1
|
Abstract
One of the original hypotheses of organismal longevity posits that aging is the natural result of entropy on the cells, tissues, and organs of the animal—a slow, inexorable slide into nonfunctionality caused by stochastic degradation of its parts. We now have evidence that aging is instead at least in part genetically regulated. Many mutations have been discovered to extend lifespan in organisms of all complexities, from yeast to mammals. The study of metazoan model organisms, such as Caenorhabditis elegans, has been instrumental in understanding the role of genetics in the cell biology of aging. Longevity mutants across the spectrum of model organisms demonstrate that rates of aging are regulated through genetic control of cellular processes. The regulation and subsequent breakdown of cellular processes represent a programmatic decision by the cell to either continue or abandon maintenance procedures with age. Our understanding of cell biological processes involved in regulating aging have been particularly informed by longevity mutants and treatments, such as reduced insulin/IGF-1 signaling and dietary restriction, which are critical in determining the distinction between causes of and responses to aging and have revealed a set of downstream targets that participate in a range of cell biological activities. Here we briefly review some of these important cellular processes.
Collapse
Affiliation(s)
- Race DiLoreto
- Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Coleen T Murphy
- Department of Molecular Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| |
Collapse
|
2
|
Redler RL, Dokholyan NV. The complex molecular biology of amyotrophic lateral sclerosis (ALS). PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 107:215-62. [PMID: 22482452 DOI: 10.1016/b978-0-12-385883-2.00002-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder that causes selective death of motor neurons followed by paralysis and death. A subset of ALS cases is caused by mutations in the gene for Cu, Zn superoxide dismutase (SOD1), which impart a toxic gain of function to this antioxidant enzyme. This neurotoxic property is widely believed to stem from an increased propensity to misfold and aggregate caused by decreased stability of the native homodimer or a tendency to lose stabilizing posttranslational modifications. Study of the molecular mechanisms of SOD1-related ALS has revealed a complex array of interconnected pathological processes, including glutamate excitotoxicity, dysregulation of neurotrophic factors and axon guidance proteins, axonal transport defects, mitochondrial dysfunction, deficient protein quality control, and aberrant RNA processing. Many of these pathologies are directly exacerbated by misfolded and aggregated SOD1 and/or cytosolic calcium overload, suggesting the primacy of these events in disease etiology and their potential as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rachel L Redler
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
3
|
Poovathingal SK, Gruber J, Halliwell B, Gunawan R. Stochastic drift in mitochondrial DNA point mutations: a novel perspective ex silico. PLoS Comput Biol 2009; 5:e1000572. [PMID: 19936024 PMCID: PMC2771766 DOI: 10.1371/journal.pcbi.1000572] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 10/20/2009] [Indexed: 02/02/2023] Open
Abstract
The mitochondrial free radical theory of aging (mFRTA) implicates Reactive Oxygen Species (ROS)-induced mutations of mitochondrial DNA (mtDNA) as a major cause of aging. However, fifty years after its inception, several of its premises are intensely debated. Much of this uncertainty is due to the large range of values in the reported experimental data, for example on oxidative damage and mutational burden in mtDNA. This is in part due to limitations with available measurement technologies. Here we show that sample preparations in some assays necessitating high dilution of DNA (single molecule level) may introduce significant statistical variability. Adding to this complexity is the intrinsically stochastic nature of cellular processes, which manifests in cells from the same tissue harboring varying mutation load. In conjunction, these random elements make the determination of the underlying mutation dynamics extremely challenging. Our in silico stochastic study reveals the effect of coupling the experimental variability and the intrinsic stochasticity of aging process in some of the reported experimental data. We also show that the stochastic nature of a de novo point mutation generated during embryonic development is a major contributor of different mutation burdens in the individuals of mouse population. Analysis of simulation results leads to several new insights on the relevance of mutation stochasticity in the context of dividing tissues and the plausibility of ROS ”vicious cycle” hypothesis. Aging is characterized by a systemic decline of an organism's capacity in responding to internal and external stresses, leading to increased mortality. The mitochondrial Free Radical Theory of Aging (mFRTA) attributes this decline to the accumulation of damages, in the form of mitochondrial DNA (mtDNA) mutations, caused by free radical byproducts of metabolism. However, there is still a great deal of uncertainty with this theory due to the difficulties in quantifying mtDNA mutation burden. In this modeling study, we have shown that a random drift in mtDNA point mutation during life, in combination with the experimental sampling can explain the variability seen in some of the reported experimental data. Particularly, we found that while the average mutation increases in a linear fashion, the variability in the mutation load data increases over time, and thus a low number of data replicates can often lead to a deceptive inference of the mutation burden dynamics. The model also predicted a significant contribution from the embryonic developmental phase to the accumulation of mtDNA mutation burden. Furthermore, the model revealed that the replication rate of mtDNA is a major determinant of new mutations during development and in fast-dividing tissues.
