1
|
Anbalagan K, Jena A, Mohanty S, Mallick R, Shashirekha G, Sarangi P. Smear layer removal and antimicrobial efficacy of chitosan as a root canal irrigant: a systematic review of in-vitro studies. Odontology 2024:10.1007/s10266-024-00999-x. [PMID: 39302543 DOI: 10.1007/s10266-024-00999-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
This systematic review was designed to answer the following question: Does chitosan provide better smear layer removal and antimicrobial efficacy than other root canal irrigants? A literature search was done using electronic databases PubMed, Scopus, Web of Science, Cochrane Library, EBSCO host, Grey Literature Report, and Open Grey from inception to June 18, 2024. The reference lists of included articles were also hand-searched. Two reviewers independently assessed the studies' eligibility based on the inclusion and exclusion criteria and performed data extraction. Two reviewers independently evaluated the risk of bias in the selected studies. The search retrieved 2330 studies. After analysis, 36 studies fulfilled the eligibility criteria and were included, with 19 involving smear layer removal, 16 involving antibacterial efficacy, and 1 involving both. The overall risk of bias of the included studies was medium. Chitosan removed the smear layer more effectively than citric acid and acetic acid, similar to MTAD and Qmix, with conflicting results against EDTA. In addition, chitosan demonstrated comparable antibacterial efficacy to chlorhexidine, propolis, and photodynamic therapy but was less effective than sodium hypochlorite. Based on available evidence, it was found that chitosan provided better smear layer removal and antimicrobial efficacy than most root canal irrigants compared in this systematic review. There was substantial heterogeneity in the methodology of included studies. As a result, this review highly recommends further research using standardized methods to assess the effectiveness of chitosan as a root canal irrigant in in-vitro studies to validate its clinical use.
Collapse
Affiliation(s)
- Karthikeyan Anbalagan
- Department of Conservative Dentistry and Endodontics, Sriram Chandra Bhanja Dental College & Hospital, Utkal University, Cuttack, Odisha, India.
| | - Amit Jena
- Department of Conservative Dentistry and Endodontics, Sriram Chandra Bhanja Dental College & Hospital, Utkal University, Cuttack, Odisha, India
| | - Saumyakanta Mohanty
- Department of Conservative Dentistry and Endodontics, Sriram Chandra Bhanja Dental College & Hospital, Utkal University, Cuttack, Odisha, India
| | - Rashmirekha Mallick
- Department of Conservative Dentistry and Endodontics, Sriram Chandra Bhanja Dental College & Hospital, Utkal University, Cuttack, Odisha, India
| | - Govind Shashirekha
- Department of Conservative Dentistry and Endodontics, Institute of Dental Sciences, Siksha 'O' Anusandhan (Deemed to Be) University, Bhubaneswar, Odisha, India
| | - Priyanka Sarangi
- Department of Conservative Dentistry and Endodontics, Sriram Chandra Bhanja Dental College & Hospital, Utkal University, Cuttack, Odisha, India
| |
Collapse
|
2
|
Cakici F, Cakici EB. Antimicrobial efficacy of chitosan versus sodium hypochlorite: A systematic review and meta-analysis. Oral Dis 2024. [PMID: 39119693 DOI: 10.1111/odi.15099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/28/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
AIM This meta-analysis aimed to compare the antibacterial efficacy of chitosan/chitosan nanoparticles (Ch/Ch-NPs) versus sodium hypochlorite/chlorhexidine (NaOCl/CHX). MATERIALS AND METHODS A search was performed in four electronic databases until December 08, 2023. Studies with missing, unclear, and insufficient data sets were excluded. The included studies were assessed by two independent reviewers using the Joanna Briggs Institute Critical Appraisal Checklist for Quasi-Experimental Studies. The meta-analysis of standardized mean difference was performed using a random effects model. Additionally, funnel plots as well as Egger's regression intercept test were used to evaluate potential publication bias. RESULTS A total of 426 samples were used in nine included studies. There was no difference in antibacterial efficacy between Ch/Ch-NPs-NaOCl (SMD: 0.005; 95% CI: -0.844-0.854; p = 0.990). However, the antibacterial efficacy of NaOCl was statistically more effective than Ch/Ch-NPs (SMD: 0.807; 95% CI: 0.015-1.599; p = 0.046) using the bacterial culture method, and Ch/Ch-NPs was statistically higher than NaOCl (SMD: -1.827; 95% CI: -2.720, -0.934; p < 0.000) using confocal laser scanning microscopy. CONCLUSIONS Ch/Ch-NPs may be an alternative to NaOCl against Enterococcus faecalis. The methods used in the in vitro studies evaluating the antibacterial efficacy of irrigation solutions against E. faecalis may have had an impact on the results.
Collapse
Affiliation(s)
- Fatih Cakici
- Department of Endodontics, Faculty of Dentistry, Ordu University, Ordu, Turkey
| | - Elif Bahar Cakici
- Department of Endodontics, Faculty of Dentistry, Ordu University, Ordu, Turkey
| |
Collapse
|
3
|
Zhang P, Cheng M, Levi-Kalisman Y, Raviv U, Xu Y, Han J, Dou H. Macromolecular Nano-Assemblies for Enhancing the Effect of Oxygen-Dependent Photodynamic Therapy Against Hypoxic Tumors. Chemistry 2024; 30:e202401700. [PMID: 38797874 DOI: 10.1002/chem.202401700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
In oxygen (O2)-dependent photodynamic therapy (PDT), photosensitizers absorb light energy, which is then transferred to ambient O2 and subsequently generates cytotoxic singlet oxygen (1O2). Therefore, the availability of O2 and the utilization efficiency of generated 1O2 are two significant factors that influence the effectiveness of PDT. However, tumor microenvironments (TMEs) characterized by hypoxia and limited utilization efficiency of 1O2 resulting from its short half-life and short diffusion distance significantly restrict the applicability of PDT for hypoxic tumors. To address these challenges, numerous macromolecular nano-assemblies (MNAs) have been designed to relieve hypoxia, utilize hypoxia or enhance the utilization efficiency of 1O2. Herein, we provide a comprehensive review on recent advancements achieved with MNAs in enhancing the effectiveness of O2-dependent PDT against hypoxic tumors.
Collapse
Affiliation(s)
- Peipei Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Meng Cheng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| | - Yael Levi-Kalisman
- Institute of Life Sciences and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond Safra Campus, 9190401, Givat Ram, Jerusalem, Israel
| | - Uri Raviv
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond Safra Campus, 9190401, Givat Ram, Jerusalem, Israel
| | - Yichun Xu
- Shanghai Biochip Co. Ltd. and National Engineering Center for Biochip at Shanghai, 151 Libing Road, 201203, Shanghai, China
| | - Junsong Han
- Shanghai Biochip Co. Ltd. and National Engineering Center for Biochip at Shanghai, 151 Libing Road, 201203, Shanghai, China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China
| |
Collapse
|
4
|
Capuano N, Amato A, Dell’Annunziata F, Giordano F, Folliero V, Di Spirito F, More PR, De Filippis A, Martina S, Amato M, Galdiero M, Iandolo A, Franci G. Nanoparticles and Their Antibacterial Application in Endodontics. Antibiotics (Basel) 2023; 12:1690. [PMID: 38136724 PMCID: PMC10740835 DOI: 10.3390/antibiotics12121690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Root canal treatment represents a significant challenge as current cleaning and disinfection methodologies fail to remove persistent bacterial biofilms within the intricate anatomical structures. Recently, the field of nanotechnology has emerged as a promising frontier with numerous biomedical applications. Among the most notable contributions of nanotechnology are nanoparticles, which possess antimicrobial, antifungal, and antiviral properties. Nanoparticles cause the destructuring of bacterial walls, increasing the permeability of the cell membrane, stimulating the generation of reactive oxygen species, and interrupting the replication of deoxyribonucleic acid through the controlled release of ions. Thus, they could revolutionize endodontics, obtaining superior results and guaranteeing a promising short- and long-term prognosis. Therefore, chitosan, silver, graphene, poly(lactic) co-glycolic acid, bioactive glass, mesoporous calcium silicate, hydroxyapatite, zirconia, glucose oxidase magnetic, copper, and zinc oxide nanoparticles in endodontic therapy have been investigated in the present review. The diversified antimicrobial mechanisms of action, the numerous applications, and the high degree of clinical safety could encourage the scientific community to adopt nanoparticles as potential drugs for the treatment of endodontic diseases, overcoming the limitations related to antibiotic resistance and eradication of the biofilm.
