1
|
Gu B, Zhao Q, Ao Y. Advances in Immunomodulatory Mesoporous Silica Nanoparticles for Inflammatory and Cancer Therapies. Biomolecules 2024; 14:1057. [PMID: 39334825 PMCID: PMC11430029 DOI: 10.3390/biom14091057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
In recent decades, immunotherapy has been considered a promising treatment approach. The modulatable enhancement or attenuation of the body's immune response can effectively suppress tumors. However, challenges persist in clinical applications due to the lack of precision in antigen presentation to immune cells, immune escape mechanisms, and immunotherapy-mediated side effects. As a potential delivery system for drugs and immunomodulators, mesoporous silica has attracted extensive attention recently. Mesoporous silica nanoparticles (MSNs) possess high porosity, a large specific surface area, excellent biocompatibility, and facile surface modifiability, making them suitable as multifunctional carriers in immunotherapy. This article summarizes the latest advancements in the application of MSNs as carriers in cancer immunotherapy, aiming to stimulate further exploration of the immunomodulatory mechanisms and the development of immunotherapeutics based on MSNs.
Collapse
Affiliation(s)
| | | | - Yiran Ao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Bio-Medicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (B.G.); (Q.Z.)
| |
Collapse
|
2
|
Pashootan P, Saadati F, Fahimi H, Rahmati M, Strippoli R, Zarrabi A, Cordani M, Moosavi MA. Metal-based nanoparticles in cancer therapy: Exploring photodynamic therapy and its interplay with regulated cell death pathways. Int J Pharm 2024; 649:123622. [PMID: 37989403 DOI: 10.1016/j.ijpharm.2023.123622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/01/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
Photodynamic therapy (PDT) represents a non-invasive treatment strategy currently utilized in the clinical management of selected cancers and infections. This technique is predicated on the administration of a photosensitizer (PS) and subsequent irradiation with light of specific wavelengths, thereby generating reactive oxygen species (ROS) within targeted cells. The cellular effects of PDT are dependent on both the localization of the PS and the severity of ROS challenge, potentially leading to the stimulation of various cell death modalities. For many years, the concept of regulated cell death (RCD) triggered by photodynamic reactions predominantly encompassed apoptosis, necrosis, and autophagy. However, in recent decades, further explorations have unveiled additional cell death modalities, such as necroptosis, ferroptosis, cuproptosis, pyroptosis, parthanatos, and immunogenic cell death (ICD), which helps to achieve tumor cell elimination. Recently, nanoparticles (NPs) have demonstrated substantial advantages over traditional PSs and become important components of PDT, due to their improved physicochemical properties, such as enhanced solubility and superior specificity for targeted cells. This review aims to summarize recent advancements in the applications of different metal-based NPs as PSs or delivery systems for optimized PDT in cancer treatment. Furthermore, it mechanistically highlights the contribution of RCD pathways during PDT with metal NPs and how these forms of cell death can improve specific PDT regimens in cancer therapy.
Collapse
Affiliation(s)
- Parya Pashootan
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Saadati
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Hossein Fahimi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy; National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey; Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Marco Cordani
- Departament of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran.
| |
Collapse
|
3
|
Gadzhimagomedova Z, Pankin I, Polyakov V, Khodakova D, Medvedev P, Zelenikhin P, Shamsutdinov N, Chapek S, Goncharova A, Soldatov A. Single-Stage Microfluidic Synthesis Route for BaGdF 5:Tb 3+-Based Nanocomposite Materials: Synthesis, Characterization and Biodistribution. Int J Mol Sci 2023; 24:17159. [PMID: 38138988 PMCID: PMC10742823 DOI: 10.3390/ijms242417159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Rare-earth-doped nanoscaled BaGdF5 is known as an efficient contrasting agent for X-ray micro-CT and NMR as well as a promising candidate for X-ray photodynamic therapy, thereby opening an opportunity for theragnostic applications. Conventional synthesis of Ln-doped BaGdF5 consider a long-lasting batch procedure, while a conjugation with photosensitizer usually implies a separate stage requiring active mixing. To the best of our knowledge, in this work, we for the first time obtain BaGdF5:Tb3+ nanophosphors in a microfluidic route at temperatures as low as 100 °C while decreasing the time of thermal treatment down to 6 min. The proposed synthesis route allows for the obtaining of single-phase and monodisperse BaGd1-xF5:Tbx3+ nanoparticles with an averaged particle size of ca. 7-9 nm and hydrodynamic radius around 22 nm, as estimated from TEM and DLS, respectively. In addition, X-ray-excited optical luminescence has been recorded in situ for the series of nanophosphors synthesis with varied flow rates of Tb3+ and Gd3+ stock solutions, thereby anticipating a possible application of microfluidics for screening a wide range of possible co-dopants and reaction conditions and its effect on the optical properties of the synthesized materials. Moreover, we demonstrated that BaGd1-xF5:Tbx3+@RoseBengal conjugates might be obtained in a single-stage route by implementing an additional mixer at the synthesis outcome, namely, by mixing the resulting reaction mixture containing nanoparticles with an equivalent flow of photosensitizer aqueous solution. In vitro cytotoxicity test declares moderate toxicity effect on different cell lines, while the results of flow cytometry indirectly confirm cellular uptake. Finally, we report long-term biodistribution monitoring of the synthesized nanocomposites assessed by X-ray micro-CT in the in vivo experiments on balb/c mice, which depicts an unusual character of agents' accumulation.
Collapse
Affiliation(s)
- Zaira Gadzhimagomedova
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (Z.G.); (P.M.); (S.C.); (A.S.)
| | - Ilia Pankin
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (Z.G.); (P.M.); (S.C.); (A.S.)
| | - Vladimir Polyakov
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (Z.G.); (P.M.); (S.C.); (A.S.)
| | - Darya Khodakova
- National Medical Research Centre for Oncology, 344037 Rostov-on-Don, Russia; (D.K.); (A.G.)
| | - Pavel Medvedev
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (Z.G.); (P.M.); (S.C.); (A.S.)
| | - Pavel Zelenikhin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (P.Z.); (N.S.)
| | - Nail Shamsutdinov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (P.Z.); (N.S.)
| | - Sergey Chapek
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (Z.G.); (P.M.); (S.C.); (A.S.)
| | - Anna Goncharova
- National Medical Research Centre for Oncology, 344037 Rostov-on-Don, Russia; (D.K.); (A.G.)
| | - Alexander Soldatov
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (Z.G.); (P.M.); (S.C.); (A.S.)
| |
Collapse
|
4
|
Udrea AM, Smarandache A, Dinache A, Mares C, Nistorescu S, Avram S, Staicu A. Photosensitizers-Loaded Nanocarriers for Enhancement of Photodynamic Therapy in Melanoma Treatment. Pharmaceutics 2023; 15:2124. [PMID: 37631339 PMCID: PMC10460031 DOI: 10.3390/pharmaceutics15082124] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Malignant melanoma poses a significant global health burden. It is the most aggressive and lethal form of skin cancer, attributed to various risk factors such as UV radiation exposure, genetic modifications, chemical carcinogens, immunosuppression, and fair complexion. Photodynamic therapy is a promising minimally invasive treatment that uses light to activate a photosensitizer, resulting in the formation of reactive oxygen species, which ultimately promote cell death. When selecting photosensitizers for melanoma photodynamic therapy, the presence of melanin should be considered. Melanin absorbs visible radiation similar to most photosensitizers and has antioxidant properties, which undermines the reactive species generated in photodynamic therapy processes. These characteristics have led to further research for new photosensitizing platforms to ensure better treatment results. The development of photosensitizers has advanced with the use of nanotechnology, which plays a crucial role in enhancing solubility, optical absorption, and tumour targeting. This paper reviews the current approaches (that use the synergistic effect of different photosensitizers, nanocarriers, chemotherapeutic agents) in the photodynamic therapy of melanoma.
Collapse
Affiliation(s)
- Ana Maria Udrea
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (A.M.U.); (A.D.); (S.N.)
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| | - Adriana Smarandache
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (A.M.U.); (A.D.); (S.N.)
| | - Andra Dinache
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (A.M.U.); (A.D.); (S.N.)
| | - Catalina Mares
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| | - Simona Nistorescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (A.M.U.); (A.D.); (S.N.)
| | - Speranta Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| | - Angela Staicu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (A.M.U.); (A.D.); (S.N.)
| |
Collapse
|
5
|
Yu X, Wang X, Yamazaki A. Mn-Si-based nanoparticles-enhanced inhibitory effect on tumor growth and metastasis in photo-immunotherapy. Colloids Surf B Biointerfaces 2023; 226:113314. [PMID: 37060652 DOI: 10.1016/j.colsurfb.2023.113314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
The anticancer effect of phototherapy has been limited by some factors, including the easy degradation of photo agents, the complex tumor microenvironment, and the limited immune activation capacity, which impedes its efficiency in inhibiting tumor growth and tumor metastasis. Herein, Mn-doped mesoporous silica nanoparticles were synthesized to load the photo agent of IR 780, which were further coated with Mn (IMM). Notably, the combination of IMM and an 808 nm laser irradiation simultaneously inhibited the growth of primary tumors and distant untreated tumors in a bilateral animal model, which could be attributed to the protection of IMM to IR 780, the regulation functions to the tumor microenvironment, as well as the enhanced immune activation capacity. This work highlighted an alternative strategy for enhancing the inhibitory effect on both tumor growth and tumor metastasis in the combinational anticancer therapy of phototherapy and immunotherapy (photo-immunotherapy).
Collapse
Affiliation(s)
- Xueping Yu
- Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shin-Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Xiupeng Wang
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Atsushi Yamazaki
- Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shin-Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
6
|
Krivosheeva OP, Doctor MA, Larkina EA, Vedenkin AS, Nikolskaya TA. Effect of substituents in chlorin e 6 derivatives on the loading efficiency of the photosensitizer into the liposome membrane and their biological activity. Photodiagnosis Photodyn Ther 2023; 42:103328. [PMID: 36775229 DOI: 10.1016/j.pdpdt.2023.103328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
In this work, we incorporated the hydrophobic alkylamide and hydroxyalkylamide derivatives of chlorin e6 into the lipid bilayer of liposomes. We obtained the data on the effectiveness of incorporation of studied compounds and have determined the size of liposomes and their stability when stored in liquid form. We also investigated the bioactivity of chlorin photosensitizers and compared the photodynamic activity of studied compounds in free and liposomal forms.