Collapse
Affiliation(s)
| | - Jan Gruber
- Department of Biochemistry, Neurobiology and Ageing Program, Centre for Life Science (CeLS), Singapore
| | - Barry Halliwell
- Department of Biochemistry, Neurobiology and Ageing Program, Centre for Life Science (CeLS), Singapore
| | - Rudiyanto Gunawan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
4
|
Kraytsberg Y, Simon DK, Turnbull DM, Khrapko K. Do mtDNA deletions drive premature aging in mtDNA mutator mice? Aging Cell 2009; 8:502-6. [PMID: 19416127 DOI: 10.1111/j.1474-9726.2009.00484.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Deletions in mitochondrial DNA (mtDNA) have long been suspected to be involved in mammalian aging, but their role remains controversial. Recent research has demonstrated that relatively higher levels of mtDNA deletions correlate with premature aging in mtDNA mutator mice, which led to the conclusion that premature aging in these mice is driven by mtDNA deletions. However, it is reported here that the absolute level of deletions in mutator mice is quite low, especially when compared with the level of point mutations in these mice. It is thus argued that the available data are insufficient to conclude that mtDNA mutations drive premature aging in mtDNA mutator mice. It remains possible that clonal expansion of mtDNA deletions may result in sufficiently high levels to play a role in age-related dysfunction in some cells, but assessing this possibility will require studies of the distribution of these deletions among different cell types and in individual cells.
Collapse
Affiliation(s)
- Yevgenya Kraytsberg
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | | | | |
Collapse
|
5
|
Huang JH, Hood DA. Age-associated mitochondrial dysfunction in skeletal muscle: Contributing factors and suggestions for long-term interventions. IUBMB Life 2009; 61:201-14. [DOI: 10.1002/iub.164] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H. Trends in oxidative aging theories. Free Radic Biol Med 2007; 43:477-503. [PMID: 17640558 DOI: 10.1016/j.freeradbiomed.2007.03.034] [Citation(s) in RCA: 703] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 03/29/2007] [Accepted: 03/29/2007] [Indexed: 12/11/2022]
Abstract
The early observations on the rate-of-living theory by Max Rubner and the report by Gershman that oxygen free radicals exist in vivo culminated in the seminal proposal in the 1950s by Denham Harman that reactive oxygen species are a cause of aging (free radical theory of aging). The goal of this review is to analyze recent findings relevant in evaluating Harman's theory using experimental results as grouped by model organisms (i.e., invertebrate models and mice). In this regard, we have focused primarily on recent work involving genetic manipulations. Because the free radical theory of aging is not the only theorem proposed to explain the mechanism(s) involved in aging at the molecular level, we also discuss how this theory is related to other areas of research in biogerontology, specifically, telomere/cell senescence, genomic instability, and the mitochondrial hypothesis of aging. We also discuss where we think the free radical theory is headed. It is now possible to give at least a partial answer to the question whether oxidative stress determines life span as Harman posed so long ago. Based on studies to date, we argue that a tentative case for oxidative stress as a life-span determinant can be made in Drosophila melanogaster. Studies in mice argue for a role of oxidative stress in age-related disease, especially cancer; however, with regard to aging per se, the data either do not support or remain inconclusive on whether oxidative stress determines life span.
Collapse
Affiliation(s)
- Florian L Muller
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | | | |
Collapse
|
7
|
|
8
|
Yao YG, Ellison FM, McCoy JP, Chen J, Young NS. Age-dependent accumulation of mtDNA mutations in murine hematopoietic stem cells is modulated by the nuclear genetic background. Hum Mol Genet 2006; 16:286-94. [PMID: 17185390 DOI: 10.1093/hmg/ddl457] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Alterations in mitochondrial DNA (mtDNA) and consequent loss of mitochondrial function underlie the mitochondrial theory of aging. In this study, we systematically analyzed the mtDNA control region somatic mutation pattern in 2864 single hematopoietic stem cells (HSCs) and progenitors, isolated by flow cytometry sorting on Lin(-)Kit(+)CD34(-) parameters from young and old C57BL/6 (B6) and BALB/cBy (BALB) mice, to test the hypothesis that the accumulated mtDNA mutations in HSCs were strain-correlated and associated with HSC functional senescence during aging. An increased level of mtDNA mutations in single HSCs was observed in old B6 when compared with young B6 mice (P=0.003); in contrast, no significant age-dependent accumulation of mutations was observed in BALB mice (old versus young, P=0.202) and the level of mutations in both young and old BALB mice was close to that of old B6 mice (P>0.280). Cellular reactive oxygen species (ROS) in mouse HSCs could not be correlated with the level of mtDNA mutations in these cells, although B6 mice had a higher proportion of ROS(-) cells when compared with the BALB mice. Propagation assays of single HSCs showed B6 cells form larger colonies compared with cells from BALB mice, irrespective of age and mtDNA mutation load. We infer from our data that age-related mtDNA somatic mutation accumulation in mouse HSCs is influenced by the nuclear genetic background and that these mutations may not obviously correlate to either cellular ROS content or HSC senescence.