Collapse
Affiliation(s)
- Nicoletta Capuano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (N.C.); (F.D.); (F.G.); (V.F.); (F.D.S.); (S.M.); (M.A.)
| | - Alessandra Amato
- Department of Neuroscience, Reproductive Science and Dentistry, University of Naples Federico II, 80138 Naples, Italy;
| | - Federica Dell’Annunziata
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (N.C.); (F.D.); (F.G.); (V.F.); (F.D.S.); (S.M.); (M.A.)
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.R.M.); (A.D.F.); (M.G.)
| | - Francesco Giordano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (N.C.); (F.D.); (F.G.); (V.F.); (F.D.S.); (S.M.); (M.A.)
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (N.C.); (F.D.); (F.G.); (V.F.); (F.D.S.); (S.M.); (M.A.)
| | - Federica Di Spirito
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (N.C.); (F.D.); (F.G.); (V.F.); (F.D.S.); (S.M.); (M.A.)
| | - Pragati Rajendra More
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.R.M.); (A.D.F.); (M.G.)
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.R.M.); (A.D.F.); (M.G.)
| | - Stefano Martina
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (N.C.); (F.D.); (F.G.); (V.F.); (F.D.S.); (S.M.); (M.A.)
| | - Massimo Amato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (N.C.); (F.D.); (F.G.); (V.F.); (F.D.S.); (S.M.); (M.A.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.R.M.); (A.D.F.); (M.G.)
- Complex Operative Unity of Virology and Microbiology, University Hospital of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Alfredo Iandolo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (N.C.); (F.D.); (F.G.); (V.F.); (F.D.S.); (S.M.); (M.A.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (N.C.); (F.D.); (F.G.); (V.F.); (F.D.S.); (S.M.); (M.A.)
| |
Collapse
|
5
|
Róna V, Bencze B, Kelemen K, Végh D, Tóth R, Kói T, Hegyi P, Varga G, Rózsa NK, Géczi Z. Effect of Chitosan on the Number of Streptococcus mutans in Saliva: A Meta-Analysis and Systematic Review. Int J Mol Sci 2023; 24:15270. [PMID: 37894948 PMCID: PMC10607225 DOI: 10.3390/ijms242015270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
We conducted a meta-analysis and systematic review to investigate the efficacy of chitosan-containing chewing gums, and to test their inhibitory effects on Streptococcus mutans. The systematic search was performed in three databases (Cochrane Library, EMBASE, and PubMed) and included English-language randomized-controlled trials to compare the efficacy of chitosan in reducing the number of S. mutans. To assess the certainty of evidence, the GRADE tool was used. Mean differences were calculated with a 95% confidence interval for one outcome: bacterial counts in CFU/mL. The protocol of the study was registered on PROSPERO, registration number CRD42022365006. Articles were downloaded (n = 6758) from EMBASE (n = 2255), PubMed (n = 1516), and Cochrane (n = 2987). After the selection process, a total of four articles were included in the qualitative synthesis and three in the quantitative synthesis. Our results show that chitosan reduced the number of bacteria. The difference in mean quantity was -4.68 × 105. The interval of the random-effects model was [-2.15 × 106; 1.21 × 106] and the prediction interval was [1.03 × 107; 9.40 × 106]. The I2 value was 98% (p = 0.35), which indicates a high degree of heterogeneity. Chitosan has some antibacterial effects when used as a component of chewing gum, but further studies are needed. It can be a promising antimicrobial agent for prevention.
Collapse
Affiliation(s)
- Virág Róna
- Department of Prosthodontics, Semmelweis University, 1085 Budapest, Hungary; (V.R.); (B.B.); (K.K.); (D.V.)
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (R.T.); (T.K.); (P.H.); (G.V.); (N.K.R.)
| | - Bulcsú Bencze
- Department of Prosthodontics, Semmelweis University, 1085 Budapest, Hungary; (V.R.); (B.B.); (K.K.); (D.V.)
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (R.T.); (T.K.); (P.H.); (G.V.); (N.K.R.)
| | - Kata Kelemen
- Department of Prosthodontics, Semmelweis University, 1085 Budapest, Hungary; (V.R.); (B.B.); (K.K.); (D.V.)
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (R.T.); (T.K.); (P.H.); (G.V.); (N.K.R.)
| | - Dániel Végh
- Department of Prosthodontics, Semmelweis University, 1085 Budapest, Hungary; (V.R.); (B.B.); (K.K.); (D.V.)
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (R.T.); (T.K.); (P.H.); (G.V.); (N.K.R.)
| | - Réka Tóth
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (R.T.); (T.K.); (P.H.); (G.V.); (N.K.R.)
| | - Tamás Kói
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (R.T.); (T.K.); (P.H.); (G.V.); (N.K.R.)
- Department of Stochastics, Institute of Mathematics, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (R.T.); (T.K.); (P.H.); (G.V.); (N.K.R.)
- Institute for Translational Medicine, Medical School, University of Pécs, 7622 Pécs, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, 1085 Budapest, Hungary
| | - Gábor Varga
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (R.T.); (T.K.); (P.H.); (G.V.); (N.K.R.)
- Department of Oral Biology, Semmelweis University, 1085 Budapest, Hungary
| | - Noémi Katinka Rózsa
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (R.T.); (T.K.); (P.H.); (G.V.); (N.K.R.)
- Department of Pediatric Dentistry and Orthodontics, Semmelweis University, 1085 Budapest, Hungary
| | - Zoltán Géczi
- Department of Prosthodontics, Semmelweis University, 1085 Budapest, Hungary; (V.R.); (B.B.); (K.K.); (D.V.)
- Centre for Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (R.T.); (T.K.); (P.H.); (G.V.); (N.K.R.)
| |
Collapse
|
6
|
Dilnawaz F, Acharya S, Kanungo A. A clinical perspective of chitosan nanoparticles for infectious disease management. Polym Bull (Berl) 2023:1-25. [PMID: 37362954 PMCID: PMC10073797 DOI: 10.1007/s00289-023-04755-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/08/2023] [Accepted: 03/03/2023] [Indexed: 06/28/2023]
Abstract
Infectious diseases and their effective management are still a challenge in this modern era of medicine. Diseases, such as the SARS-CoV-2, Ebola virus, and Zika virus, still put human civilization at peril. Existing drug banks, which include antivirals, antibacterial, and small-molecule drugs, are the most advocated method for treatment, although effective but they still flounder in many instances. This calls for finding more effective alternatives for tackling the menace of infectious diseases. Nanoformulations are progressively being implemented for clinical translation and are being considered a new paradigm against infectious diseases. Natural polymers like chitosan are preferred to design nanoparticles owing to their biocompatibility, biodegradation, and long shelf-life. The chitosan nanoparticles (CNPs) being highly adaptive delivers contemporary prevention for infectious diseases. Currently, they are being used as antibacterial, drug, and vaccine delivery vehicles, and wound-dressing materials, for infectious disease treatment. Although the recruitment of CNPs in clinical trials associated with infectious diseases is minimal, this may increase shortly due to the sudden emergence of unknown pathogens like SARS-CoV-2, thus turning them into a panacea for the management of microorganisms. This review particularly focuses on the all-around application of CNPs along with their recent clinical applications in infectious disease management.
Collapse
Affiliation(s)
- Fahima Dilnawaz
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha 752050 India
| | - Sarbari Acharya
- Department of Biology, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024 India
| | - Anwesha Kanungo
- Department of Biology, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024 India
| |
Collapse
|
7
|
Shamma BM, Kurdi SA, Rajab A, Arrag EA. Evaluation of antibacterial effects of different intracanal medicaments on Enterococcus faecalis in primary teeth: An in vitro study. Clin Exp Dent Res 2023; 9:341-348. [PMID: 36752174 PMCID: PMC10098284 DOI: 10.1002/cre2.718] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
OBJECTIVES Successful endodontic therapy is based on the reduction of infecting bacteria by cleaning, shaping, and disinfecting of the root canal system, thus the use of intracanal dressing is necessary for optimal success of root canal treatment. This study was designed to evaluate the effect of chitosan and propolis as intracanal medicaments against Enterococcus faecalis compared to calcium hydroxide in primary root canals. MATERIAL AND METHODS Ninety-six extracted primary second molars were collected. Teeth preparation was completed to size 30 K-file. They were randomly divided into four groups; (A): chitosan, (B): propolis, (C): calcium hydroxide, and (D): control group (saline). The tooth specimens were inoculated with E. faecalis. Then, tested materials were applied for all groups in accordance to the groups each tooth belonged to. Following this, the bacterial colonies were counted after 24 h, 72 h, and 1 week of applying dressing materials and incubation. Finally, one-way analysis of variance and Fisher's least significant difference tests were used for statistical comparisons between the groups at a significance level of .05. RESULTS No statistically significant difference was found between groups A, B, and C for both 24 h and a week (p ≥ .05). Yet, a statistical difference between groups A, B, C, and D after 72 h and 1 week were seen (p ≤ .05). CONCLUSIONS Chitosan and propolis medicaments were as effective as calcium hydroxide against E. faecalis in primary root canal treatment and might be considered as an alternative dressing material between treatment sessions.