Collapse
Affiliation(s)
- Olga P Krivosheeva
- MIREA - Russian Technological University, Pr. Vernadskogo, 78, Moscow, 119454, Russia
| | - Maxim A Doctor
- MIREA - Russian Technological University, Pr. Vernadskogo, 78, Moscow, 119454, Russia
| | - Ekaterina A Larkina
- MIREA - Russian Technological University, Pr. Vernadskogo, 78, Moscow, 119454, Russia
| | - Alexander S Vedenkin
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina 4, Moscow, 119991, Russia.
| | - Tatiana A Nikolskaya
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow, 119991, Russia
| |
Collapse
|
7
|
Alimu G, Yan T, Zhu L, Du Z, Ma R, Fan H, Chen S, Alifu N, Zhang X. Liposomes loaded with dual clinical photosensitizers for enhanced photodynamic therapy of cervical cancer. RSC Adv 2023; 13:3459-3467. [PMID: 36756546 PMCID: PMC9872094 DOI: 10.1039/d2ra03055a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
Photodynamic therapy (PDT) has become a potential anti-cancer strategy owing to its negligible invasiveness, low toxicity, and high selectivity. The photosensitizer (PS) plays an indispensable role in PDT. Herein, a novel type of PS (Ce6-MB@Lips) which can be excited by a near-infrared (NIR) laser was designed and synthesized. Methylene blue (MB) and Chlorin e6 (Ce6), two organic dyes approved by the Food and Drug Administration (FDA), were used to prepare Ce6-MB@Lips by thin-film dispersion method, which improve the water solubility of Ce6 and reduce the cytotoxicity of MB. The Ce6-MB@Lips were shown to have a spherical nanostructure with an average particle size of 160.3 nm and excellent water solubility. Then the optical properties of Ce6-MB@Lips were further studied. Ce6-MB@Lips showed absorption peaks at 413 nm/670 nm and fluorescence peak at 697 nm. Compared with Ce6@Lips and MB@Lips, Ce6-MB@Lips showed better stability, stronger fluorescence intensity, and higher singlet oxygen (1O2) generation ability. Cell experimental analysis exhibited that the stable Ce6-MB@Lips showed low cytotoxicity, high phototoxicity and high reactive oxygen species (ROS) production capacity. After effective cell internalization, the prepared Ce6-MB@Lips showed excellent ability to promote tumor cell apoptosis in vitro. The Ce6-MB@Lips could be a promising candidate for PDT of cervical cancer.
Collapse
Affiliation(s)
- Gulinigaer Alimu
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University Urumqi 830054 China
| | - Ting Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University Urumqi 830054 China
| | - Lijun Zhu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University Urumqi 830054 China
| | - Zhong Du
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University Urumqi 830054 China
| | - Rong Ma
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University Urumqi 830054 China
| | - Huimin Fan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University Urumqi 830054 China
| | - Shuang Chen
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University Urumqi 830054 China
| | - Nuernisha Alifu
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University Urumqi 830054 China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University Urumqi 830054 China
| | - Xueliang Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University Urumqi 830054 China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University Urumqi 830054 China
| |
Collapse
|
8
|
Cui F, Liu J, Zhang T, Pang S, Yu H, Xu N. Low-dimensional nanomaterials as an emerging platform for cancer diagnosis and therapy. Front Bioeng Biotechnol 2023; 11:1101673. [PMID: 36741768 PMCID: PMC9892763 DOI: 10.3389/fbioe.2023.1101673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
The burden of cancer is increasing, being widely recognized as one of the main reasons for deaths among humans. Despite the tremendous efforts that have been made worldwide to stem the progression and metastasis of cancer, morbidity and mortality in malignant tumors have been clearly rising and threatening human health. In recent years, nanomedicine has come to occupy an increasingly important position in precision oncotherapy, which improves the diagnosis, treatment, and long-term prognosis of cancer. In particular, LDNs with distinctive physicochemical capabilities have provided great potential for advanced biomedical applications, attributed to their large surface area, abundant surface binding sites, and good cellular permeation properties. In addition, LDNs can integrate CT/MR/US/PAI and PTT/PDT/CDT/NDDS into a multimodal theranostic nanoplatform, enabling targeted therapy and efficacy assessments for cancer. This review attempts to concisely summarize the classification and major properties of LDNs. Simultaneously, we particularly emphasize their applications in the imaging, diagnosis, and treatment of cancerous diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Nannan Xu
- *Correspondence: Jianhua Liu, ; Nannan Xu,
| |
Collapse
|
9
|
Multifunctional Photoactive Nanomaterials for Photodynamic Therapy against Tumor: Recent Advancements and Perspectives. Pharmaceutics 2022; 15:pharmaceutics15010109. [PMID: 36678738 PMCID: PMC9866498 DOI: 10.3390/pharmaceutics15010109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Numerous treatments are available for cancer, including chemotherapy, immunotherapy, radiation therapy, hormone therapy, biomarker testing, surgery, photodynamic therapy, etc. Photodynamic therapy (PDT) is an effective, non-invasive, novel, and clinically approved strategy to treat cancer. In PDT, three main agents are utilized, i.e., photosensitizer (PS) drug, oxygen, and light. At first, the photosensitizer is injected into blood circulation or applied topically, where it quickly becomes absorbed or accumulated at the tumor site passively or actively. Afterward, the tumor is irradiated with light which leads to the activation of the photosensitizing molecule. PS produces the reactive oxygen species (ROS), resulting in the death of the tumor cell. However, the effectiveness of PDT for tumor destruction is mainly dependent on the cellular uptake and water solubility of photosensitizer molecules. Therefore, the delivery of photosensitizer molecules to the tumor cell is essential in PDT against cancer. The non-specific distribution of photosensitizer results in unwanted side effects and unsuccessful therapeutic outcomes. Therefore, to improve PDT clinical outcomes, the current research is mostly focused on developing actively targeted photosensitizer molecules, which provide a high cellular uptake and high absorption capacity to the tumor site by overcoming the problem associated with conventional PDT. Therefore, this review aims to provide current knowledge on various types of actively and passively targeted organic and inorganic nanocarriers for different cancers.
Collapse
|
10
|
Jiang Y, Fan M, Yang Z, Liu X, Xu Z, Liu S, Feng G, Tang S, Li Z, Zhang Y, Chen S, Yang C, Law WC, Dong B, Xu G, Yong KT. Recent advances in nanotechnology approaches for non-viral gene therapy. Biomater Sci 2022; 10:6862-6892. [PMID: 36222758 DOI: 10.1039/d2bm01001a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy has shown great potential in the treatment of many diseases by downregulating the expression of certain genes. The development of gene vectors as a vehicle for gene therapy has greatly facilitated the widespread clinical application of nucleic acid materials (DNA, mRNA, siRNA, and miRNA). Currently, both viral and non-viral vectors are used as delivery systems of nucleic acid materials for gene therapy. However, viral vector-based gene therapy has several limitations, including immunogenicity and carcinogenesis caused by the exogenous viral vectors. To address these issues, non-viral nanocarrier-based gene therapy has been explored for superior performance with enhanced gene stability, high treatment efficiency, improved tumor-targeting, and better biocompatibility. In this review, we discuss various non-viral vector-mediated gene therapy approaches using multifunctional biodegradable or non-biodegradable nanocarriers, including polymer-based nanoparticles, lipid-based nanoparticles, carbon nanotubes, gold nanoparticles (AuNPs), quantum dots (QDs), silica nanoparticles, metal-based nanoparticles and two-dimensional nanocarriers. Various strategies to construct non-viral nanocarriers based on their delivery efficiency of targeted genes will be introduced. Subsequently, we discuss the cellular uptake pathways of non-viral nanocarriers. In addition, multifunctional gene therapy based on non-viral nanocarriers is summarized, in which the gene therapy can be combined with other treatments, such as photothermal therapy (PTT), photodynamic therapy (PDT), immunotherapy and chemotherapy. We also provide a comprehensive discussion of the biological toxicity and safety of non-viral vector-based gene therapy. Finally, the present limitations and challenges of non-viral nanocarriers for gene therapy in future clinical research are discussed, to promote wider clinical applications of non-viral vector-based gene therapy.
Collapse
Affiliation(s)
- Yihang Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Miaozhuang Fan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Zhenxu Yang
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xiaochen Liu
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shikang Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Gang Feng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shuo Tang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Zhengzheng Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Yibin Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shilin Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Biqin Dong
- Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
11
|
Khorsandi K, Hosseinzadeh R, Esfahani H, Zandsalimi K, Shahidi FK, Abrahamse H. Accelerating skin regeneration and wound healing by controlled ROS from photodynamic treatment. Inflamm Regen 2022; 42:40. [PMID: 36192814 PMCID: PMC9529607 DOI: 10.1186/s41232-022-00226-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Cellular metabolisms produce reactive oxygen species (ROS) which are essential for cellular signaling pathways and physiological functions. Nevertheless, ROS act as “double-edged swords” that have an unstable redox balance between ROS production and removal. A little raise of ROS results in cell proliferation enhancement, survival, and soft immune responses, while a high level of ROS could lead to cellular damage consequently protein, nucleic acid, and lipid damages and finally cell death. ROS play an important role in various pathological circumstances. On the contrary, ROS can show selective toxicity which is used against cancer cells and pathogens. Photodynamic therapy (PDT) is based on three important components including a photosensitizer (PS), oxygen, and light. Upon excitation of the PS at a specific wavelength, the PDT process begins which leads to ROS generation. ROS produced during PDT could induce two different pathways. If PDT produces control and low ROS, it can lead to cell proliferation and differentiation. However, excess production of ROS by PDT causes cellular photo damage which is the main mechanism used in cancer treatment. This review summarizes the functions of ROS in living systems and describes role of PDT in production of controllable ROS and finally a special focus on current ROS-generating therapeutic protocols for regeneration and wound healing.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran. .,Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA.
| | - Reza Hosseinzadeh
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.,Academic center for education, culture and research, Urmia, Iran
| | - HomaSadat Esfahani
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Kavosh Zandsalimi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Fedora Khatibi Shahidi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| |
Collapse
|
12
|
Thomas DT, Baby A, Raman V, Balakrishnan SP. Carbon‐Based Nanomaterials for Cancer Treatment and Diagnosis: A Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202202455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Anjana Baby
- Department of Chemistry CHRIST (Deemed to be University) Bengaluru India– 560029
| | - Vidya Raman
- Department of Chemistry T. M. Jacob Memorial Government College, Manimalakkunu Koothattukulam Kerala India 686662
| | | |
Collapse
|
13
|
Escriche‐Navarro B, Escudero A, Lucena‐Sánchez E, Sancenón F, García‐Fernández A, Martínez‐Máñez R. Mesoporous Silica Materials as an Emerging Tool for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200756. [PMID: 35866466 PMCID: PMC9475525 DOI: 10.1002/advs.202200756] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/16/2022] [Indexed: 05/16/2023]
Abstract
Cancer immunotherapy has emerged in the past decade as a promising strategy for treating many forms of cancer by stimulating the patient's immune system. Although immunotherapy has achieved some promising results in clinics, more efforts are required to improve the limitations of current treatments related to lack of effective and targeted cancer antigens delivery to immune cells, dose-limiting toxicity, and immune-mediated adverse effects, among others. In recent years, the use of nanomaterials has proven promising to enhance cancer immunotherapy efficacy and reduce side effects. Among nanomaterials, attention has been recently paid to mesoporous silica nanoparticles (MSNs) as a potential multiplatform for enhancing cancer immunotherapy by considering their unique properties, such as high porosity, and good biocompatibility, facile surface modification, and self-adjuvanticity. This review explores the role of MSN and other nano/micro-materials as an emerging tool to enhance cancer immunotherapy, and it comprehensively summarizes the different immunotherapeutic strategies addressed to date by using MSN.
