulo, Brazil
| | - Natalia Mayumi Inada
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970, São Carlos, São Paulo, Brazil
| | - Cristina Kurachi
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970, São Carlos, São Paulo, Brazil
| | | | - Elenice Deffune
- Botucatu Medical School, São Paulo State University, 18618-687, Botucatu, São Paulo, Brazil
| | - Vanderlei Salvador Bagnato
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970, São Carlos, São Paulo, Brazil
| |
Collapse
|
24
|
Ivanaga CA, Miessi DMJ, Nuernberg MAA, Claudio MM, Garcia VG, Theodoro LH. Antimicrobial photodynamic therapy (aPDT) with curcumin and LED, as an enhancement to scaling and root planing in the treatment of residual pockets in diabetic patients: A randomized and controlled split-mouth clinical trial. Photodiagnosis Photodyn Ther 2019; 27:388-395. [PMID: 31301434 DOI: 10.1016/j.pdpdt.2019.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Residual pockets represent a risk factor for periodontal disease progression. Diabetes Mellitus (DM) may impair prognosis after cause-related therapy, mainly due to the chronic hyperglycemia that negatively influences tissue repair. This study evaluated the clinical efficacy of antimicrobial photodynamic therapy (aPDT) with curcumin (CUR) solution (100 mg/L) and LED irradiation (465-485 nm), as an adjunctive therapy to scaling and root planing (SRP), in the treatment of residual pockets in type 2 diabetic patients. METHODS Individuals with type 2 DM and chronic periodontitis presenting at least one residual pocket per quadrant were selected (n = 25). In each patient, all residual pockets with probing depth (PD) ≥5 mm and bleeding on probing (BOP) were allocated to receive, according to quadrant: 1) SRP (SRP group); 2) SRP and irrigation with CUR solution (100 mg/L) (CUR group); 3) SRP and LED irradiation (InGaN, 465-485 nm, 0.78 cm², 78 mW, 100 mW/cm², 60 s) (LED group); 4) SRP, irrigation with CUR solution (100 mg/L), one minute of pre-irradiation, and LED irradiation (InGaN, 465-485 nm, 60 s) (aPDT group). Clinical parameters of PD, gingival recession (GR), clinical attachment level (CAL), BOP and visible plaque index (PI) were evaluated at baseline, three and six months post-therapies. Differences between the examination periods in each group were analyzed by Friedman's test for non-parametric data, while parametric data were submitted to analysis of variance (One-way ANOVA), followed by Tukey's test. Intergroup comparisons were performed by Kruskal-Wallis test. RESULTS In an intergroup comparison, the mean values for PD, GR, CAL, BOP and PI were not different at baseline, three and six months (p > 0.05). The intragroup comparison evidenced reduction in PD and BOP in all treatment groups at three and six months (p < 0.05). Significant CAL gain was notable only for the aPDT and LED groups at three months in comparison to baseline data (p < 0.05). CONCLUSION Treatment of residual pockets in patients with type 2 DM through association of SRP with aPDT (CUR solution 100 mg/L and LED irradiation) or LED irradiation may yield short-term (three months) clinical benefits regarding CAL gain.
Collapse
Affiliation(s)
- Camila Ayumi Ivanaga
- Department of Surgery and Integrated Clinic, Division of Periodontology, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Daniela Maria Janjacomo Miessi
- Department of Surgery and Integrated Clinic, Division of Periodontology, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Marta Aparecida Alberton Nuernberg
- Department of Surgery and Integrated Clinic, Division of Periodontology, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Marina Módolo Claudio
- Department of Surgery and Integrated Clinic, Division of Periodontology, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Valdir Gouveia Garcia
- Department of Surgery and Integrated Clinic, Division of Periodontology, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Leticia Helena Theodoro
- Department of Surgery and Integrated Clinic, Division of Periodontology, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil.
| |
Collapse
|
25
|
Pourhajibagher M, Kazemian H, Chiniforush N, Hosseini N, Pourakbari B, Azizollahi A, Rezaei F, Bahador A. Exploring different photosensitizers to optimize elimination of planktonic and biofilm forms of Enterococcus faecalis from infected root canal during antimicrobial photodynamic therapy. Photodiagnosis Photodyn Ther 2018; 24:206-211. [DOI: 10.1016/j.pdpdt.2018.09.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/17/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022]
|
26
|
Cusicanqui Méndez DA, Gutierres E, José Dionisio E, Afonso Rabelo Buzalaf M, Cardoso Oliveira R, Andrade Moreira Machado MA, Cruvinel T. Curcumin-mediated antimicrobial photodynamic therapy reduces the viability and vitality of infected dentin caries microcosms. Photodiagnosis Photodyn Ther 2018; 24:102-108. [PMID: 30240927 DOI: 10.1016/j.pdpdt.2018.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/26/2018] [Accepted: 09/17/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND To our knowledge, there is a lack of evidence on the effect of Antimicrobial Photodynamic Therapy (aPDT) by the application of curcumin against complex biofilms of dental caries lesions. This study aimed to evaluate the viability, vitality, and acid metabolism of infected dentin caries microcosms treated with curcumin-mediated aPDT. METHODS After microcosm biofilms growing anaerobically on bovine dentin disks immersed in McBain medium with 1% sucrose at 37 °C for 5 days, the biofilms were treated by the association of DMSO water solution or 600 μmol L-1 curcumin with 0, 37.5 or 75 J cm-2 blue LED (455 nm). Then, the colony-forming units (CFU) counts of total microorganisms, total streptococci, mutans streptococci, and total lactobacilli were determined by plating. The lactic acid concentration was analyzed by enzymatic spectrophotometry method, while the vitality of intact biofilms was evaluated by confocal laser scanning microscope (CLSM). Statistical analysis was performed by Kruskal Wallis and post-hoc Dunn's tests (P < 0.05). RESULTS Curcumin alone did not affect the viability of microorganisms and the vitality of intact biofilms. However, 75 J cm-2 LED alone decreased the total microorganisms and total lactobacilli counts. The combination of curcumin and LED reduced significantly the counts of all microorganism groups and the vitality of intact biofilms. Differences were not observed between the lactic acid concentrations of distinct groups. CONCLUSIONS Therefore, curcumin-mediated aPDT was effective in reducing the viability and the vitality of infected dentin caries microcosms, without interfering in their acidogenicity.
Collapse
Affiliation(s)
| | - Eliézer Gutierres
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Brazil
| | - Evandro José Dionisio
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Brazil
| | | | | | | | - Thiago Cruvinel
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Brazil.
| |
Collapse
|
27
|
Is antimicrobial photodynamic therapy a useful therapeutic protocol for oral decontamination? A systematic review and meta-analysis. Photodiagnosis Photodyn Ther 2017; 20:55-61. [DOI: 10.1016/j.pdpdt.2017.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/13/2017] [Accepted: 08/17/2017] [Indexed: 12/19/2022]
|