Collapse
Affiliation(s)
- Bushra Munzer Shamma
- Department of Pediatric Dentistry, Dental CollegeDamascus UniversityDamascusSyria
| | - Saleh Al Kurdi
- Department of Pediatric Dentistry, Dental CollegeDamascus UniversityDamascusSyria
| | - Anas Rajab
- Department of Organic Chemistry, Faculty of PharmacySyrian Private UniversityDaraaSyria
| | - Ettihad Abo Arrag
- Department of Pediatric Dentistry, Dental CollegeDamascus UniversityDamascusSyria
| |
Collapse
|
8
|
Abdulwahed A. Canal pretreatment using cold atmospheric argon plasma, chitosan and Chlorine p6 activated by photodynamic therapy with EDTA as a final irrigant on the pushout bond strength of fiber post. Photodiagnosis Photodyn Ther 2023; 42:103517. [PMID: 36931366 DOI: 10.1016/j.pdpdt.2023.103517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
AIMS To evaluate the effect of contemporary root canal irrigants i.e., Cold atmospheric argon plasma (CAAP), Chlorine p6 (Clp6), and chitosan on the push-out bond strength (PBS) of glass fiber post (GFP) and marten hardness (MH) of root canal dentin compared to NaOCl+EDTA. MATERIALS AND METHODS The anatomic crown of sixty human mandibular premolars was removed by transversal section till cement-enamel junction (CEJ). Root canals were prepared and canals were dried and obturated using gutta-percha points and AH plus sealer. Post space was prepared and specimens were arbitrarily divided into four groups based on the post-space irrigation. (n=15) Group 1: 5.25% NaOCl + 17% EDTA, Group 2: CAAP + 17% EDTA, Group 3: Chitosan + 17% EDTA and Group 4: Clp6 + 17% EDTA. For MH evaluation five samples from each disinfected group were taken and MH was assessed with the help of an ultra microhardness tester. GFP was cemented using self-etch dual cure cement on the remaining 10 samples from each group. Samples were vertically planted in acrylic resin blocks 1mm thick slices were subjected to push-out testing and failure mode analysis using a universal testing machine and Stereomicroscope. ANOVA and Tukey multiple comparison tests were used to compare the means of bond integrity attained (p=0.05). RESULTS The maximum values of PBS and MH were displayed in group 1 (5.25% NaOCl + 17% EDTA) specimens. However, group 3 exhibited the minimum values of bond strength and MH scores. Intergroup comparison analysis revealed that group 2, group 3, and group 4 displayed comparable outcomes of PBS and MH (p > 0.05). The cervical and middle third of group 1 specimens displayed a cohesive type of failure. However, the apical section of group 1 and other tested groups exhibited the adhesive type of failure. CONCLUSION Canal irrigation with 5.25% NaOCl and 17% EDTA appears to be better in terms of improving the bond integrity of fiber posts with no compromise in MH of the dentin as compared to the contemporary irrigant used.
Collapse
Affiliation(s)
- Abdulaziz Abdulwahed
- Department of Conservative Dental Sciences, College of Dentistry, Prince Sattam Bin Abdulaziz University, P.O.Box: 173, Al-Kharj 11942, Saudi Arabia.
| |
Collapse
|
9
|
Piksa M, Lian C, Samuel IC, Pawlik KJ, Samuel IDW, Matczyszyn K. The role of the light source in antimicrobial photodynamic therapy. Chem Soc Rev 2023; 52:1697-1722. [PMID: 36779328 DOI: 10.1039/d0cs01051k] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Antimicrobial photodynamic therapy (APDT) is a promising approach to fight the growing problem of antimicrobial resistance that threatens health care, food security and agriculture. APDT uses light to excite a light-activated chemical (photosensitiser), leading to the generation of reactive oxygen species (ROS). Many APDT studies confirm its efficacy in vitro and in vivo against bacteria, fungi, viruses and parasites. However, the development of the field is focused on exploring potential targets and developing new photosensitisers. The role of light, a crucial element for ROS production, has been neglected. What are the main parameters essential for effective photosensitiser activation? Does an optimal light radiant exposure exist? And finally, which light source is best? Many reports have described the promising antibacterial effects of APDT in vitro, however, its application in vivo, especially in clinical settings remains very limited. The restricted availability may partially be due to a lack of standard conditions or protocols, arising from the diversity of selected photosensitising agents (PS), variable testing conditions including light sources used for PS activation and methods of measuring anti-bacterial activity and their effectiveness in treating bacterial infections. We thus sought to systematically review and examine the evidence from existing studies on APDT associated with the light source used. We show how the reduction of pathogens depends on the light source applied, radiant exposure and irradiance of light used, and type of pathogen, and so critically appraise the current state of development of APDT and areas to be addressed in future studies. We anticipate that further standardisation of the experimental conditions will help the field advance, and suggest key optical and biological parameters that should be reported in all APDT studies. More in vivo and clinical studies are needed and are expected to be facilitated by advances in light sources, leading to APDT becoming a sustainable, alternative therapeutic option for bacterial and other microbial infections in the future.
Collapse
Affiliation(s)
- Marta Piksa
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114, Wroclaw, Poland
| | - Cheng Lian
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, UK.
| | - Imogen C Samuel
- School of Medicine, University of Manchester, Manchester, M13 9PL, UK
| | - Krzysztof J Pawlik
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, Weigla 12, 53-114, Wroclaw, Poland
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, Fife, KY16 9SS, UK.
| | - Katarzyna Matczyszyn
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
10
|
Giordano-Kelhoffer B, Rodríguez-Gonzalez R, Perpiñan-Blasco M, Buitrago JO, Bosch BM, Perez RA. A Novel Chitosan Composite Biomaterial with Drug Eluting Capacity for Maxillary Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16020685. [PMID: 36676422 PMCID: PMC9866710 DOI: 10.3390/ma16020685] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 06/09/2023]
Abstract
Bone grafting is one of the most commonly performed treatments for bone healing or repair. Autografts, grafts from the same patient, are the most frequently used bone grafts because they can provide osteogenic cells and growth factors at the site of the implant with reduced risk of rejection or transfer of diseases. Nevertheless, this type of graft presents some drawbacks, such as pain, risk of infection, and limited availability. For this reason, synthetic bone grafts are among the main proposals in regenerative medicine. This branch of medicine is based on the development of new biomaterials with the goal of increasing bone healing capacity and, more specifically in dentistry, they aim at simultaneously preventing or eliminating bacterial infections. The use of fibers made of chitosan (CS) and hydroxyapatite (HA) loaded with an antibiotic (doxycycline, DX) and fabricated with the help of an injection pump is presented as a new strategy for improving maxillary bone regeneration. In vitro characterization of the DX controlled released from the fibers was quantified after mixing different amounts of HA (10-75%). The 1% CS concentration was stable, easy to manipulate and exhibited adequate cuttability and pH parameters. The hydroxyapatite concentration dictated the combined fast and controlled release profile of CSHA50DX. Our findings demonstrate that the CS-HA-DX complex may be a promising candidate graft material for enhancing bone tissue regeneration in dental clinical practice.