Collapse
Affiliation(s)
- Blanca Escriche‐Navarro
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
- Joint Unit of Nanomedicine and Sensors, Polytechnic University of Valencia, IIS La FeAv. Fernando Abril Martorell, 106Valencia46026Spain
| | - Andrea Escudero
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
| | - Elena Lucena‐Sánchez
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
| | - Félix Sancenón
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
- Joint Unit of Nanomedicine and Sensors, Polytechnic University of Valencia, IIS La FeAv. Fernando Abril Martorell, 106Valencia46026Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)Av. Monforte de Lemos, 3–5. Pabellón 11., Planta 0Madrid28029Spain
| | - Alba García‐Fernández
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)Av. Monforte de Lemos, 3–5. Pabellón 11., Planta 0Madrid28029Spain
| | - Ramón Martínez‐Máñez
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
- Joint Unit of Nanomedicine and Sensors, Polytechnic University of Valencia, IIS La FeAv. Fernando Abril Martorell, 106Valencia46026Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)Av. Monforte de Lemos, 3–5. Pabellón 11., Planta 0Madrid28029Spain
| |
Collapse
|
14
|
Hesemans E, Buttiens K, Manshian BB, Soenen SJ. The Role of Optical Imaging in Translational Nanomedicine. J Funct Biomater 2022; 13:137. [PMID: 36135572 PMCID: PMC9502568 DOI: 10.3390/jfb13030137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Nanomedicines have been a major research focus in the past two decades and are increasingly emerging in a broad range of clinical applications. However, a proper understanding of their biodistribution is required to further progress the field of nanomedicine. For this, imaging methods to monitor the delivery and therapeutic efficacy of nanoparticles are urgently needed. At present, optical imaging is the most common method used to study the biodistribution of nanomaterials, where the unique properties of nanomaterials and advances in optical imaging can jointly result in novel methods for optimal monitoring of nanomaterials in preclinical animal models. This review article aims to give an introduction to nanomedicines and their translational impact to highlight the potential of optical imaging to study the biodistribution of nanoparticles and to monitor the delivery and therapeutic efficacy at the preclinical level. After introducing both domains, the review focuses on different techniques that can be used to overcome some intrinsic limitations of optical imaging and how this can specifically benefit nanoparticle studies. Finally, we point out some important key features of nanoparticles that currently hinder their full potential in the clinic and how the advances in optical imaging can help to provide us with the information needed to further boost the clinical translation and expand the field of nanomedicines.
Collapse
Affiliation(s)
- Evelien Hesemans
- NanoHealth and Optical Imaging Group, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Kiana Buttiens
- NanoHealth and Optical Imaging Group, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Bella B. Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
- Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Stefaan J. Soenen
- NanoHealth and Optical Imaging Group, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
- Leuven Cancer Institute, 3000 Leuven, Belgium
| |
Collapse
|
15
|
Uprety B, Abrahamse H. Semiconductor quantum dots for photodynamic therapy: Recent advances. Front Chem 2022; 10:946574. [PMID: 36034651 PMCID: PMC9405672 DOI: 10.3389/fchem.2022.946574] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Photodynamic therapy is a promising cancer treatment that induces apoptosis as a result of the interactions between light and a photosensitizing drug. Lately, the emergence of biocompatible nanoparticles has revolutionized the prospects of photodynamic therapy (PDT) in clinical trials. Consequently, a lot of research is now being focused on developing non-toxic, biocompatible nanoparticle-based photosensitizers for effective cancer treatments using PDT. In this regard, semiconducting quantum dots have shown encouraging results. Quantum dots are artificial semiconducting nanocrystals with distinct chemical and physical properties. Their optical properties can be fine-tuned by varying their size, which usually ranges from 1 to 10 nm. They present many advantages over conventional photosensitizers, mainly their emission properties can be manipulated within the near IR region as opposed to the visible region by the former. Consequently, low intensity light can be used to penetrate deeper tissues owing to low scattering in the near IR region. Recently, successful reports on imaging and PDT of cancer using carbon (carbon, graphene based) and metallic (Cd based) based quantum dots are promising. This review aims to summarize the development and the status quo of quantum dots for cancer treatment.
Collapse
|
16
|
de Souza da Fonseca A, de Paoli F, Mencalha AL. Photodynamic therapy for treatment of infected burns. Photodiagnosis Photodyn Ther 2022; 38:102831. [PMID: 35341978 DOI: 10.1016/j.pdpdt.2022.102831] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
Abstract
Burns are among the most debilitating and devastating forms of trauma. Such injuries are influenced by infections, causing increased morbidity, mortality, and healthcare costs. Due to the emergence of multidrug-resistant infectious agents, efficient treatment of infections in burns is a challenging issue. Antimicrobial photodynamic therapy (aPDT) is a promising approach to inactivate infectious agents, including multidrug-resistant. In this review, studies on PubMed were gathered, aiming to summarize the achievements regarding the applications of antimicrobial photodynamic therapy for the treatment of infected burns. A literature search was carried out for aPDT published reports assessment on bacterial, fungal, and viral infections in burns. The collected data suggest that aPDT could be a promising new approach against multidrug-resistant infectious agents. However, despite important results being obtained against bacteria, experimental and clinical studies are necessary yet on the effectiveness of aPDT against fungal and viral infections in burns, which could reduce morbidity and mortality of burned patients, mainly those infected by multidrug-resistant strains.
Collapse
Affiliation(s)
- Adenilson de Souza da Fonseca
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Fundos, Vila Isabel, Rio de Janeiro 20551030, Brazil; Departamento de Ciências Fisiológicas, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca, 94, Rio de Janeiro 20211040, Brazil; Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, Avenida Alberto Torres, 111, Teresópolis, Rio de Janeiro 25964004, Brazil.
| | - Flavia de Paoli
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Rua José Lourenço Khelmer - s/n, Campus Universitário, São Pedro, Juiz de Fora, Minas Gerais 36036900, Brazil
| | - Andre Luiz Mencalha
- Departamento de Biofísica e Biometria, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, Fundos, Vila Isabel, Rio de Janeiro 20551030, Brazil
| |
Collapse
|
17
|
Poly(styrene-co-maleic Acid) Micelle of Photosensitizers for Targeted Photodynamic Therapy, Exhibits Prolonged Singlet Oxygen Generating Capacity and Superior Intracellular Uptake. J Pers Med 2022; 12:jpm12030493. [PMID: 35330492 PMCID: PMC8951206 DOI: 10.3390/jpm12030493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/04/2023] Open
Abstract
Targeted therapy by using nanomedicines based on the enhanced permeability and retention (EPR) effect is becoming a promising anticancer strategy. Many nano-designed photosensitizers (PSs) for photodynamic therapy (PDT) have been developed which show superior therapeutic potentials than free PS. To further understand the advantages of nano-designed PS, in this study, we used styrene-co-maleyl telomer (SMA) as a polymer platform to prepare a micellar type of PS with two well-characterized PSs—rose bengal (RB) and methylene blue (MB)—and evaluated the outmatching benefits of SMA-PS micelles, especially focusing on the singlet oxygen (1O2) generation capacity and intracellular uptake profiles. In aqueous solutions, SMA-PS self-assembles to form micelles by non-covalent interactions between PS and SMA. SMA-PS micelles showed discrete distributions by dynamic light scattering having a mean particle size of 18–30 nm depending on the types of SMA and different PSs. The hydrodynamic size of SMA-PS was evaluated by Sephadex chromatography and it found to be 30–50 kDa. In the presence of human serum albumin, the sizes of SMA-PS remarkably increased, suggesting the albumin-binding property. 1O2 generation from the SMA-PS micelle was determined by electron spin resonance, in which the SMA-PS micelle showed comparatively more photo-stable, and consequently a more durable and constant, 1O2 generation capability than free PS. Moreover, intracellular uptake of SMA-PS micelles was extensively faster and higher than free PS, especially in tumor cells. Taken together, SMA-PS micelles appear highly advantageous for photodynamic therapy in addition to its capacity in utilizing the EPR effect for tumor targeted delivery.
Collapse
|
18
|
Pourhajibagher M, Keshavarz Valian N, Bahador A. Theranostic nanoplatforms of emodin-chitosan with blue laser light on enhancing the anti-biofilm activity of photodynamic therapy against Streptococcus mutans biofilms on the enamel surface. BMC Microbiol 2022; 22:68. [PMID: 35246026 PMCID: PMC8896274 DOI: 10.1186/s12866-022-02481-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
Background Combining photosensitizer and light irradiation, named antimicrobial photodynamic therapy (aPDT) is an adjuvant therapy for eliminating microbial biofilms. This ex vivo study evaluates the effect of anti-biofilm activity of aPDT based on emodin-chitosan nanoparticles (Emo-CS-NPs) plus blue laser light against Streptococcus mutans biofilm on the enamel surface. Materials After determination of the fractional inhibitory concentration index of Emo and CS by checkerboard array assay, Emo-CS-NPs were synthesized and characterized. Following treatment of pre-formed S. mutans biofilms on the enamel slabs, cellular uptake of Emo-CS-NPs and intracellular reactive oxygen species (ROS) production were determined. The anti-biofilm and anti-metabolic activities of aPDT were investigated. Eventually, lactic acid production capacity, concentrations of S. mutans extracellular DNA (eDNA) levels, and expression of the gene involved in the biofilm formation (gtfB) were evaluated. Results The maximum uptake of Emo-CS-NPs occurs in an incubation time of 5 min. When irradiated, Emo-CS-NPs were photoactivated, generating ROS, and led to a decrease in the cell viability and metabolic activity of S. mutans significantly (P < 0.05). S. mutans eDNA and lactic acid production outcomes indicated that Emo-CS-NPs-mediated aPDT led to a significant reduction of eDNA levels (48%) and lactic acid production (72.4%) compared to the control group (P < 0.05). In addition, gtfB mRNA expression in S. mutans was downregulated (7.8-fold) after aPDT in comparison with the control group (P < 0.05). Conclusions Our data support that, aPDT using Emo-CS-NPs revealed the highest cellular uptake and ROS generation. Emo-CS-NPs based aPDT could inhibit significantly biofilm formation and reduce effectively virulence potency of S. mutans; thus, it could be an adjuvant therapy against dental caries.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Keshavarz Valian
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
19
|
Ramachandran P, Khor BK, Lee CY, Doong RA, Oon CE, Thanh NTK, Lee HL. N-Doped Graphene Quantum Dots/Titanium Dioxide Nanocomposites: A Study of ROS-Forming Mechanisms, Cytotoxicity and Photodynamic Therapy. Biomedicines 2022; 10:421. [PMID: 35203630 PMCID: PMC8962365 DOI: 10.3390/biomedicines10020421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/12/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have been proven to be potential candidates in cancer therapy, particularly photodynamic therapy (PDT). However, the application of TiO2 NPs is limited due to the fast recombination rate of the electron (e-)/hole (h+) pairs attributed to their broader bandgap energy. Thus, surface modification has been explored to shift the absorption edge to a longer wavelength with lower e-/h+ recombination rates, thereby allowing penetration into deep-seated tumors. In this study, TiO2 NPs and N-doped graphene quantum dots (QDs)/titanium dioxide nanocomposites (N-GQDs/TiO2 NCs) were synthesized via microwave-assisted synthesis and the two-pot hydrothermal method, respectively. The synthesized anatase TiO2 NPs were self-doped TiO2 (Ti3+ ions), have a small crystallite size (12.2 nm) and low bandgap energy (2.93 eV). As for the N-GQDs/TiO2 NCs, the shift to a bandgap energy of 1.53 eV was prominent as the titanium (IV) tetraisopropoxide (TTIP) loading increased, while maintaining the anatase tetragonal crystal structure with a crystallite size of 11.2 nm. Besides, the cytotoxicity assay showed that the safe concentrations of the nanomaterials were from 0.01 to 0.5 mg mL-1. Upon the photo-activation of N-GQDs/TiO2 NCs with near-infrared (NIR) light, the nanocomposites generated reactive oxygen species (ROS), mainly singlet oxygen (1O2), which caused more significant cell death in MDA-MB-231 (an epithelial, human breast cancer cells) than in HS27 (human foreskin fibroblast). An increase in the N-GQDs/TiO2 NCs concentrations elevates ROS levels, which triggered mitochondria-associated apoptotic cell death in MDA-MB-231 cells. As such, titanium dioxide-based nanocomposite upon photoactivation has a good potential as a photosensitizer in PDT for breast cancer treatment.