Collapse
Affiliation(s)
- Yong-Gang Yao
- Hematology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA .
| | | | | | | | | |
Collapse
|
9
|
Abstract
Cellular degradative processes, which include lysosomal (autophagic) and proteasomal degradation, as well as the activity of cytosolic and mitochondrial proteases, provide for a continuous turnover of damaged and obsolete biomolecules and organelles. Inherent insufficiency of these degradative processes results in progressive accumulation within long-lived postmitotic cells of biological "garbage" ("waste" material), such as indigestible protein aggregates, defective mitochondria, and lipofuscin (age pigment), an intralysosomal, polymeric, undegradable material. Intracellular "garbage" is neither completely catabolized, nor exocytosed to any considerable extent. Heavy lipofuscin loading of lysosomes, typical of old age, seems to pronouncedly decrease autophagic potential. As postulated in the mitochondrial-lysosomal axis theory of aging, this occurs on account of the transport of newly synthesized lysosomal enzymes to lipofuscin-loaded lysosomes rather than to active lysosomes/late endosomes, making the enzyme content of autophagolysosomes insufficient for proper degradation. Consequently, the turnover of mitochondria progressively declines, resulting in decreased ATP synthesis and enhanced formation of reactive oxygen species, inducing further mitochondrial damage and additional lipofuscin formation. With advancing age, lipofuscin-loaded lysosomes and defective mitochondria occupy increasingly larger parts of long-lived postmitotic cells, leaving less and less capability for normal turnover and ATP production, finally resulting in cell death.
Collapse
Affiliation(s)
- Alexei Terman
- Division of Experimental Pathology, Linköping University, Sweden.
| |
Collapse
|
10
|
Abstract
The present state of the mitochondrial free radical theory of aging is reviewed. Available studies do not support the hypothesis that antioxidants control the rate of aging because: (a) they correlate inversely with maximum longevity in vertebrates, and (b) increasing their concentration by different methods does not increase maximum lifespan. On the other hand, comparative studies consistently show that long-lived mammals and birds have low rates of mitochondrial reactive oxygen species (ROS) production and low levels of oxidative damage in their mitochondrial DNA. Furthermore, caloric restriction, which extends longevity, also decreases mitochondrial ROS production at complex I and lowers mtDNA oxidative damage. Recent data show that these changes can also be obtained with protein restriction without strong caloric restriction. Another trait of long-lived mammals and birds is the possession of low degrees of unsaturation in their cellular membranes. This is mainly due to minimizing the presence of highly unsaturated fatty acids such as 22:6n-3 and emphasizing the presence of less unsaturated fatty acids such as 18:2n-6 in long-lived animals, without changing the total amount of polyunsaturated fatty acids. This leads to lower levels of lipid peroxidation and lipoxidation-derived protein modification in long-lived species. Taken together, available information is consistent with the predictions of the mitochondrial free radical theory of aging, although definitive proof and many mechanistic details are still lacking.
Collapse
Affiliation(s)
- Alberto Sanz
- Department of Animal Physiology-II, Faculty of Biological Sciences, Complutense University, Madrid, Spain
| | | | | |
Collapse
|
11
|
Smigrodzki RM, Khan SM. Mitochondrial microheteroplasmy and a theory of aging and age-related disease. Rejuvenation Res 2005; 8:172-98. [PMID: 16144471 DOI: 10.1089/rej.2005.8.172] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We implicate a recently described form of mitochondrial mutation, mitochondrial microheteroplasmy, as a candidate for the principal component of aging. Microheteroplasmy is the presence of hundreds of independent mutations in one organism, with each mutation usually found in 1-2% of all mitochondrial genomes. Despite the low abundance of single mutations, the vast majority of mitochondrial genomes in all adults are mutated. This mutational burden includes inherited mutations, de novo germline mutations, as well as somatic mutations acquired either during early embryonic development or later in adult life. We postulate that microheteroplasmy is sufficient to explain the pathomechanism of several age-associated diseases, especially in conditions with known mitochondrial involvement, such as diabetes (DM), cardiovascular disease, Parkinson's disease (PD), and Alzheimer's disease (AD) and cancer. The genetic properties of microheteroplasmy reconcile the results of disease models (cybrids, hypermutable PolG variants and mitochondrial toxins), with the relatively low levels of maternal inheritance in the aforementioned diseases, and provide an explanation of their delayed, progressive course.