Collapse
Affiliation(s)
- Barbara Giordano-Kelhoffer
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
- Faculty of Dentistry, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
| | - Raquel Rodríguez-Gonzalez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
- Faculty of Medicine and Health Sciences, Basic Science Department Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
| | - Marina Perpiñan-Blasco
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
- Faculty of Medicine and Health Sciences, Basic Science Department Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
| | - Jenifer O. Buitrago
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
- Faculty of Medicine and Health Sciences, Basic Science Department Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
| | - Begoña M. Bosch
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
- Faculty of Medicine and Health Sciences, Basic Science Department Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
| | - Roman A. Perez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
- Faculty of Medicine and Health Sciences, Basic Science Department Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
| |
Collapse
|
11
|
Wong J, Manoil D, Näsman P, Belibasakis GN, Neelakantan P. Microbiological Aspects of Root Canal Infections and Disinfection Strategies: An Update Review on the Current Knowledge and Challenges. FRONTIERS IN ORAL HEALTH 2022; 2:672887. [PMID: 35048015 PMCID: PMC8757850 DOI: 10.3389/froh.2021.672887] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
The oral cavity is the habitat of several hundreds of microbial taxa that have evolved to coexist in multispecies communities in this unique ecosystem. By contrast, the internal tissue of the tooth, i.e., the dental pulp, is a physiologically sterile connective tissue in which any microbial invasion is a pathological sign. It results in inflammation of the pulp tissue and eventually to pulp death and spread of inflammation/infection to the periradicular tissues. Over the past few decades, substantial emphasis has been placed on understanding the pathobiology of root canal infections, including the microbial composition, biofilm biology and host responses to infections. To develop clinically effective treatment regimens as well as preventive therapies, such extensive understanding is necessary. Rather surprisingly, despite the definitive realization that root canal infections are biofilm mediated, clinical strategies have been focused more on preparing canals to radiographically impeccable levels, while much is left desired on the debridement of these complex root canal systems. Hence, solely focusing on "canal shaping" largely misses the point of endodontic treatment as the current understanding of the microbial aetiopathogenesis of apical periodontitis calls for the emphasis to be placed on "canal cleaning" and chemo-mechanical disinfection. In this review, we dissect in great detail, the current knowledge on the root canal microbiome, both in terms of its composition and functional characteristics. We also describe the challenges in root canal disinfection and the novel strategies that attempt to address this challenge. Finally, we provide some critical pointers for areas of future research, which will serve as an important area for consideration in Frontiers in Oral Health.
Collapse
Affiliation(s)
- Jasmine Wong
- Discipline of Endodontology, Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Daniel Manoil
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - Peggy Näsman
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - Prasanna Neelakantan
- Discipline of Endodontology, Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Balhaddad AA, Xia Y, Lan Y, Mokeem L, Ibrahim MS, Weir MD, Xu HHK, Melo MAS. Magnetic-Responsive Photosensitizer Nanoplatform for Optimized Inactivation of Dental Caries-Related Biofilms: Technology Development and Proof of Principle. ACS NANO 2021; 15:19888-19904. [PMID: 34878250 DOI: 10.1021/acsnano.1c07397] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Conventional antibiotic therapies for biofilm-trigged oral diseases are becoming less efficient due to the emergence of antibiotic-resistant bacterial strains. Antimicrobial photodynamic therapy (aPDT) is hampered by restricted access to bacterial communities embedded within the dense extracellular matrix of mature biofilms. Herein, a versatile photosensitizer nanoplatform (named MagTBO) was designed to overcome this obstacle by integrating toluidine-blue ortho (TBO) photosensitizer and superparamagnetic iron oxide nanoparticles (SPIONs) via a microemulsion method. In this study, we reported the preparation, characterization, and application of MagTBO for aPDT. In the presence of an external magnetic field, the MagTBO microemulsion can be driven and penetrate deep sites inside the biofilms, resulting in an improved photodynamic disinfection effect compared to using TBO alone. Besides, the obtained MagTBO microemulsions revealed excellent water solubility and stability over time, enhanced the aPDT performance against S. mutans and saliva-derived multispecies biofilms, and improved the TBO's biocompatibility. Such results demonstrate a proof-of-principle for using microemulsion as a delivery vehicle and magnetic field as a navigation approach to intensify the antibacterial action of currently available photosensitizers, leading to efficient modulation of pathogenic oral biofilms.
Collapse
Affiliation(s)
- Abdulrahman A Balhaddad
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Department of Restorative Dental Sciences, Imam Abdulrahman Bin Faisal University, College of Dentistry, Dammam 31441, Saudi Arabia
| | - Yang Xia
- Biomaterials & Tissue Engineering Division, Dept. of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yucheng Lan
- Department of Physics and Engineering Physics, Morgan State University, 1700 East Cold Spring Lane, Baltimore, Maryland 21251, United States
| | - Lamia Mokeem
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Maria S Ibrahim
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Department of Preventive Dental Sciences, Imam Abdulrahman Bin Faisal University, College of Dentistry, Dammam 31441, Saudi Arabia
| | - Michael D Weir
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Biomaterials & Tissue Engineering Division, Dept. of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Hockin H K Xu
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Biomaterials & Tissue Engineering Division, Dept. of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Mary Anne S Melo
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Division of Operative Dentistry, Dept. of General Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| |
Collapse
|
13
|
Camacho-Alonso F, Salinas J, Sánchez-Siles M, Pato-Mourelo J, Cotrina-Veizaga BD, Ortega N. Synergistic antimicrobial effect of photodynamic therapy and chitosan on the titanium-adherent biofilms of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa: An in vitro study. J Periodontol 2021; 93:e104-e115. [PMID: 34541685 DOI: 10.1002/jper.21-0306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND To date, no studies on the combined use of photodynamic therapy (PDT) and chitosan against peri-implantitis have been published. The aim of this study was to evaluate the possible synergistic antimicrobial effect of PDT and chitosan on the titanium-adherent biofilms of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. METHODS A total of 60 titanium discs were included in this study. The discs were randomized into three bacterial contaminations (n = 20 discs per bacterium). After being cultured (incubated for 48 hours) they were randomized again into four different disinfection modalities (n = 5 discs per treatment): control (without treatment), PDT, chitosan 3 mg/mL, and PDT + chitosan 3 mg/mL. After the treatments, the colony forming units (CFU) were measured to determine antimicrobial effects, and field emission scanning electron microscopy (FESEM) was used to study cell morphology and titanium adherence. RESULTS For all the evaluated bacteria and all the variables studied the order from highest to lowest antimicrobial effectiveness was: PDT + chitosan 3 mg/mL > chitosan 3 mg/mL > PDT > control. Although, all disinfection methods were significantly effective when compared to control, the combined treatment of PDT + chitosan 3 mg/mL had the greatest antimicrobial effect against the three studied bacteria. CONCLUSIONS The combination of PDT and chitosan has a synergistic antimicrobial effect against the bacteria S. aureus, E. coli, and P. aeruginosa, all closely related to peri-implantitis. However, further in vivo studies are needed because this study provides data based on an in vitro scenario that might not be extrapolated to patients with peri-implantitis.
Collapse
Affiliation(s)
| | - Jesús Salinas
- Department of Animal Health, University of Murcia, Murcia, Spain
| | | | | | | | - Nieves Ortega
- Department of Animal Health, University of Murcia, Murcia, Spain
| |
Collapse
|
14
|
Nanoparticles in Dentistry: A Comprehensive Review. Pharmaceuticals (Basel) 2021; 14:ph14080752. [PMID: 34451849 PMCID: PMC8398506 DOI: 10.3390/ph14080752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, nanoparticles (NPs) have been receiving more attention in dentistry. Their advantageous physicochemical and biological properties can improve the diagnosis, prevention, and treatment of numerous oral diseases, including dental caries, periodontal diseases, pulp and periapical lesions, oral candidiasis, denture stomatitis, hyposalivation, and head, neck, and oral cancer. NPs can also enhance the mechanical and microbiological properties of dental prostheses and implants and can be used to improve drug delivery through the oral mucosa. This paper reviewed studies from 2015 to 2020 and summarized the potential applications of different types of NPs in the many fields of dentistry.
Collapse
|
15
|
Effects of Different Photoactive Dyes on the Adhesion of Epoxy Resin–Based Root Canal Sealer. ANADOLU KLINIĞI TIP BILIMLERI DERGISI 2021. [DOI: 10.21673/anadoluklin.815730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
16
|
Lin CN, Ding SJ, Chen CC. Synergistic Photoantimicrobial Chemotherapy of Methylene Blue-Encapsulated Chitosan on Biofilm-Contaminated Titanium. Pharmaceuticals (Basel) 2021; 14:346. [PMID: 33918682 PMCID: PMC8069275 DOI: 10.3390/ph14040346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/23/2022] Open
Abstract
Intensive efforts have been made to eliminate or substantial reduce bacterial adhesion and biofilm formation on titanium implants. However, in the management of peri-implantitis, the methylene blue (MB) photosensitizer commonly used in photoantimicrobial chemotherapy (PACT) is limited to a low retention on the implant surface. The purpose of this study was to assess enhancive effect of water-soluble quaternary ammonium chitosan (QTS) on MB retention on biofilm-infected SLA (sandblasted, large grid, and acid-etched) Ti alloy surfaces in vitro. The effectiveness of QTS + MB with different concentrations in eliminating Gram-negative A. actinomycetemcomitans or Gram-positive S. mutans bacteria was compared before and after PACT. Bacterial counting and lipopolysaccharide (LPS) detection were examined, and then the growth of human osteoblast-like MG63 cells was evaluated. The results indicated that the synergistic QTS + MB with retention ability significantly decreased the biofilm accumulation on the Ti alloy surface, which was better than the same concentration of 1 wt% methyl cellulose (MC). More importantly, the osteogenic activity of MG63 cells on the disinfected sample treated by QTS + MB-PACT modality was comparable to that of sterile Ti control, significantly higher than that by MC + MB-PACT modality. It is concluded that, in terms of improved retention efficacy, effective bacteria eradication, and enhanced cell growth, synergistically, PACT using the 100 μg/mL MB-encapsulated 1% QTS was a promising modality for the treatment of peri-implantitis.