Collapse
Affiliation(s)
- Pravena Ramachandran
- Nanomaterials Research Group, School of Chemical Sciences, Universiti Sains Malaysia (USM), Gelugor 11800, Penang, Malaysia;
| | - Boon-Keat Khor
- School of Pharmaceutical Sciences, Universiti Sains Malaysia (USM), Gelugor 11800, Penang, Malaysia; (B.-K.K.); (C.Y.L.)
| | - Chong Yew Lee
- School of Pharmaceutical Sciences, Universiti Sains Malaysia (USM), Gelugor 11800, Penang, Malaysia; (B.-K.K.); (C.Y.L.)
| | - Ruey-An Doong
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia (USM), Gelugor 11800, Penang, Malaysia;
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
| | - Hooi Ling Lee
- Nanomaterials Research Group, School of Chemical Sciences, Universiti Sains Malaysia (USM), Gelugor 11800, Penang, Malaysia;
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
20
|
Targeting nanoparticles to malignant tumors. Biochim Biophys Acta Rev Cancer 2022; 1877:188703. [DOI: 10.1016/j.bbcan.2022.188703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
|
21
|
Combinatorial Therapeutic Approaches with Nanomaterial-Based Photodynamic Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14010120. [PMID: 35057015 PMCID: PMC8780767 DOI: 10.3390/pharmaceutics14010120] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/11/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022] Open
Abstract
Photodynamic therapy (PDT), in which a light source is used in combination with a photosensitizer to induce local cell death, has shown great promise in therapeutically targeting primary tumors with negligible toxicity and minimal invasiveness. However, numerous studies have shown that noninvasive PDT alone is not sufficient to completely ablate tumors in deep tissues, due to its inherent shortcomings. Therefore, depending on the characteristics and type of tumor, PDT can be combined with surgery, radiotherapy, immunomodulators, chemotherapy, and/or targeted therapy, preferably in a patient-tailored manner. Nanoparticles are attractive delivery vehicles that can overcome the shortcomings of traditional photosensitizers, as well as enable the codelivery of multiple therapeutic drugs in a spatiotemporally controlled manner. Nanotechnology-based combination strategies have provided inspiration to improve the anticancer effects of PDT. Here, we briefly introduce the mechanism of PDT and summarize the photosensitizers that have been tested preclinically for various cancer types and clinically approved for cancer treatment. Moreover, we discuss the current challenges facing the combination of PDT and multiple cancer treatment options, and we highlight the opportunities of nanoparticle-based PDT in cancer therapies.
Collapse
|
22
|
Jin ZY, Fatima H, Zhang Y, Shao Z, Chen XJ. Recent Advances in Bio‐Compatible Oxygen Singlet Generation and Its Tumor Treatment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zheng Yang Jin
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Hira Fatima
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
| | - Yue Zhang
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| | - Zongping Shao
- Western Australia School of Mines: Minerals Energy and Chemical Engineering (WASM‐MECE) Curtin University Perth Western Australia 6102 Australia
- State Key Laboratory of Materials‐Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing Jiangsu 211816 P. R. China
| | - Xiang Jian Chen
- The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang 325015 P. R. China
| |
Collapse
|
23
|
Chen G, Wu Y, Jin K, Lu H, Tao M, Wang T, Zhang J, Zhu X, Liu J, Zhang Y. A Biosynthesized Near-Infrared-Responsive Nanocomposite Biomaterial for Antimicrobial and Antibiofilm Treatment. ACS APPLIED BIO MATERIALS 2021; 4:7542-7553. [PMID: 35006699 DOI: 10.1021/acsabm.1c00790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Photodynamic inactivation (PDI) has become an appealing alternative strategy to treat infections without developing resistance to microbes. In PDI treatment, near-infrared (NIR) light is preferred because it causes less damage to normal tissues and leads to better penetration in deep tissues. Here, we develop an NIR-responsive nanomedicine for efficient broad-spectrum antimicrobial photodynamic treatment. By harnessing the biosynthetic capability of a bacterial cellulose-producing microorganism, we construct a nanocomposite biomaterial to deliver and recycle the nanomedicine. Our simple one-step biosynthetic approach does not impede the antimicrobial potency of the nanomedicine under NIR activation and requires no chemical modification. The resulting nanocomposite has been tested in antimicrobial treatment of different microorganisms, exhibiting a great potential to eliminate pathogens in biofilms and to treat in vivo infections.
Collapse
Affiliation(s)
- Guiyuan Chen
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Yihan Wu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Kai Jin
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Hongfei Lu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Mingyue Tao
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Tiantian Wang
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Jing Zhang
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Xiaohui Zhu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Jinliang Liu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Yong Zhang
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China.,Department of Biomedical Engineering, National University of Singapore, 119077 Singapore
| |
Collapse
|
24
|
Machuca A, Garcia-Calvo E, Anunciação DS, Luque-Garcia JL. Integration of Transcriptomics and Metabolomics to Reveal the Molecular Mechanisms Underlying Rhodium Nanoparticles-Based Photodynamic Cancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13101629. [PMID: 34683922 PMCID: PMC8539937 DOI: 10.3390/pharmaceutics13101629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Rhodium nanoparticles have recently been described as promising photosensitizers due to their low toxicity in the absence of near-infrared irradiation, but their high cytotoxicity when irradiated. Irradiation is usually carried out with a laser source, which allows the treatment to be localized in a specific area, thus avoiding undesirable side effects on healthy tissues. In this study, a multi-omics approach based on the combination of microarray-based transcriptomics and mass spectrometry-based untargeted and targeted metabolomics has provided a global picture of the molecular mechanisms underlying the anti-tumoral effect of rhodium nanoparticle-based photodynamic therapy. The results have shown the ability of these nanoparticles to promote apoptosis by suppressing or promoting anti- and pro-apoptotic factors, respectively, and by affecting the energy machinery of tumor cells, mainly blocking the β-oxidation, which is reflected in the accumulation of free fatty acids and in the decrease in ATP, ADP and NAD+ levels.
Collapse
Affiliation(s)
- Andres Machuca
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (A.M.); (E.G.-C.)
| | - Estefania Garcia-Calvo
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (A.M.); (E.G.-C.)
| | - Daniela S. Anunciação
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A. C. Simões, 57072-900 Maceió, Brazil;
| | - Jose L. Luque-Garcia
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (A.M.); (E.G.-C.)
- Correspondence: ; Tel.: +34-913-944-212
| |
Collapse
|
25
|
Algorri JF, Ochoa M, Roldán-Varona P, Rodríguez-Cobo L, López-Higuera JM. Photodynamic Therapy: A Compendium of Latest Reviews. Cancers (Basel) 2021; 13:4447. [PMID: 34503255 PMCID: PMC8430498 DOI: 10.3390/cancers13174447] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising therapy against cancer. Even though it has been investigated for more than 100 years, scientific publications have grown exponentially in the last two decades. For this reason, we present a brief compendium of reviews of the last two decades classified under different topics, namely, overviews, reviews about specific cancers, and meta-analyses of photosensitisers, PDT mechanisms, dosimetry, and light sources. The key issues and main conclusions are summarized, including ways and means to improve therapy and outcomes. Due to the broad scope of this work and it being the first time that a compendium of the latest reviews has been performed for PDT, it may be of interest to a wide audience.
Collapse
Affiliation(s)
- José Francisco Algorri
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Mario Ochoa
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Pablo Roldán-Varona
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | | | - José Miguel López-Higuera
- Photonics Engineering Group, University of Cantabria, 39005 Santander, Spain; (M.O.); (P.R.-V.); (J.M.L.-H.)
- CIBER-bbn, Institute of Health Carlos III, 28029 Madrid, Spain;
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| |
Collapse
|
26
|
Liposome Photosensitizer Formulations for Effective Cancer Photodynamic Therapy. Pharmaceutics 2021; 13:pharmaceutics13091345. [PMID: 34575424 PMCID: PMC8470396 DOI: 10.3390/pharmaceutics13091345] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising non-invasive strategy in the fight against that which circumvents the systemic toxic effects of chemotherapeutics. It relies on photosensitizers (PSs), which are photoactivated by light irradiation and interaction with molecular oxygen. This generates highly reactive oxygen species (such as 1O2, H2O2, O2, ·OH), which kill cancer cells by necrosis or apoptosis. Despite the promising effects of PDT in cancer treatment, it still suffers from several shortcomings, such as poor biodistribution of hydrophobic PSs, low cellular uptake, and low efficacy in treating bulky or deep tumors. Hence, various nanoplatforms have been developed to increase PDT treatment effectiveness and minimize off-target adverse effects. Liposomes showed great potential in accommodating different PSs, chemotherapeutic drugs, and other therapeutically active molecules. Here, we review the state-of-the-art in encapsulating PSs alone or combined with other chemotherapeutic drugs into liposomes for effective tumor PDT.