Collapse
|
12
|
de Grey ADNJ. The plasma membrane redox system: a candidate source of aging-related oxidative stress. AGE (DORDRECHT, NETHERLANDS) 2005; 27:129-138. [PMID: 23598619 PMCID: PMC3458504 DOI: 10.1007/s11357-005-1630-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Accepted: 05/30/2005] [Indexed: 06/01/2023]
Abstract
The plasma membrane redox system (PMRS) is an electron transport chain in the plasma membrane that transfers electrons from either intra- or extracellular donors to extracellular acceptors. Unlike the superoxide-generating NADPH oxidase of phagocytes and the homologous (but much less active) enzymes found in some other cells, the PMRS is still incompletely characterised at the molecular level. Much is known, however, concerning its function and affinity for both physiological and non-physiological substrates. A role for it in aging, the 'reductive hotspot hypothesis' (RHH), was proposed in 1998 as part of an explanation for the apparently indefinite survival in vivo of cells that have entirely lost mitochondrial respiratory capacity as a result of the accumulation of mitochondrial mutations. Stimulation of the PMRS might allow the cell to maintain redox homeostasis even while continuing to operate the Krebs cycle, which may be advantageous in many ways. However, the PMRS may, like the mitochondrial respiratory chain, be prone to generate superoxide when thus dysregulated - and in this case superoxide would be generated outside the cell, where antioxidant defences are more limited than inside the cell and where much highly oxidisable material is present. Cascades of peroxidation chain reactions initiated by this process may greatly amplify the oxidative stress on the organism that is caused by rare mitochondrially mutant cells. Since such cells increase in abundance with aging (though remaining rare), this is an economical hypothesis to explain the rise in oxidative stress seen in (and generally believed to contribute substantially to) mammalian aging. In an extension of previously published accounts of RHH, I propose here that the lysosomal toxicity of oxidised cholesterol derivatives (oxysterols) may contribute to the toxicity of mitochondrial mutations by affecting lysosomal function in many cell types in the same way as they have been proposed to do in arterial macrophages.
Collapse
|
13
|
|
14
|
|
15
|
de Grey ADNJ. When and Where to Publish Important Findings: A Casualty of Biogerontology's Rise to Respectability. Rejuvenation Res 2005; 8:1-2. [PMID: 15798366 DOI: 10.1089/rej.2005.8.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
de Grey ADNJ. Forces maintaining organellar genomes: is any as strong as genetic code disparity or hydrophobicity? Bioessays 2005; 27:436-46. [PMID: 15770678 DOI: 10.1002/bies.20209] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It remains controversial why mitochondria and chloroplasts retain the genes encoding a small subset of their constituent proteins, despite the transfer of so many other genes to the nucleus. Two candidate obstacles to gene transfer, suggested long ago, are that the genetic code of some mitochondrial genomes differs from the standard nuclear code, such that a transferred gene would encode an incorrect amino acid sequence, and that the proteins most frequently encoded in mitochondria are generally very hydrophobic, which may impede their import after synthesis in the cytosol. More recently it has been suggested that both these interpretations suffer from serious "false positives" and "false negatives": genes that they predict should be readily transferred but which have never (or seldom) been, and genes whose transfer has occurred often or early, even though this is predicted to be very difficult. Here I consider the full known range of ostensibly problematic such genes, with particular reference to the sequences of events that could have led to their present location. I show that this detailed analysis of these cases reveals that they are in fact wholly consistent with the hypothesis that code disparity and hydrophobicity are much more powerful barriers to functional gene transfer than any other. The popularity of the contrary view has led to the search for other barriers that might retain genes in organelles even more powerfully than code disparity or hydrophobicity; one proposal, concerning the role of proteins in redox processes, has received widespread support. I conclude that this abandonment of the original explanations for the retention of organellar genomes has been premature. Several other, relatively minor, obstacles to gene transfer certainly exist, contributing to the retention of relatively many organellar genes in most lineages compared to animal mtDNA, but there is no evidence for obstacles as severe as code disparity or hydrophobicity. One corollary of this conclusion is that there is currently no reason to suppose that engineering nuclear versions of the remaining mammalian mitochondrial genes, a feat that may have widespread biomedical relevance, should require anything other than sequence alterations obviating code disparity and causing modest reductions in hydrophobicity without loss of enzymatic function.
Collapse
Affiliation(s)
- Aubrey D N J de Grey
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK.
| |
Collapse
|