Collapse
Affiliation(s)
- Chiu-Nan Lin
- Institute of Oral Science, Chung Shan Medical University, Taichung City 402, Taiwan;
| | - Shinn-Jyh Ding
- Institute of Oral Science, Chung Shan Medical University, Taichung City 402, Taiwan;
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| | - Chun-Cheng Chen
- Department of Stomatology, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung City 402, Taiwan
| |
Collapse
|
17
|
Wong J, Zou T, Lee AHC, Zhang C. The Potential Translational Applications of Nanoparticles in Endodontics. Int J Nanomedicine 2021; 16:2087-2106. [PMID: 33727815 PMCID: PMC7955783 DOI: 10.2147/ijn.s293518] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology has substantially progressed in the past decades, giving rise to numerous possible applications in different biomedical fields. In particular, the use of nanoparticles in endodontics has generated significant interest due to their unique characteristics. As a result of their nanoscale dimensions, nanoparticles possess several properties that may enhance the treatment of endodontic infections, such as heightened antibacterial activity, increased reactivity and the capacity to be functionalized with other reactive compounds. Effective disinfection and sealing of the root canal system are the hallmarks for successful endodontic treatment. However, the presence of bacterial biofilms and resistance to endodontic disinfectants pose a significant challenge to this goal. This has encouraged the investigation of antibacterial nanoparticle-based irrigants and intracanal medicaments, which may improve the elimination of endodontic infections. In addition, photosynthesizer-functionalized nanoparticles could also serve as a worthy adjunct to root canal disinfection strategies. Furthermore, despite the myriad of commercially available options for endodontic obturation, the "ideal" material has yet to be conceived. This has led to the development of various experimental nanoparticle-incorporated obturation materials and sealers that exhibit a range of favourable physicochemical properties including enhanced antibacterial efficacy and bioactivity. Nanoparticle applications also show promise in the field of regenerative endodontics, such as supporting the release of bioactive molecules and enhancing the biophysical properties of scaffolds. Given the constantly growing body of research in this field, this article aims to present an overview of the current evidence pertaining to the potential translational applications of nanoparticles in endodontics.
Collapse
Affiliation(s)
- Jasmine Wong
- Restorative Dental Sciences (Endodontics), Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Ting Zou
- Restorative Dental Sciences (Endodontics), Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Angeline Hui Cheng Lee
- Restorative Dental Sciences (Endodontics), Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Chengfei Zhang
- Restorative Dental Sciences (Endodontics), Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
18
|
Meng Q, Sun Y, Cong H, Hu H, Xu FJ. An overview of chitosan and its application in infectious diseases. Drug Deliv Transl Res 2021; 11:1340-1351. [PMID: 33496926 PMCID: PMC7837079 DOI: 10.1007/s13346-021-00913-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 12/19/2022]
Abstract
Infectious diseases, such as the coronavirus disease-19, SARS virus, Ebola virus, and AIDS, threaten the health of human beings globally. New viruses, drug-resistant bacteria, and fungi continue to challenge the human efficacious drug bank. Researchers have developed a variety of new antiviral and antibacterial drugs in response to the infectious disease crisis. Meanwhile, the development of functional materials has also improved therapeutic outcomes. As a natural material, chitosan possesses good biocompatibility, bioactivity, and biosafety. It has been proven that the cooperation between chitosan and traditional medicine greatly improves the ability of anti-infection. This review summarized the application and design considerations of chitosan-composed systems for the treatment of infectious diseases, looking forward to providing the idea of infectious disease therapy.
Collapse
Affiliation(s)
- Qingye Meng
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Ying Sun
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hao Hu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Fu-Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China.
| |
Collapse
|
19
|
Mirfasihi A, Malek Afzali B, Ebrahimi Zadeh H, Sanjari K, Mir M. Effect of a Combination of Photodynamic Therapy and Chitosan on Streptococcus mutans (An In Vitro Study). J Lasers Med Sci 2021; 11:405-410. [PMID: 33425290 DOI: 10.34172/jlms.2020.64] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Introduction: This study aimed to assess the effect of photodynamic therapy (PDT) and chitosan separately and in combination on Streptococcus mutans. Methods: This in vitro experimental study evaluated 216 microbial samples in 6 groups. First, 5 µL of 0.5 McFarland standard suspension of S. mutans was added to each well of an ELISA microplate; 100 µL of Mueller Hinton broth was also added to each well; 180 wells contained S. mutans suspension while 36 wells were devoid of bacteria. Group 1 served as the negative control and had no bacteria. Group 2 served as the positive control and S. mutans in the positive control wells did not undergo any intervention. In groups 3 and 4, PDT with a 50 mW low-level laser was performed for 30 and 40 seconds respectively. In group 5, 3 mg/mL of chitosan (100 µL) was used. In group 6, 3 mg/mL (100 µL) of chitosan was used in combination with PDT (50 mW laser for 30 seconds). The laser was irradiated under aseptic conditions at a 660 nm wavelength with 50 mW power. Data were analyzed using one-way ANOVA and Tukey's test. Results: PDT combined with chitosan showed maximum bactericidal effect followed by PDT for 40 seconds and chitosan groups (P < 0.05). PDT for 30 seconds showed a minimum bactericidal effect (P < 0.05). All pairwise comparisons revealed significant differences (P < 0.001). Conclusion: Chitosan and PDT alone can be used to decrease the S. mutans count. However, their combined use has a greater bactericidal effect on S. mutans .
Collapse
Affiliation(s)
- Armin Mirfasihi
- Assistant Professor, Periodontology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Beheshteh Malek Afzali
- Associate Professor, Department of Pediatric Dentistry, Dental Research Center, Research Institute of Dental Science, Department of Pediatric Dentistry, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hosna Ebrahimi Zadeh
- Dental Research Center, Restorative Department, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khashayar Sanjari
- Department of Pediatric Dentistry, School of Dentistry, Arak University of Medical Sciences, Arak, Iran
| | - Maziar Mir
- Department of Conservative Dentistry, RWTH Aachen Hospital & Deutsche Gesellschaft fur laserzahnheilkunde (DGL), Aachen Klinkum, Pauwelsstr.30, 52074 Aachen, Germany
| |
Collapse
|
20
|
Rocha MP, Santos MS, Rodrigues PLF, Araújo TSD, de Oliveira JM, Rosa LP, Bagnato VS, da Silva FC. Photodynamic therapry with curcumin in the reduction of enterococcus faecalis biofilm in bone cavity: rMicrobiological and spectral fluorescense analysis. Photodiagnosis Photodyn Ther 2020; 33:102084. [PMID: 33176181 DOI: 10.1016/j.pdpdt.2020.102084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Antimicrobial photodynamic therapy (PDT) has emerged as a therapeutic strategy to conventional procedures using antibiotics. OBJECTIVE To evaluate the antimicrobial effectiveness of PDT using blue light emitting diode (LED) associated with curcumin on biofilms of Enterococcus faecalis in bovine bone cavities and also to analyze the presence of these biofilms through spectral fluorescence. MATERIALS AND METHODS Standardized suspensions of E. faecalis (ATCC 29212) were incubated in artificial bone cavities for 14 days at 36 °C ± 1 °C for biofilm formation. The test specimens were distributed among the four experimental groups (n = 10): L-C- (control), L + C- (LED for 5 min), L-C+ (curcumin for 5 min) and L + C+ (PDT). Aliquots were collected from the bone cavities after treatments and seeded on BHI agar for 24 h at 36 °C ± 1 °C for CFU count. Before and after each treatment the specimens were submitted to spectral fluorescence, whose images were compared in the Image J program. The log10 CFU/mL results were submitted to the Kruskal-Wallis test (5%) and the biofilm fluorescence spectroscopy results were submitted to the Wilcoxon test (5%). RESULTS All treatments presented statistical difference when compared to the control, and PDT was responsible for the largest reduction (1.92 log10 CFU/mL). There was a reduction in the fluorescence emitted after the treatments, with greater statistical difference in the PDT group. CONCLUSION PDT was efficient in the reduction of E. faecalis biofilms. In all groups post treatment there was a significant reduction of biofilms in the fluorescence spectroscopy images with greater reduction in the PDT group.