Collapse
|
27
|
Liu Y, Wu W, Wang Y, Han S, Yuan Y, Huang J, Shuai X, Peng Z. Recent development of gene therapy for pancreatic cancer using non-viral nanovectors. Biomater Sci 2021; 9:6673-6690. [PMID: 34378568 DOI: 10.1039/d1bm00748c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pancreatic cancer (PC), characterized by its dense desmoplastic stroma and hypovascularity, is one of the most lethal cancers with a poor prognosis in the world. Traditional treatments such as chemotherapy, radiotherapy, and targeted therapy show little benefit in the survival rate in patients with advanced PC due to the poor penetration and resistance of drugs, low radiosensitivity, or severe side effects. Gene therapy can modify the morbific and drug-resistant genes as well as insert the tumor-suppressing genes, which has been shown to have great potential in PC treatment. The development of safe non-viral vectors for the highly efficient delivery of nucleic acids is essential for effective gene therapy, and has been attracting much attention. In this review, we first summarized the PC-promoting genes and gene therapies using plasmid DNA, mRNA, miRNA/siRNA-based RNA interference technology, and genome editing technology. Second, the commonly used non-viral nanovector and theranostic gene delivery nanosystem, especially the tumor microenvironment-sensitive delivery nanosystem and the cell/tumor-penetrating delivery nanosystem, were introduced. Third, a combination of non-viral nanovector-based gene therapy and other therapies, such as immunotherapy, chemotherapy, photothermal therapy (PTT), and photodynamic therapy (PDT), for PDAC treatment was discussed. Finally, a number of clinical trials have demonstrated the proof-of-principle that gene therapy or the combination of gene therapy and chemotherapy using non-viral vectors can inhibit the progression of PC. Although most of the non-viral vector-based gene therapies and their combination therapy are still under preclinical research, the development of genetics, molecular biology, and novel vectors would promote the clinical transformation of gene therapy.
Collapse
Affiliation(s)
- Yu Liu
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Wei Wu
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Yiyao Wang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Shisong Han
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yuanyuan Yuan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinsheng Huang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Zhao Peng
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
28
|
Gunaydin G, Gedik ME, Ayan S. Photodynamic Therapy for the Treatment and Diagnosis of Cancer-A Review of the Current Clinical Status. Front Chem 2021; 9:686303. [PMID: 34409014 PMCID: PMC8365093 DOI: 10.3389/fchem.2021.686303] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Photodynamic therapy (PDT) has been used as an anti-tumor treatment method for a long time and photosensitizers (PS) can be used in various types of tumors. Originally, light is an effective tool that has been used in the treatment of diseases for ages. The effects of combination of specific dyes with light illumination was demonstrated at the beginning of 20th century and novel PDT approaches have been developed ever since. Main strategies of current studies are to reduce off-target effects and improve pharmacokinetic properties. Given the high interest and vast literature about the topic, approval of PDT as the first drug/device combination by the FDA should come as no surprise. PDT consists of two stages of treatment, combining light energy with a PS in order to destruct tumor cells after activation by light. In general, PDT has fewer side effects and toxicity than chemotherapy and/or radiotherapy. In addition to the purpose of treatment, several types of PSs can be used for diagnostic purposes for tumors. Such approaches are called photodynamic diagnosis (PDD). In this Review, we provide a general overview of the clinical applications of PDT in cancer, including the diagnostic and therapeutic approaches. Assessment of PDT therapeutic efficacy in the clinic will be discussed, since identifying predictors to determine the response to treatment is crucial. In addition, examples of PDT in various types of tumors will be discussed. Furthermore, combination of PDT with other therapy modalities such as chemotherapy, radiotherapy, surgery and immunotherapy will be emphasized, since such approaches seem to be promising in terms of enhancing effectiveness against tumor. The combination of PDT with other treatments may yield better results than by single treatments. Moreover, the utilization of lower doses in a combination therapy setting may cause less side effects and better results than single therapy. A better understanding of the effectiveness of PDT in a combination setting in the clinic as well as the optimization of such complex multimodal treatments may expand the clinical applications of PDT.
Collapse
Affiliation(s)
- Gurcan Gunaydin
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - M. Emre Gedik
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Seylan Ayan
- Department of Chemistry, Bilkent University, Ankara, Turkey
| |
Collapse
|
29
|
Zhang Q, Wu L, Liu S, Chen Q, Zeng L, Chen X, Zhang Q. Moderating hypoxia and promoting immunogenic photodynamic therapy by HER-2 nanobody conjugate nanoparticles for ovarian cancer treatment. NANOTECHNOLOGY 2021; 32:425101. [PMID: 34319255 DOI: 10.1088/1361-6528/ac07d1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
Photodynamic therapy (PDT) and immunotherapy have been often adopted for ovarian cancer therapy, yet their application is limited by the high recurrence rate and toxic side effects. Intriguingly, nanoparticles contribute to enhancing the performance of PDT. Here, we investigated the synthesis of HER-2-Nanobody (Nb)-conjugated human serum albumin (HSA) incorporated with chlorin (Ce6) and catalase (CAT) (Nb@HCC), and analyzed the synergic effect of Nb@HCC-mediated PDT and immunotherapy for SK-OV-3 tumors. The Ce6 and CAT were incorporated into HSA to construct the HCC nanoparticles. HER-2-Nanobody was the purified bacterial crude extract, and conjugated with HCC to prepare Nb@HCC via heterodisulfide. The effects of Nb@HCC with near infrared ray (NIR) irradiation on moderating hypoxia and hypoxia inducible factor-1α(HIF-1α) expression were evaluated in the SK-OV-3 cells and tumor tissues. A SK-OV-3 tumor-bearing model was developed, where the synergistic effect of Nb@HCC-mediated PDT and anti-CTLA-4 therapy was investigated. Nb@HCC with a 660 nm laser irradiation could induce massive reactive oxygen species and trigger apoptosis in SK-OV-3 cells. Nb@HCC and PDT promoted danger-associated molecular patterns (DAMPs), which indicated immunogenic cell death and maturation of dendritic cells in the SK-OV-3 cells. Irradiated by NIR, Nb@HCC alleviated the hypoxia and decreased the expression of HIF-1α. The Nb@HCC-mediated PDT and anti-CTLA-4 therapy synergically inhibited the progression of distant tumor, and induced T cell infiltration. Biosafety tests suggested that Nb@HCC would not cause damage to the major organs with less toxicity and side effects. To conclude, a combination of Nb@HCC-mediated PDT and anti-CTLA-4 therapy could inhibit the progression of distant tumor to attain remarkable therapeutic outcomes.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Lian Wu
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Shaozheng Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Qingjie Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Lingpeng Zeng
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Xuezhong Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Qing Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| |
Collapse
|
30
|
Kirsanova DY, Gadzhimagomedova ZM, Maksimov AY, Soldatov AV. Nanomaterials for Deep Tumor Treatment. Mini Rev Med Chem 2021; 21:677-688. [PMID: 33176645 DOI: 10.2174/1389557520666201111161705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/25/2020] [Accepted: 08/20/2020] [Indexed: 11/22/2022]
Abstract
According to statistics, cancer is the second leading cause of death in the world. Thus, it is important to solve this medical and social problem by developing new effective methods for cancer treatment. An alternative to more well-known approaches, such as radiotherapy and chemotherapy, is photodynamic therapy (PDT), which is limited to the shallow tissue penetration (< 1 cm) of visible light. Since the PDT process can be initiated in deep tissues by X-ray irradiation (X-ray induced PDT, or XPDT), it has a great potential to treat tumors in internal organs. The article discusses the principles of therapies. The main focus is on various nanoparticles used with or without photosensitizers, which allow the conversion of X-ray irradiation into UV-visible light. Much attention is given to the synthesis of nanoparticles and analysis of their characteristics, such as size and spectral features. The results of in vitro and in vivo experiments are also discussed.
Collapse
Affiliation(s)
- Daria Yu Kirsanova
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090, Rostov-on-Don, Russian Federation
| | - Zaira M Gadzhimagomedova
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090, Rostov-on-Don, Russian Federation
| | - Aleksey Yu Maksimov
- National Medical Research Centre for Oncology, 14 liniya str. 63, 344037, Rostov-on-Don, Russian Federation
| | - Alexander V Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090, Rostov-on-Don, Russian Federation
| |
Collapse
|
31
|
Sun W, Yu H, Wang D, Li Y, Tian B, Zhu S, Wang PY, Xie S, Wang R. MnO 2 nanoflowers as a multifunctional nano-platform for enhanced photothermal/photodynamic therapy and MR imaging. Biomater Sci 2021; 9:3662-3674. [PMID: 33617619 DOI: 10.1039/d1bm00033k] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photodynamic therapy (PDT) has been regarded as a promising strategy for tumor therapy. However, heterogeneous tumor microenvironments severely limit the efficacy of photodynamic therapy. In this work, a multifunctional theranostic platform (MnO2-SiO2-APTES&Ce6 (MSA&C)) was fabricated based on MnO2 nanoflowers, which afforded MRI-guided synergistic therapy incorporating PDT and second near-infrared window (NIR-II) photothermal therapy (PTT). Herein, MnO2 nanoflowers are first proposed as a NIR-II photothermal agent. In the MSA&C system, MnO2 nanoflowers were employed for effective photosensitizer loading, relieving tumor hypoxia, and NIR-II PTT and tumor-specific imaging. The large amount of photosensitizer, reduced tumor hypoxia, and hyperthermia all contributed to the improvement of PDT. The quantity of reactive oxygen species (ROS) generated during PDT in turn down-regulated the expression of heat shock proteins (HSP 70), thereby improving photothermal performance. Positively charged (3-aminopropyl)triethoxysilane (APTES) was used to promote cellular uptake, further improving treatment efficiency. In this system, the MSA&C nanoflowers can not only alleviate tumor hypoxia, but they also obviously induce cell apoptosis under laser irradiation through a ROS- and hyperthermia-mediated mechanism, thereby leading to remarkable tumor growth inhibition. Furthermore, the Mn2+ ions generated during treatment can be explored for MR imaging, and this could be used to finally realize MRI-guided enhanced PDT/PTT.
Collapse
Affiliation(s)
- Wanru Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China.
| | - Hui Yu
- Binzhou Medical University Hospital, Binzhou, 256603, PR China
| | - Deqiang Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China.
| | - Youjie Li
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, PR China.