Collapse
Affiliation(s)
- Marisol Porto Rocha
- Multidisciplinary Institute in Health, Federal University of Bahia - UFBA, Brazil.
| | - Mariana Sousa Santos
- Multidisciplinary Institute in Health, Federal University of Bahia - UFBA, Brazil.
| | | | | | | | - Luciano Pereira Rosa
- Multidisciplinary Institute in Health, Federal University of Bahia - UFBA, Brazil.
| | | | | |
Collapse
|
21
|
Sin JH, Walsh LJ, Figueredo CM, George R. Evaluation of effectiveness of photosensitizers used in laser endodontics disinfection: A systematic review. TRANSLATIONAL BIOPHOTONICS 2020. [DOI: 10.1002/tbio.202000007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
| | - Laurence J. Walsh
- School of Dentistry The University of Queensland Queensland Australia
| | | | - Roy George
- School of Dentistry and Oral Health Griffith University Queensland Australia
| |
Collapse
|
22
|
Feng Z, Lin S, McDonagh A, Yu C. Natural Hydrogels Applied in Photodynamic Therapy. Curr Med Chem 2020; 27:2681-2703. [PMID: 31622196 DOI: 10.2174/0929867326666191016112828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/27/2019] [Accepted: 10/04/2019] [Indexed: 01/11/2023]
Abstract
Natural hydrogels are three-dimensional (3D) water-retaining materials with a skeleton consisting of natural polymers, their derivatives or mixtures. Natural hydrogels can provide sustained or controlled drug release and possess some unique properties of natural polymers, such as biodegradability, biocompatibility and some additional functions, such as CD44 targeting of hyaluronic acid. Natural hydrogels can be used with photosensitizers (PSs) in photodynamic therapy (PDT) to increase the range of applications. In the current review, the pertinent design variables are discussed along with a description of the categories of natural hydrogels available for PDT.
Collapse
Affiliation(s)
- Zhipan Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shiying Lin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | | | - Chen Yu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
23
|
Balhaddad AA, Garcia IM, Ibrahim MS, Rolim JPML, Gomes EAB, Martinho FC, Collares FM, Xu H, Melo MAS. Prospects on Nano-Based Platforms for Antimicrobial Photodynamic Therapy Against Oral Biofilms. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 38:481-496. [PMID: 32716697 DOI: 10.1089/photob.2020.4815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective: This review clusters the growing field of nano-based platforms for antimicrobial photodynamic therapy (aPDT) targeting pathogenic oral biofilms and increase interactions between dental researchers and investigators in many related fields. Background data: Clinically relevant disinfection of dental tissues is difficult to achieve with aPDT alone. It has been found that limited penetrability into soft and hard dental tissues, diffusion of the photosensitizers, and the small light absorption coefficient are contributing factors. As a result, the effectiveness of aPDT is reduced in vivo applications. To overcome limitations, nanotechnology has been implied to enhance the penetration and delivery of photosensitizers to target microorganisms and increase the bactericidal effect. Materials and methods: The current literature was screened for the various platforms composed of photosensitizers functionalized with nanoparticles and their enhanced performance against oral pathogenic biofilms. Results: The evidence-based findings from the up-to-date literature were promising to control the onset and the progression of dental biofilm-triggered diseases such as dental caries, endodontic infections, and periodontal diseases. The antimicrobial effects of aPDT with nano-based platforms on oral bacterial disinfection will help to advance the design of combination strategies that increase the rate of complete and durable clinical response in oral infections. Conclusions: There is enthusiasm about the potential of nano-based platforms to treat currently out of the reach pathogenic oral biofilms. Much of the potential exists because these nano-based platforms use unique mechanisms of action that allow us to overcome the challenging of intra-oral and hard-tissue disinfection.
Collapse
Affiliation(s)
- Abdulrahman A Balhaddad
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Isadora M Garcia
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Salem Ibrahim
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Juliana P M L Rolim
- Department of Dentistry, Christus University Center (Unichristus), Fortaleza, Brazil
| | - Edison A B Gomes
- Department of Dentistry, Christus University Center (Unichristus), Fortaleza, Brazil
| | - Frederico C Martinho
- Endodontic Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Fabricio M Collares
- Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Hockin Xu
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Mary Anne S Melo
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Li R, Yuan L, Jia W, Qin M, Wang Y. Effects of Rose Bengal- and Methylene Blue-Mediated Potassium Iodide-Potentiated Photodynamic Therapy on Enterococcus faecalis: A Comparative Study. Lasers Surg Med 2020; 53:400-410. [PMID: 32662529 DOI: 10.1002/lsm.23299] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVES This study was performed to compare the use of methylene blue (MB) and rose bengal (RB) in antimicrobial photodynamic therapy (PDT) targeting Enterococcus faecalis (E. faecalis) bacteria in planktonic and biofilm forms with potassium iodide (KI) potentiation. STUDY DESIGN/MATERIALS AND METHODS E. faecalis bacteria in planktonic form were exposed to antimicrobial PDT protocols activating MB and RB, with or without KI potentiation, following laser irradiation with different exposure times, 60 mW/cm2 laser power, and different photosensitizer agent (PS)/potentiator concentrations to observe relationships among the variables. Two continuous-wave diode lasers were used for irradiation (red light: λ = 660 nm and green light: λ = 565 nm). The pre-irradiation time was 10 minutes. The vitality of E. faecalis biofilm was assessed by confocal laser scanning microscopy, and the morphology was determined by scanning electron microscopy. The effects on the proliferation of stem cells from the apical papilla (SCAPs) were analyzed by cell counting kit-8 assay. The staining effect of antimicrobial PDT on dentin slices was investigated. Statistical analysis using a one-way analysis of variance was done. RESULTS KI-potentiated RB and MB antimicrobial PDT both effectively eradicated E. faecalis bacteria in planktonic and biofilm forms. The minimum bactericidal concentrations of PSs (±100 mM KI) were obtained through PDT on planktonic E. faecalis, and the optimal light parameters were 60 mW/cm2 , 6 J/cm2 for 100 seconds. KI-potentiated PDT effectively strengthened the ability to inhibit E. faecalis biofilm with 86.50 ± 5.78% for MB (P = 0.0015 < 0.01) and 91.50 ± 1.75% for RB (P = 0.0418 < 0.05) of bactericidal rate, with less toxicity for SCAPs (P < 0.001) and less staining. KI could reduce the staining induced by antimicrobial PDT on dentin slices. CONCLUSION A combination of KI and antimicrobial PDT may be a useful alternative to conventional disinfection methods in endodontic treatment. MB and RB antimicrobial PDT at much lower concentrations with KI could hopefully achieve disinfection effects comparable with those of 1.5% NaClO while causing few adverse effects on SCAPs. KI helps to avoid staining problems associated with high concentrations of photosensitizer agents. Lasers Surg. Med. © 2020 Wiley Periodicals, LLC.
Collapse
Affiliation(s)
- Ruijie Li
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Lintian Yuan
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.,Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Weiqian Jia
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Man Qin
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuguang Wang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.,Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
25
|
Wang N, Ji Y, Zhu Y, Wu X, Mei L, Zhang H, Deng J, Wang S. Antibacterial effect of chitosan and its derivative on Enterococcus faecalis associated with endodontic infection. Exp Ther Med 2020; 19:3805-3813. [PMID: 32346445 PMCID: PMC7185077 DOI: 10.3892/etm.2020.8656] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
Chitosan and its derivatives have been increasingly used for bacteriostasis. To date, the effect of chitosan and N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) on Enterococcus faecalis (E. faecalis) associated with endodontic infection has remained to be determined. Chitosan and HTCC were serially diluted with double-distilled water (DDW) or PBS at concentrations of 20-2,500 µg/ml. Various strains of E. faecalis (American Type Tissue Collection no. 29212, as well as isolated strains P25RC and P52Sa) in plankton were adjusted to an optical density at 600 nm of 0.10 and treated with chitosan or HTCC. A colony-forming unit assay was used to determine the concentration of residual bacteria after treatment. Furthermore, E. faecalis biofilms were cultured on coverslips and treated with chitosan or HTCC. The coverslips were rinsed, stained using Live/dead® BacLight™ bacterial viability kit and observed under an inverted fluorescence microscope. In addition, biofilms on dentine blocks were prepared and observed under a scanning electron microscope. MC3T3-E1 pre-osteoblasts were seeded on 96-well plates and treated with chitosan or HTCC at various concentrations. The cytotoxicity of chitosan and HTCC on MC3T3-E1 pre-osteoblasts was detected using a Cell Counting Kit-8 assay after 24, 48 and 72 h of treatment. The results revealed that the final minimum bactericidal concentrations (MBC) of chitosan and HTCC dissolved in DDW were 70 and 140 µg/ml, respectively. Chitosan and HTCC in DDW exerted a significantly greater antibacterial effect as compared with that in PBS (P<0.05). At the MBC, chitosan and HTCC in DDW, but particularly chitosan, had a significant antibacterial effect on E. faecalis biofilm. Chitosan exhibited no cytotoxicity to MC3T3-E1 pre-osteoblasts at a concentration of <625 µg/ml, while HTCC inhibited the proliferation of the cells in the concentration range of 39-10,000 µg/ml. In conclusion, chitosan and HTCC exhibited prominent antibacterial properties on E. faecalis in the planktonic state and as a biofilm via charge interaction, indicating their potential for application in root canal disinfection and fillings.
Collapse
Affiliation(s)
- Nan Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China.,Department of Operative Dentistry and Endodontics, School of Stomatology, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yanjing Ji
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China.,Department of Operative Dentistry and Endodontics, School of Stomatology, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yanli Zhu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China.,Department of Operative Dentistry and Endodontics, School of Stomatology, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xinyi Wu
- Department of Operative Dentistry and Endodontics, School of Stomatology, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Li Mei
- Department of Operative Dentistry and Endodontics, School of Stomatology, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Hongzhe Zhang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China.,Department of Operative Dentistry and Endodontics, School of Stomatology, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Jing Deng
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China.,Department of Operative Dentistry and Endodontics, School of Stomatology, Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Shuai Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China.,Department of Operative Dentistry and Endodontics, School of Stomatology, Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
26
|
Maldonado-Carmona N, Ouk TS, Calvete MJF, Pereira MM, Villandier N, Leroy-Lhez S. Conjugating biomaterials with photosensitizers: advances and perspectives for photodynamic antimicrobial chemotherapy. Photochem Photobiol Sci 2020; 19:445-461. [PMID: 32104827 DOI: 10.1039/c9pp00398c] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antimicrobial resistance is threatening to overshadow last century's medical advances. Previously eradicated infectious diseases are now resurgent as multi-drug resistant strains, leading to expensive, toxic and, in some cases, ineffective antimicrobial treatments. Given this outlook, researchers are willing to investigate novel antimicrobial treatments that may be able to deal with antimicrobial resistance, namely photodynamic therapy (PDT). PDT relies on the generation of toxic reactive oxygen species (ROS) in the presence of light and a photosensitizer (PS) molecule. PDT has been known for almost a century, but most of its applications have been directed towards the treatment of cancer and topical diseases. Unlike classical antimicrobial chemotherapy treatments, photodynamic antimicrobial chemotherapy (PACT) has a non-target specific mechanism of action, based on the generation of ROS, working against cellular membranes, walls, proteins, lipids and nucleic acids. This non-specific mechanism diminishes the chances of bacteria developing resistance. However, PSs usually are large molecules, prone to aggregation, diminishing their efficiency. This review will report the development of materials obtained from natural sources, as delivery systems for photosensitizing molecules against microorganisms. The present work emphasizes on the biological results rather than on the synthesis routes to prepare the conjugates. Also, it discusses the current state of the art, providing our perspective on the field.
Collapse
|
27
|
Bordea IR, Hanna R, Chiniforush N, Grădinaru E, Câmpian RS, Sîrbu A, Amaroli A, Benedicenti S. Evaluation of the outcome of various laser therapy applications in root canal disinfection: A systematic review. Photodiagnosis Photodyn Ther 2019; 29:101611. [PMID: 31809911 DOI: 10.1016/j.pdpdt.2019.101611] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/24/2019] [Accepted: 10/11/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Any successful endodontic therapy requires elimination of the endodontic biofilms through meticulous root canal disinfection methods. Sodium hypochlorite (NaOCl) and ethylenediaminetetraacetic acid (EDTA) are the most common effective irrigants, in removing smear-layer from the coronal and middle thirds of the dental canals but reduced considerably towards the apical one third. In recent years, newly alternative treatment modalities have been proposed, including high-power lasers and antimicrobial photodynamic therapy (aPDT). Our work was conducted to evalaute the outcome of root canal disinfection in relation to the efficacy of various treatment modalities. Furthermore, every effort was made to present an overview of the aPDT outcomes, as a model for this application, and to propose laser parameters protocol with positive results. METHODS The electronic databases PubMed was searched from January 2013- January 2019. Our inclusive criteria based on laser therapy applications, as a model for root canal disinfection. The search terms utilised various combinations as follows: photodynamic therapy or antimicrobial photodynamic therapy or photoactivated disinfection or light activated disinfection or laser activated disinfection or laser therapy, and endodontic. RESULTS The results of this systematic review concluded that the effectiveness of aPDT and various laser wavelengths protocols, in removing endodontic biofilms from infected root canals, remains unattainable. CONCLUSIONS Study concluded that the combination of aPDT with antimicrobial irrigants could provide a synergetic effect. However, due to the heterogeneity of the selected studies and their limitations, in terms of lack of standardised protocol or discrepancy in the methodology, authors suggest further validated approaches to achieve optimal outcomes.
Collapse
Affiliation(s)
- Ioana Roxana Bordea
- Department of Oral Rehabilitation, Oral Health and Dental Office Management, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Reem Hanna
- Department of Surgical and Diagnostic Sciences (D.I.S.C), Laser Therapy Centre, University of Genoa, Genoa, Italy; Department of Oral Surgery, Dental Institute, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK.
| | - Nasim Chiniforush
- Laser Research Center of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Elena Grădinaru
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Radu Septimiu Câmpian
- Department of Oral Rehabilitation, Oral Health and Dental Office Management, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adina Sîrbu
- Department of Oral Rehabilitation, Oral Health and Dental Office Management, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrea Amaroli
- Department of Surgical and Diagnostic Sciences (D.I.S.C), Laser Therapy Centre, University of Genoa, Genoa, Italy
| | - Stefano Benedicenti
- Department of Surgical and Diagnostic Sciences (D.I.S.C), Laser Therapy Centre, University of Genoa, Genoa, Italy
| |
Collapse
|
28
|
Cicciù M, Fiorillo L, Cervino G. Chitosan Use in Dentistry: A Systematic Review of Recent Clinical Studies. Mar Drugs 2019; 17:E417. [PMID: 31319609 PMCID: PMC6669505 DOI: 10.3390/md17070417] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/29/2022] Open
Abstract
This study aims to highlight the latest marine-derived technologies in the biomedical field. The dental field, in particular, uses many marine-derived biomaterials, including chitosan. Chitosan that is used in different fields of medicine, is analyzed in this review with the aim of highlighting its uses and advantages in the dental field. A literature search was conducted in scientific search engines, using keywords in order to achieve the highest possible number of results. A review of randomized controlled trials (RCT) was conducted to evaluate and process all the relevant results for chitosan and oral health. After a screening and a careful analysis of the literature, there were only 12 results highlighted. Chitosan performs different functions and it is used in different fields of dentistry in a safe and effective way. Among the uses of chitosan, we report on the remineralizing property of chitosan which hardens tissues of the tooth, and therefore its role as a desensibilizer used in toothpastes. According to our systematic review, the use of chitosan has shown better surgical healing of post-extraction oral wounds. Furthermore, some studies show a reduction in bacterial biofilm when used in dental cements. In addition, it has antibacterial, antifungal, hemostatic and other systemic properties which aid its use for drug delivering.
Collapse
Affiliation(s)
- Marco Cicciù
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, Messina University, Messina 98100, Italy.
| | - Luca Fiorillo
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, Messina University, Messina 98100, Italy
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania "Luigi Vanvitelli", Naples 80100, Italy
| | - Gabriele Cervino
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, Messina University, Messina 98100, Italy
| |
Collapse
|
29
|
Calixto GMF, de Annunzio SR, Victorelli FD, Frade ML, Ferreira PS, Chorilli M, Fontana CR. Chitosan-Based Drug Delivery Systems for Optimization of Photodynamic Therapy: a Review. AAPS PharmSciTech 2019; 20:253. [PMID: 31309346 DOI: 10.1208/s12249-019-1407-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/26/2019] [Indexed: 02/08/2023] Open
Abstract
Drug delivery systems (DDS) can be designed to enrich the pharmacological and therapeutic properties of several drugs. Many of the initial obstacles that impeded the clinical applications of conventional DDS have been overcome with nanotechnology-based DDS, especially those formed by chitosan (CS). CS is a linear polysaccharide obtained by the deacetylation of chitin, which has potential properties such as biocompatibility, hydrophilicity, biodegradability, non-toxicity, high bioavailability, simplicity of modification, aqueous solubility, and excellent chemical resistance. Furthermore, CS can prepare several DDS as films, gels, nanoparticles, and microparticles to improve delivery of drugs, such as photosensitizers (PS). Thus, CS-based DDS are broadly investigated for photodynamic therapy (PDT) of cancer and fungal and bacterial diseases. In PDT, a PS is activated by light of a specific wavelength, which provokes selective damage to the target tissue and its surrounding vasculature, but most PS have low water solubility and cutaneous photosensitivity impairing the clinical use of PDT. Based on this, the application of nanotechnology using chitosan-based DDS in PDT may offer great possibilities in the treatment of diseases. Therefore, this review presents numerous applications of chitosan-based DDS in order to improve the PDT for cancer and fungal and bacterial diseases.