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, Yantai 264003, PR China
| | - Shuang Zhu
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China.
| | - Ping-Yu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, PR China.
| | - Shuyang Xie
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, PR China.
| | - Ranran Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China.
| |
Collapse
|
32
|
Abstract
The healing power of light has attracted interest for thousands of years. Scientific discoveries and technological advancements in the field have eventually led to the emergence of photodynamic therapy, which soon became a promising approach in treating a broad range of diseases. Based on the interaction between light, molecular oxygen, and various photosensitizers, photodynamic therapy represents a non-invasive, non-toxic, repeatable procedure for tumor treatment, wound healing, and pathogens inactivation. However, classic photosensitizing compounds impose limitations on their clinical applications. Aiming to overcome these drawbacks, nanotechnology came as a solution for improving targeting efficiency, release control, and solubility of traditional photosensitizers. This paper proposes a comprehensive path, starting with the photodynamic therapy mechanism, evolution over the years, integration of nanotechnology, and ending with a detailed review of the most important applications of this therapeutic approach.
Collapse
|
33
|
Hak A, Ravasaheb Shinde V, Rengan AK. A review of advanced nanoformulations in phototherapy for cancer therapeutics. Photodiagnosis Photodyn Ther 2021; 33:102205. [PMID: 33561574 DOI: 10.1016/j.pdpdt.2021.102205] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/12/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Phototherapy has the potential to play a greater role in oncology. Phototherapy converts light energy into either chemical energy or thermal energy, which eventually destroys cancer cells after a series of biological reactions. With nanotechnology applications in cancer therapeutics, it has become possible to prepare smart drug carriers with multifunctional properties at the nanoscale level. These nanocarriers may be able to deliver the drug molecules to the target site more efficiently in the form of nanoparticles. Several intrinsic and extrinsic properties of these nanocarriers help target the tumor cells exclusively, and by utilizing these features, drug molecules can be delivered to the tumor cells specifically, which results in high tumor uptake and better therapeutic effects ultimately. Nanocarriers can also be designed to carry different drugs together to provide a platform for combination therapy like chemo-photodynamic therapy and chemo-photodynamic-photothermal therapy. In combination therapy, co-delivery of all different drugs is crucial to obtain their synergistic effects, and with the help of nanocarriers, it is possible to co-deliver these drugs by loading them together onto the nanocarriers.
Collapse
Affiliation(s)
- Arshadul Hak
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Vinod Ravasaheb Shinde
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
34
|
Kumar S, Singhal A, Narang U, Mishra S, Kumari P. Recent Progresses in Organic-Inorganic Nano Technological Platforms for Cancer Therapeutics. Curr Med Chem 2021; 27:6015-6056. [PMID: 30585536 DOI: 10.2174/0929867326666181224143734] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
Abstract
Nanotechnology offers promising tools in interdisciplinary research areas and getting an upsurge of interest in cancer therapeutics. Organic nanomaterials and inorganic nanomaterials bring revolutionary advancement in cancer eradication process. Oncology is achieving new heights under nano technological platform by expediting chemotherapy, radiotherapy, photo thermodynamic therapy, bio imaging and gene therapy. Various nanovectors have been developed for targeted therapy which acts as "Nano-bullets" for tumor cells selectively. Recently combinational therapies are catching more attention due to their enhanced effect leading towards the use of combined organicinorganic nano platforms. The current review covers organic, inorganic and their hybrid nanomaterials for various therapeutic action. The technological aspect of this review emphasizes on the use of inorganic-organic hybrids and combinational therapies for better results and also explores the future opportunities in this field.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla, India,Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| | - Anchal Singhal
- Department of chemistry, St. Joseph College, Banglore, India
| | - Uma Narang
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Sweta Mishra
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Pratibha Kumari
- Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| |
Collapse
|
35
|
Wang Q, Suo Y, Wang X, Wang Y, Tian X, Gao Y, Liu N, Liu R. Study on the mechanism of photodynamic therapy mediated by 5-aminoketovalerate in human ovarian cancer cell line. Lasers Med Sci 2021; 36:1873-1881. [PMID: 33392781 DOI: 10.1007/s10103-020-03226-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 12/16/2020] [Indexed: 12/29/2022]
Abstract
We aimed to investigate the mechanism and effect of photodynamic treatment mediated by 5-aminoketovalerate (5-ALA-PDT) on human ovarian cancer cells (OVCAR3 cells) and to provide a theoretical basis for the subsequent experimental step in vivo. Human ovarian cancer OVCAR3 cells were randomly divided into four groups: control group, laser irradiation alone group, photosensitizer alone group, and photodynamic treatment group. Alterations in cell morphology were observed with an inverted light microscope; cell viability was examined by CCK-8 assays. The ROS content and apoptosis rate were examined by flow cytometry analysis. Western blot was used to detect the expression of apoptosis-related proteins, such as caspase-3, Bax, and Bcl-2, and the expression of cleaved caspase-3 in live cells was detected by a cleaved caspase-3 assay kit. Inverted light microscopy showed alterations in cell morphology in different stages. Comparison with the three other groups indicated that tumor cell proliferation was significantly decreased in the photodynamic treatment group (P < 0.05). Flow cytometry analysis revealed that the content of ROS was higher in the photodynamic group than in the other three groups, and the apoptosis rate was higher in the photodynamic treatment group. The difference compared with the other three groups was statistically significant (P < 0.001). The western blot results indicated that the protein expression of Bcl-2 and caspase-3 was decreased in the photodynamic treatment group, and the protein expression level of Bax was increased (P < 0.05). The expression of cleaved caspase-3 was increased in the photodynamic treatment group compared with the other groups according to the data obtained with a microplate reader. Thus, our results demonstrated that the apoptosis and viability of OVCAR3 cells are altered in response to 5-ALA-PDT; however, no remarkable effects were observed in ovarian cancer cells treated with laser irradiation or photosensitizer alone. 5-ALA-PDT can significantly inhibit the growth of human ovarian cancer cells, and the mechanism of this effect is related to the tumor cell apoptosis mediated by the downregulation of Bcl-2 and caspase-3 and upregulation of Bax protein expression.
Collapse
Affiliation(s)
- Qian Wang
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yuping Suo
- Department of Gynaecology and Obstetrics, Shanxi Provincial People's Hospital, Taiyuan, 030012, Shanxi, China.
| | - Xiaoni Wang
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yulan Wang
- Department of Gynaecology and Obstetrics, Shanxi Provincial People's Hospital, Taiyuan, 030012, Shanxi, China
| | - Xiaojuan Tian
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanxia Gao
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Nannan Liu
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Rui Liu
- Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| |
Collapse
|
36
|
Chaudhuri A, Paul A, Sikder A, Pradeep Singh ND. Single component photoresponsive fluorescent organic nanoparticles: a smart platform for improved biomedical and agrochemical applications. Chem Commun (Camb) 2021; 57:1715-1733. [DOI: 10.1039/d0cc07183h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Single component photoresponsive fluorescent organic nanoparticles for the regulated release of anticancer drugs, antibacterial agents, gasotransmitters, and agrochemicals and as effective PDT agents.
Collapse
Affiliation(s)
- Amrita Chaudhuri
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- 721302 Kharagpur
- India
| | - Amrita Paul
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- 721302 Kharagpur
- India
| | - Antara Sikder
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- 721302 Kharagpur
- India
| | - N. D. Pradeep Singh
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- 721302 Kharagpur
- India
| |
Collapse
|
37
|
Canaparo R, Foglietta F, Limongi T, Serpe L. Biomedical Applications of Reactive Oxygen Species Generation by Metal Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2020; 14:E53. [PMID: 33374476 PMCID: PMC7795539 DOI: 10.3390/ma14010053] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022]
Abstract
The design, synthesis and characterization of new nanomaterials represents one of the most dynamic and transversal aspects of nanotechnology applications in the biomedical field. New synthetic and engineering improvements allow the design of a wide range of biocompatible nanostructured materials (NSMs) and nanoparticles (NPs) which, with or without additional chemical and/or biomolecular surface modifications, are more frequently employed in applications for successful diagnostic, drug delivery and therapeutic procedures. Metal-based nanoparticles (MNPs) including metal NPs, metal oxide NPs, quantum dots (QDs) and magnetic NPs, thanks to their physical and chemical properties have gained much traction for their functional use in biomedicine. In this review it is highlighted how the generation of reactive oxygen species (ROS), which in many respects could be considered a negative aspect of the interaction of MNPs with biological matter, may be a surprising nanotechnology weapon. From the exchange of knowledge between branches such as materials science, nanotechnology, engineering, biochemistry and medicine, researchers and clinicians are setting and standardizing treatments by tuning ROS production to induce cancer or microbial cell death.
Collapse
Affiliation(s)
- Roberto Canaparo
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy; (R.C.); (F.F.)
| | - Federica Foglietta
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy; (R.C.); (F.F.)
| | - Tania Limongi
- Department of Applied Science & Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy;
| | - Loredana Serpe
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria 13, 10125 Torino, Italy; (R.C.); (F.F.)
| |
Collapse
|
38
|
Lin Y, Zhou T, Bai R, Xie Y. Chemical approaches for the enhancement of porphyrin skeleton-based photodynamic therapy. J Enzyme Inhib Med Chem 2020; 35:1080-1099. [PMID: 32329382 PMCID: PMC7241559 DOI: 10.1080/14756366.2020.1755669] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 01/15/2023] Open
Abstract
With the development of photodynamic therapy (PDT), remarkable studies have been conducted to generate photosensitisers (PSs), especially porphyrin PSs. A variety of chemical modifications of the porphyrin skeleton have been introduced to improve cellular delivery, stability, and selectivity for cancerous tissues. This review aims to highlight the developments in porphyrin-based structural modifications, with a specific emphasis on the role of PDT in anticancer treatment and the design of PSs to achieve a synergistic effect on multiple targets.
Collapse
Affiliation(s)
- Yuyan Lin
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Renren Bai
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuanyuan Xie
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
39
|
Alsaab HO, Alghamdi MS, Alotaibi AS, Alzhrani R, Alwuthaynani F, Althobaiti YS, Almalki AH, Sau S, Iyer AK. Progress in Clinical Trials of Photodynamic Therapy for Solid Tumors and the Role of Nanomedicine. Cancers (Basel) 2020; 12:E2793. [PMID: 33003374 PMCID: PMC7601252 DOI: 10.3390/cancers12102793] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 01/03/2023] Open
Abstract
Current research to find effective anticancer treatments is being performed on photodynamic therapy (PDT) with increasing attention. PDT is a very promising therapeutic way to combine a photosensitive drug with visible light to manage different intense malignancies. PDT has several benefits, including better safety and lower toxicity in the treatment of malignant tumors over traditional cancer therapy. This reasonably simple approach utilizes three integral elements: a photosensitizer (PS), a source of light, and oxygen. Upon light irradiation of a particular wavelength, the PS generates reactive oxygen species (ROS), beginning a cascade of cellular death transformations. The positive therapeutic impact of PDT may be limited because several factors of this therapy include low solubilities of PSs, restricting their effective administration, blood circulation, and poor tumor specificity. Therefore, utilizing nanocarrier systems that modulate PS pharmacokinetics (PK) and pharmacodynamics (PD) is a promising approach to bypassing these challenges. In the present paper, we review the latest clinical studies and preclinical in vivo studies on the use of PDT and progress made in the use of nanotherapeutics as delivery tools for PSs to improve their cancer cellular uptake and their toxic properties and, therefore, the therapeutic impact of PDT. We also discuss the effects that photoimmunotherapy (PIT) might have on solid tumor therapeutic strategies.