Collapse
|
30
|
Schalch TO, Palmieri M, Longo PL, Braz-Silva PH, Tortamano IP, Michel-Crosato E, Mayer MPA, Jorge WA, Bussadori SK, Pavani C, Negreiros RM, Horliana ACRT. Evaluation of photodynamic therapy in pericoronitis: Protocol of randomized, controlled, double-blind study. Medicine (Baltimore) 2019; 98:e15312. [PMID: 31027098 PMCID: PMC6831272 DOI: 10.1097/md.0000000000015312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 03/27/2019] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Pericoronitis is a common disease in the eruption phase of third molars, sometimes debilitating, with an impact on the quality of life. The most indicated treatment in the initial phase is the irrigation for cleanliness of the region. In order to reduce the chances of systemic dissemination of the infection and antibiotics use, it is mandatory to test effective treatments in the initial phase of pericoronitis avoiding the evolution of the infectious disease. Photodynamic therapy (PDT) is an interesting alternative because it is an effective antimicrobial treatment that is easy to perform and does not select bacterial resistance. The methylene blue (MB) used in PDT has been studied in an oral formulation, which optimizes the formation of monomers increasing its antimicrobial action. OBJECTIVE The aim of this study is to evaluate the effectiveness of PDT with MB in an astringent vehicle in pericoronitis on the initial phase in healthy patients through microbiological, clinical, and immune response. The impact of pericoronitis on oral health-related quality of life (OHRQoL) of these patients will also be evaluated. METHOD In this randomized, controlled, double-blind clinical bioequivalence protocol, 64 healthy patients with pericoronitis will be evaluated. Patients will be randomized into the positive control group (G1) (n = 32): irrigation with sterile saline and PDT (conventional MB at 0.005% concentration and irradiation with low intensity laser λ = 660 nm, 9J per point and radiant exposure of 318 J/cm), and the experimental group (G2) (n = 32): treatment identical to G1, however, MB will be delivered in a new formulation for oral use. Microbiological analysis will be performed by RT-PCR for the bacterium Tannerella forsythia. Gingival crevicular fluid and saliva will be collected to evaluate cytokines by Luminex assay (Luminex Corporation, Austin, TX). The pain (visual analogue scale), swelling and buccal opening (digital caliper), and OHRQoL will also be evaluated through the OHIP-14 questionnaire. The variables will be evaluated in T1 (baseline), T2 (immediately after PDT), and T3 (4th day after PDT). Registration: clinicaltrials.gov NCT03576105. Registered in July 2018.
Collapse
Affiliation(s)
- Tânia Oppido Schalch
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho, UNINOVE
| | - Michelle Palmieri
- Department of Stomatology, School of Dentistry, University of São Paulo
| | | | - Paulo Henrique Braz-Silva
- Department of Stomatology, School of Dentistry, University of São Paulo
- Laboratory of Virology, Institute of Tropical Medicine of São Paulo
| | | | | | | | | | - Sandra Kalil Bussadori
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho, UNINOVE
| | - Christiane Pavani
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho, UNINOVE
| | - Renata Matalon Negreiros
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho, UNINOVE
| | | |
Collapse
|
31
|
Frade ML, de Annunzio SR, Calixto GMF, Victorelli FD, Chorilli M, Fontana CR. Assessment of Chitosan-Based Hydrogel and Photodynamic Inactivation against Propionibacterium acnes. Molecules 2018; 23:E473. [PMID: 29470387 PMCID: PMC6017752 DOI: 10.3390/molecules23020473] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/17/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023] Open
Abstract
Chitosan (CH) is a biopolymer that exhibits a number of interesting properties such as anti-inflammatory and antibacterial activity and is also a promising platform for the incorporation of photosensitizing agents. This study aimed to evaluate the efficacy of antimicrobial activity of chitosan hydrogel formulation alone and in combination with the methylene blue (MB) associated with antimicrobial photodynamic therapy (aPDT) against planktonic and biofilm phase of Propionibacterium acnes. Suspensions were sensitized with 12.5, 25.0, 37.5, 50.0 μg/mL of MB for 10 min and biofilms to 75, 100 and 150 μg/mL for 30 min then exposed to red light (660 nm) at 90 J/cm² and 150 J/cm² respectively. After treatments, survival fractions were calculated by counting the number of colony-forming units. The lethal effect of aPDT associated with CH hydrogel in planktonic phase was achieved with 12.5 µg/mL MB and 1.9 log10 biofilm reduction using 75 µg/mL MB. Rheological studies showed that formulations exhibited pseudoplastic non-Newtonian behavior without thixotropy. Bioadhesion test evidenced that the formulations are highly adhesive to skin and the incorporation of MB did not influence the bioadhesive force of the formulations.
Collapse
Affiliation(s)
- Maria Lucia Frade
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, São Paulo, Brazil.
| | - Sarah Raquel de Annunzio
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, São Paulo, Brazil.
| | - Giovana Maria Fioramonti Calixto
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, São Paulo, Brazil.
| | - Francesca Damiani Victorelli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, São Paulo, Brazil.
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, São Paulo, Brazil.
| | - Carla Raquel Fontana
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, São Paulo, Brazil.
| |
Collapse
|
32
|
Imani Z, Imani Z, Basir L, Shayeste M, Abbasi Montazeri E, Rakhshan V. Antibacterial Effects of Chitosan, Formocresol and CMCP as Pulpectomy Medicament on Enterococcusfaecalis, Staphylococcus aureus and Streptococcusmutans. IRANIAN ENDODONTIC JOURNAL 2018; 13:342-350. [PMID: 30083204 PMCID: PMC6064027 DOI: 10.22037/iej.v13i3.20791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 01/18/2023]
Abstract
INTRODUCTION During pulpectomy of primary teeth, cytotoxic medicaments such as formocresol or camphor mono-chlorophenol (CMCP) are used as medicaments. For the first time it is theorized that chitosan can substitute these traditional materials used in pulpectomy of infectious primary teeth. METHODS AND MATERIALS This preliminary in vitro study consisted of two separate phases (n=75), each of which assessed the antibacterial effects of chitosan versus formocresol and CMCP and positive/negative controls (n=15) on three bacteria types [Enterococcusfaecalis, Staphylococcus aureus, Streptococcusmutans, (n=5 per subgroup)]. Phases 1 and 2 concerned respectively with 1- and 7-day effects of these materials. Bacteria were cultured and injected into sterilized canals and colonies were counted. Medicaments were applied and colonies were re-counted after 1 day of treatment (phase 1). Specimens were re-sterilized and re-randomized, and used for phase 2, in which the same procedures were performed for a 7-day period. Effects of agents on bacteria were analyzed statistically (Kruskal-Wallis α=0.05 and Mann-Whitney α=0.017). RESULTS Treatments reduced bacterial count either after 1 or 7 days (P=0.000). Their effects on different bacteria types were not significant either after 1 or 7 days (P>0.48). Antibacterial efficacies of treatments (indicated by colony reduction) were significantly different, after 7 days (P=0.045). Antibacterial efficacy of chitosan was similar to that of formocresol or CMCP, in both phases [either after 1 or 7 days of treatment (P>0.017). Formocresol and CMCP had similar efficacies in either phase (P>0.017). CONCLUSIONS This preliminary study confirmed the appropriate antibacterial efficacy of chitosan as a medicament in pulpectomy of infectious primary teeth.
Collapse
Affiliation(s)
| | - Zahra Imani
- Department of Pediatric Dentistry, Birjand University of Medical Sciences, Birjand, Iran;
| | - Leila Basir
- Department of Pediatric Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran;
| | - Mohsen Shayeste
- Department of Pediatric Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran;
| | - Effat Abbasi Montazeri
- Department of Microbiology, Medical School, Jundishapur University of Medical Sciences, Ahvaz, Iran;
| | | |
Collapse
|