Collapse
Affiliation(s)
- Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Maha S. Alghamdi
- Department of Pharmaceutical Care, King Abdul-Aziz Specialist Hospital (KAASH), Taif 26521, Saudi Arabia;
| | - Albatool S. Alotaibi
- College of Pharmacy, Taif University, Al Haweiah, Taif 21944, Saudi Arabia; (A.S.A.); (F.A.)
| | - Rami Alzhrani
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Fatimah Alwuthaynani
- College of Pharmacy, Taif University, Al Haweiah, Taif 21944, Saudi Arabia; (A.S.A.); (F.A.)
| | - Yusuf S. Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Atiah H. Almalki
- Department of Pharmaceutical chemistry, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Samaresh Sau
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48021, USA; (S.S.); (A.K.I.)
| | - Arun K. Iyer
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48021, USA; (S.S.); (A.K.I.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
40
|
Pei X, Wang X, Xian J, Mi J, Gao J, Li X, Li Z, Yang M, Bi L, Yan Y, Lv W, Jin H. Metformin and oxyphotodynamic therapy as a novel treatment approach for triple-negative breast cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1138. [PMID: 33240987 PMCID: PMC7576064 DOI: 10.21037/atm-20-5704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Background Treatment for triple-negative breast cancer (TNBC) remains a significant challenge due to a lack of targeted therapies. While photodynamic therapy (PDT) has been utilized as a treatment approach for several types of cancer, oxyphotodynamic therapy (OPDT) is a novel method that improves treatment efficacy by increasing local oxygen concentration. Metformin (MET) has been demonstrated utility as an anti-tumor agent by acting through the adenosine monophosphate-activated protein kinase (AMPK) pathway. We hypothesized that MET in combination with heme, a byproduct of 5-aminolevulinic acid (ALA), may increase cytotoxicity for cancer treatment. This study aimed to investigate the synergistic effect of MET and ALA with PDT or OPDT on TNBC tumorigenic cells. Methods The treatment efficacy and phototoxicity of PDT or OPDT were determined using a cell viability assay. PDT/OPDT experiments were carried out in nine groups based on different combinations and concentrations of ALA and/or MET. To calculate the synergistic effect by compuSyn soft for different groups, cells were incubated with ALA and/or MET at the following concentrations (0, 0.25, 0.5,1, 2, 4, 8, 16, 24, and 32 mM). The fluorescence of ALA-induced protoporphyrin IX (PpIX) and MitoTracker Green were observed under a confocal microscope. Results The optimized therapeutic concentration ratio of ALA and MET was determined to be 1:1. The inhibition of cancer growth (IC50) for each group was 14.03, 10.62, 7.71, 18.27, 22.09, 23.96, 4.57, 10.20, and 8.18 mM, respectively. The combination index (CI) values (fa =0.5) of the last three combination groups (groups 7, 8, and 9) were 0.44, 1.70, and 1.47, respectively. PpIX fluorescence intensity of group 9 (ALA-MET-OPDT group) remained the highest among all groups, indicating an enhanced therapeutic effect. Conclusions This study introduces OPDT as a novel anti-tumor therapy for TNBC. Furthermore, the combined use of ALA and MET had a synergistic anti-tumor effect in TNBC cells when combined with OPDT.
Collapse
Affiliation(s)
- Xiaofeng Pei
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Molecular Imaging Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,The Cancer Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Department of Thoracic Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xiaojin Wang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Molecular Imaging Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Department of Cardiothoracic Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jianzhong Xian
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Molecular Imaging Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jiaoping Mi
- Department of Otolaryngology Head and Neck Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jiebing Gao
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Molecular Imaging Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xinglin Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Molecular Imaging Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Zhijun Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Molecular Imaging Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Min Yang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Molecular Imaging Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Lei Bi
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Molecular Imaging Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Yan Yan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Molecular Imaging Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Weize Lv
- The Cancer Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Department of Thoracic Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Hongjun Jin
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.,Molecular Imaging Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
41
|
Ghazaeian M, Khorsandi K, Hosseinzadeh R, Naderi A, Abrahamse H. Curcumin-silica nanocomplex preparation, hemoglobin and DNA interaction and photocytotoxicity against melanoma cancer cells. J Biomol Struct Dyn 2020; 39:6606-6616. [PMID: 32762410 DOI: 10.1080/07391102.2020.1802342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Melanoma is a malignant cancer of the skin associated with a high mortality. Early medical diagnosis and surgical intervention are essential for the treatment of melanoma. The use of plant-based compounds is an important strategy for the prevention and treatment of different types of cancers. Curcumin is a promising natural anticancer compound used towards treatment for various kinds of cancers. Studies have shown that curcumin could be applied as a photosensitizer in cancer photodynamic therapy (PDT). PDT uses light and a photosensitizing agent which produce reactive oxygen species leading to cancer cell death. The main obstacle for using curcumin as photosensitizer is its low solubilization ability in an aqueous environment. To improve its application in cancer treatment, we synthetized curcumin-silica nanoparticles as photosensitizer for photodynamic treatment of human melanoma cancer cells. Scanning electron microscopy, Transmission electron microscopy, Powder X-ray diffraction and Thermo geometric analysis indicated that curcumin was loaded on silica. The solubility of curcumin in water increased by using silica nanoparticles which wasconfirmed by spectroscopy results. The spectroscopy study confirmed the interaction of curcumin-silica nanocomplex with double strand DNA and no interaction with hemoglobin. The curcumin-silica nanocomplex and curcumin photodynamic effect was investigated on human melanoma cancer cells (A375) and also human fibroblast cells. The cell toxicity experiments showed that the curcumin-silica nanocomplex had greater photodynamic effects on cancer cell death as compared to free curcumin. The apoptotic assay by acridine orange/ethidium bromide (AO/EB) dual staining and colony forming ability confirmed the MTT results. Therefore, these results suggest that the curcumin-silica nanocomplex has great potential to be employed in photodynamic treatment of melanoma cancer.
Collapse
Affiliation(s)
- Mehrgan Ghazaeian
- Department of Chemistry, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran
| | - Reza Hosseinzadeh
- Department of Medical Laser, Medical Laser Research Center, YARA Institute, ACECR, Tehran, Iran
| | - Asieh Naderi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Heidi Abrahamse
- Laser Research Centre, NRF SARChI Chair: Laser Applications in Health, Faculty of Health Sciences, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
42
|
Pang X, Li D, Zhu J, Cheng J, Liu G. Beyond Antibiotics: Photo/Sonodynamic Approaches for Bacterial Theranostics. NANO-MICRO LETTERS 2020; 12:144. [PMID: 34138184 PMCID: PMC7770670 DOI: 10.1007/s40820-020-00485-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/15/2020] [Indexed: 05/04/2023]
Abstract
Rapid evolution and propagation of multidrug resistance among bacterial pathogens are outpacing the development of new antibiotics, but antimicrobial photodynamic therapy (aPDT) provides an excellent alternative. This treatment depends on the interaction between light and photoactivated sensitizer to generate reactive oxygen species (ROS), which are highly cytotoxic to induce apoptosis in virtually all microorganisms without resistance concern. When replacing light with low-frequency ultrasonic wave to activate sensitizer, a novel ultrasound-driven treatment emerges as antimicrobial sonodynamic therapy (aSDT). Recent advances in aPDT and aSDT reveal golden opportunities for the management of multidrug resistant bacterial infections, especially in the theranostic application where imaging diagnosis can be accomplished facilely with the inherent optical characteristics of sensitizers, and the generated ROS by aPDT/SDT cause broad-spectrum oxidative damage for sterilization. In this review, we systemically outline the mechanisms, targets, and current progress of aPDT/SDT for bacterial theranostic application. Furthermore, potential limitations and future perspectives are also highlighted.
Collapse
Affiliation(s)
- Xin Pang
- Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, People's Republic of China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, People's Republic of China.
| | - Dengfeng Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, People's Republic of China
- Amoy Hopeful Biotechnology Co., Ltd, 361027, Xiamen, People's Republic of China
| | - Jing Zhu
- Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, People's Republic of China
| | - Jingliang Cheng
- Henan Key Laboratory of Functional Magnetic Resonance Imaging and Molecular Imaging, Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, People's Republic of China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, 361102, Xiamen, People's Republic of China.
| |
Collapse
|
43
|
Li Q, Ren J, Chen Q, Liu W, Xu Z, Cao Y, Kang Y, Xue P. A HMCuS@MnO 2 nanocomplex responsive to multiple tumor environmental clues for photoacoustic/fluorescence/magnetic resonance trimodal imaging-guided and enhanced photothermal/photodynamic therapy. NANOSCALE 2020; 12:12508-12521. [PMID: 32497157 DOI: 10.1039/d0nr01547d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Hollow mesoporous copper sulfide nanoparticles (HMCuS NPs) are advantageous for loading small-molecule therapeutic drugs coupled with photothermal ablation for synergistic tumor therapy. However, treatment efficacy mediated by HMCuS NPs is not always satisfactory owing to their insensitivity toward the tumor microenvironment (TME), and unpredictable drug leakage may also result in deleterious systemic toxicity. Here, a novel HMCuS@MnO2-based core-shell nanoplatform was developed as a highly efficient TME modulator, which could alleviate tumor hypoxia, deplete the level of intracellular glutathione (GSH) and trigger the dissolution of Mn2+. Moreover, MnO2, in situ grown on the surface of HMCuS, may act as a gatekeeper by forming a stimulus-responsive plug within the mesoporous structure, which effectively prevented the premature release of encapsulated photosensitizer chlorin e6 (Ce6) and was responsive to the acidic TME for demand-based drug release. Under the condition of 660/808 nm dual-wavelength laser irradiation, hyperthermia-mediated photothermal therapy (PTT) and reactive oxygen species (ROS)-mediated photodynamic therapy (PDT) can be triggered for tumor eradication, which were further enhanced upon the modification of the TME. In the meantime, splendid photoacoustic (PA)/fluorescence (FL)/magnetic resonance (MR) imaging properties of HMCuS@MnO2/Ce6 (CMC) NPs could enable the realization of more precise, reliable and on-demand combination therapy. In a word, this study illustrated a promising approach to strengthen the efficacy of HMCuS-based nanotherapeutics, which would definitely promote the further exploitation of smarter nanoplatforms for synergistic disease management.
Collapse
Affiliation(s)
- Qian Li
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Gadzhimagomedova Z, Zolotukhin P, Kit O, Kirsanova D, Soldatov A. Nanocomposites for X-Ray Photodynamic Therapy. Int J Mol Sci 2020; 21:ijms21114004. [PMID: 32503329 PMCID: PMC7312431 DOI: 10.3390/ijms21114004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 01/10/2023] Open
Abstract
Photodynamic therapy (PDT) has long been known as an effective method for treating surface cancer tissues. Although this technique is widely used in modern medicine, some novel approaches for deep lying tumors have to be developed. Recently, deeper penetration of X-rays into tissues has been implemented, which is now known as X-ray photodynamic therapy (XPDT). The two methods differ in the photon energy used, thus requiring the use of different types of scintillating nanoparticles. These nanoparticles are known to convert the incident energy into the activation energy of a photosensitizer, which leads to the generation of reactive oxygen species. Since not all photosensitizers are found to be suitable for the currently used scintillating nanoparticles, it is necessary to find the most effective biocompatible combination of these two agents. The most successful combinations of nanoparticles for XPDT are presented. Nanomaterials such as metal-organic frameworks having properties of photosensitizers and scintillation nanoparticles are reported to have been used as XPDT agents. The role of metal-organic frameworks for applying XPDT as well as the mechanism underlying the generation of reactive oxygen species are discussed.
Collapse
Affiliation(s)
- Zaira Gadzhimagomedova
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (D.K.); (A.S.)
- Correspondence:
| | - Peter Zolotukhin
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia;
| | - Oleg Kit
- Department of Oncology, National Medical Research Centre for Oncology, 344037 Rostov-on-Don, Russia;
| | - Daria Kirsanova
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (D.K.); (A.S.)
| | - Alexander Soldatov
- The Smart Materials Research Institute, Southern Federal University, 344090 Rostov-on-Don, Russia; (D.K.); (A.S.)
| |
Collapse
|
45
|
Machuca A, Garcia‐Calvo E, Anunciação DS, Luque‐Garcia JL. Rhodium Nanoparticles as a Novel Photosensitizing Agent in Photodynamic Therapy against Cancer. Chemistry 2020; 26:7685-7691. [DOI: 10.1002/chem.202001112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/31/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Andres Machuca
- Department of Analytical ChemistryFaculty of Chemical SciencesComplutense University of Madrid Av. Complutense s/n 28040 Madrid Spain
| | - Estefania Garcia‐Calvo
- Department of Analytical ChemistryFaculty of Chemical SciencesComplutense University of Madrid Av. Complutense s/n 28040 Madrid Spain
| | - Daniela S. Anunciação
- Institute of Chemistry and BiotechnologyFederal University of Alagoas Campus A. C. Simões 57072-900 Maceió-AL Brazil
| | - Jose L. Luque‐Garcia
- Department of Analytical ChemistryFaculty of Chemical SciencesComplutense University of Madrid Av. Complutense s/n 28040 Madrid Spain
| |
Collapse
|
46
|
Taheri H, Unal MA, Sevim M, Gurcan C, Ekim O, Ceylan A, Syrgiannis Z, Christoforidis KC, Bosi S, Ozgenç O, Gómez MJ, Turktas Erken M, Soydal Ç, Eroğlu Z, Bitirim CV, Cagin U, Arı F, Ozen A, Kuçuk O, Delogu LG, Prato M, Metin Ö, Yilmazer A. Photocatalytically Active Graphitic Carbon Nitride as an Effective and Safe 2D Material for In Vitro and In Vivo Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904619. [PMID: 31971659 DOI: 10.1002/smll.201904619] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Thanks to its photocatalytic property, graphitic carbon nitride (g-C3 N4 ) is a promising candidate in various applications including nanomedicine. However, studies focusing on the suitability of g-C3 N4 for cancer therapy are very limited and possible underlying molecular mechanisms are unknown. Here, it is demonstrated that photoexcitation of g-C3 N4 can be used effectively in photodynamic therapy, without using any other carrier or additional photosensitizer. Upon light exposure, g-C3 N4 treatment kills cancer cells, without the need of any other nanosystem or chemotherapeutic drug. The material is efficiently taken up by tumor cells in vitro. The transcriptome and proteome of g-C3 N4 and light treated cells show activation in pathways related to both oxidative stress, cell death, and apoptosis which strongly suggests that only when combined with light exposure, g-C3 N4 is able to kill cancer cells. Systemic administration of the mesoporous form results in elimination from urinary bladder without any systemic toxicity. Administration of the material significantly decreases tumor volume when combined with local light treatment. This study paves the way for the future use of not only g-C3 N4 but also other 2D nanomaterials in cancer therapy.
Collapse
Affiliation(s)
- Hadiseh Taheri
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara, 06830, Turkey
| | - Mehmet Altay Unal
- Department of Physical Engineering, Faculty of Engineering, Ankara University, Ankara, 06100, Turkey
- Stem Cell Institute, Ankara University, Ankara, 06520, Turkey
| | - Melike Sevim
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, 25240, Turkey
| | - Cansu Gurcan
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara, 06830, Turkey
- Stem Cell Institute, Ankara University, Ankara, 06520, Turkey
| | - Okan Ekim
- Department of Anatomy, Faculty of Veterinary, Ankara University, Ankara, 06110, Turkey
| | - Ahmet Ceylan
- Department of Histology Embryology, Faculty of Veterinary, Ankara University, Ankara, 06110, Turkey
| | - Zois Syrgiannis
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, 34127, Italy
| | | | - Susanna Bosi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, 34127, Italy
| | - Ozge Ozgenç
- Department of Histology Embryology, Faculty of Veterinary, Ankara University, Ankara, 06110, Turkey
| | - Manuel José Gómez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, 28029, Spain
| | - Mine Turktas Erken
- Department of Biology, Faculty of Science, Cankiri Karatekin University, Cankiri, 18100, Turkey
| | - Çigdem Soydal
- Department of Nuclear Medicine, Faculty of Medicine, Ankara University, Ankara, 06590, Turkey
| | - Zafer Eroğlu
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, 25240, Turkey
| | | | - Umut Cagin
- Genethon and INSERM U951, Evry, 91002, France
| | - Fikret Arı
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Ankara University, Ankara, 06830, Turkey
| | - Asuman Ozen
- Department of Histology Embryology, Faculty of Veterinary, Ankara University, Ankara, 06110, Turkey
| | - Ozlem Kuçuk
- Department of Nuclear Medicine, Faculty of Medicine, Ankara University, Ankara, 06590, Turkey
- Cancer Institute, Ankara University, Ankara, 06590, Turkey
| | - Lucia Gemma Delogu
- Department of Biomedical Sciences, University of Padua, Padua, 35122, Italy
- Institute of Pediatric Research, Città Della Speranza, Padua, 35129, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, 34127, Italy
- Carbon Bionanotechnology Laboratory CIC biomaGUNE, Paseo de Miramón, 182, Donostia-San Sebastian, 20009, Spain
- Basque Foundation for Science, Ikerbasque, Bilbao, 48013, Spain
| | - Önder Metin
- Department of Chemistry, College of Sciences, Koç University, Istanbul, 34450, Turkey
| | - Açelya Yilmazer
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara, 06830, Turkey
- Stem Cell Institute, Ankara University, Ankara, 06520, Turkey
| |
Collapse
|
47
|
Fu X, Yang Z, Deng T, Chen J, Wen Y, Fu X, Zhou L, Zhu Z, Yu C. A natural polysaccharide mediated MOF-based Ce6 delivery system with improved biological properties for photodynamic therapy. J Mater Chem B 2020; 8:1481-1488. [PMID: 31996879 DOI: 10.1039/c9tb02482d] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chlorin e6 (Ce6) is a second generation photosensitizer for photodynamic therapy (PDT). However, free Ce6 still has some defects leading to reduced clinical efficacy, such as easy agglomeration in a physiological environment and poor accumulation in tumor tissue. In order to solve these problems, a hyaluronic acid (HA) modified zeolitic imidazolate framework-8 (ZIF-8) based Ce6 (ZIF-8@Ce6-HA) therapeutic agent is constructed for PDT by one-pot encapsulation and self-assembly. ZIF-8@Ce6-HA exhibits acceptable encapsulation efficiency, effective cell uptake and good biocompatibility. Moreover, the results of in vitro anticancer experiments demonstrated that the ZIF-8@Ce6-HA group exhibited greater cytotoxicity after irradiation than the free Ce6 group, which caused about 88.4% of HepG2 cells to die since ROS is produced by PDT. Additionally, the data of inductively coupled plasma mass spectrometry indicated that modification of HA increased the blood circulation time and reduced the systemic toxicity of ZIF-8@Ce6. In summary, this work created an interesting Ce6 therapeutic agent for PDT and provided the data for HA regarding the improvement in biocompatibility and biological half-life of metal organic frameworks.
Collapse
Affiliation(s)
- Xinwei Fu
- College of Pharmacy, Pharmaceutical Engineering Research Center, Chongqing Medical University, Chongqing 400016, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kyropoulou M, DiLeone S, Lanzilotto A, Constable EC, Housecroft CE, Meier WP, Palivan CG. Porphyrin Containing Polymersomes with Enhanced ROS Generation Efficiency: In Vitro Evaluation. Macromol Biosci 2019; 20:e1900291. [DOI: 10.1002/mabi.201900291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/03/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Myrto Kyropoulou
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| | - Stefano DiLeone
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| | - Angelo Lanzilotto
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| | - Edwin C. Constable
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| | | | - Wolfgang P. Meier
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| | - Cornelia G. Palivan
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| |
Collapse
|
49
|
Photodynamic therapy enhances skin cancer chemotherapy effects through autophagy regulation. Photodiagnosis Photodyn Ther 2019; 28:159-165. [DOI: 10.1016/j.pdpdt.2019.08.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 11/20/2022]
|
50
|
Liu S, Hu Y, Hu C, Xiong Y, Duan M. Quantum yields of singlet oxygen of tetrakis (4-carboxyphenyl) porphyrin in different solvents. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619501207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The singlet oxygen quantum yields of photosensitizers in different solvents are very important for photodynamic therapy (PDT). Here, we investigated the singlet oxygen quantum yields of tetrakis (4-carboxyphenyl) porphyrin (TCPP) in various solvents by the iodide method. Results indicate that TCPP has different singlet oxygen formation efficiency in different solvents. When compared to TCPP dissolved in water, TCPP showed higher singlet oxygen yields in methanol and ethanol, but lower singlet oxygen yields in DMF under identical conditions. In particular, TCPP rapidly precipitated in acetone after potassium iodide added in the solution. The salting out effect of TCPP by potassium iodide in acetone was confirmed by re-dissolving the precipitation in water and the characteristic absorption of TCPP was measured. The phenomenon of salting out for TCPP in acetone suggests that acetone is not a good solvent for singlet oxygen generation when evaluated by the iodide method.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, P. R. China
| | - Yue Hu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Cun Hu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
| | - Yan Xiong
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, P. R. China
| | - Ming Duan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, P. R. China
| |
Collapse
|