1
|
Rinne C, Soultoukis GA, Oveisi M, Leer M, Schmidt-Bleek O, Burkhardt LM, Bucher CH, Moussa EA, Makhlouf M, Duda GN, Saraiva LR, Schmidt-Bleek K, Schulz TJ. Caloric restriction reduces trabecular bone loss during aging and improves bone marrow adipocyte endocrine function in male mice. Front Endocrinol (Lausanne) 2024; 15:1394263. [PMID: 38904042 PMCID: PMC11188307 DOI: 10.3389/fendo.2024.1394263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Caloric restriction (CR) is a nutritional intervention that increases life expectancy while lowering the risk for cardio-metabolic disease. Its effects on bone health, however, remain controversial. For instance, CR has been linked to increased accumulation of bone marrow adipose tissue (BMAT) in long bones, a process thought to elicit detrimental effects on bone. Qualitative differences have been reported in BMAT in relation to its specific anatomical localization, subdividing it into physiological and potentially pathological BMAT. We here examine the local impact of CR on bone composition, microstructure and its endocrine profile in the context of aging. Methods Young and aged male C57Bl6J mice were subjected to CR for 8 weeks and were compared to age-matched littermates with free food access. We assessed bone microstructure and BMAT by micro-CT, bone fatty acid and transcriptomic profiles, and bone healing. Results CR increased tibial BMAT accumulation and adipogenic gene expression. CR also resulted in elevated fatty acid desaturation in the proximal and mid-shaft regions of the tibia, thus more closely resembling the biochemical lipid profile of the distally located, physiological BMAT. In aged mice, CR attenuated trabecular bone loss, suggesting that CR may revert some aspects of age-related bone dysfunction. Cortical bone, however, was decreased in young mice on CR and remained reduced in aged mice, irrespective of dietary intervention. No negative effects of CR on bone regeneration were evident in either young or aged mice. Discussion Our findings indicate that the timing of CR is critical and may exert detrimental effects on bone biology if administered during a phase of active skeletal growth. Conversely, CR exerts positive effects on trabecular bone structure in the context of aging, which occurs despite substantial accumulation of BMAT. These data suggest that the endocrine profile of BMAT, rather than its fatty acid composition, contributes to healthy bone maintenance in aged mice.
Collapse
Affiliation(s)
- Charlotte Rinne
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - George A. Soultoukis
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München, Germany
| | - Masoome Oveisi
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München, Germany
| | - Marina Leer
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München, Germany
| | - Oskar Schmidt-Bleek
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lisa-Marie Burkhardt
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, Berlin, Germany
| | - Christian H. Bucher
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Georg N. Duda
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Luis R. Saraiva
- Translation Medicine Division, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health Centre for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tim J. Schulz
- Department of Adipocyte Development and Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| |
Collapse
|
2
|
Gureev AP, Andrianova NV, Pevzner IB, Zorova LD, Chernyshova EV, Sadovnikova IS, Chistyakov DV, Popkov VA, Semenovich DS, Babenko VA, Silachev DN, Zorov DB, Plotnikov EY, Popov VN. Dietary restriction modulates mitochondrial DNA damage and oxylipin profile in aged rats. FEBS J 2022; 289:5697-5713. [DOI: 10.1111/febs.16451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/16/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Artem P. Gureev
- Department of Genetics, Cytology and Bioengineering Voronezh State University Voronezh Russia
- Laboratory of Metagenomics and Food Biotechnology Voronezh State University of Engineering Technology Voronezh Russia
| | - Nadezda V. Andrianova
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
| | - Irina B. Pevzner
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology Moscow Russia
| | - Ljubava D. Zorova
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology Moscow Russia
| | | | - Irina S. Sadovnikova
- Department of Genetics, Cytology and Bioengineering Voronezh State University Voronezh Russia
| | - Dmitry V. Chistyakov
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
| | - Vasily A. Popkov
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology Moscow Russia
| | - Dmitry S. Semenovich
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
| | - Valentina A. Babenko
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology Moscow Russia
| | - Denis N. Silachev
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology Moscow Russia
| | - Dmitry B. Zorov
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology Moscow Russia
| | - Egor Y. Plotnikov
- Belozersky Institute of Physico‐Chemical Biology Lomonosov Moscow State University Moscow Russia
- Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology Moscow Russia
| | - Vasily N. Popov
- Department of Genetics, Cytology and Bioengineering Voronezh State University Voronezh Russia
- Laboratory of Metagenomics and Food Biotechnology Voronezh State University of Engineering Technology Voronezh Russia
| |
Collapse
|
3
|
Zhou Z, Hagopian K, López-Domínguez JA, Kim K, Jasoliya M, Roberts MN, Cortopassi GA, Showalter MR, Roberts BS, González-Reyes JA, Baar K, Rutkowsky J, Ramsey JJ. A ketogenic diet impacts markers of mitochondrial mass in a tissue specific manner in aged mice. Aging (Albany NY) 2021; 13:7914-7930. [PMID: 33735837 PMCID: PMC8034930 DOI: 10.18632/aging.202834] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022]
Abstract
Declines in mitochondrial mass are thought to be a hallmark of mammalian aging, and a ketogenic diet (KD) may prevent the age-related decreases in mitochondrial content. The objective of this study was to investigate the impact of a KD on markers of mitochondrial mass. Mice were fed an isocaloric control diet (CD) or KD from 12 months of age. Tissues were collected after 1 month and 14 months of intervention, and a panel of commonly used markers of mitochondrial mass (mitochondrial enzyme activities and levels, mitochondrial to nuclear DNA ratio, and cardiolipin content) were measured. Our results showed that a KD stimulated activities of marker mitochondrial enzymes including citrate synthase, Complex I, and Complex IV in hindlimb muscle in aged mice. KD also increased the activity of citrate synthase and prevented an age-related decrease in Complex IV activity in aged brain. No other markers were increased in these tissues. Furthermore, the impacts of a KD on liver and kidney were mixed with no pattern indicative of a change in mitochondrial mass. In conclusion, results of the present study suggest that a KD induces tissue-specific changes in mitochondrial enzyme activities, or structure, rather than global changes in mitochondrial mass across tissues.
Collapse
Affiliation(s)
- Zeyu Zhou
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Kevork Hagopian
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - José A. López-Domínguez
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Kyoungmi Kim
- Department of Public Health Sciences, School of Medicine, University of California, Davis, CA 95617, USA
| | - Mittal Jasoliya
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Megan N. Roberts
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Gino A. Cortopassi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Megan R. Showalter
- NIH-West Coast Metabolomics Center, University of California, Davis, CA 95616, USA
| | - Bryan S. Roberts
- NIH-West Coast Metabolomics Center, University of California, Davis, CA 95616, USA
| | - José A. González-Reyes
- Department of Cell Biology, Physiology and Immunology, Campus de Excelencia Internacional Agroalimentario, ceiA3, University of Córdoba, Córdoba, Spain
| | - Keith Baar
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA
| | - Jennifer Rutkowsky
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Jon J. Ramsey
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
4
|
Carteri RB, Menegassi LN, Feldmann M, Kopczynski A, Rodolphi MS, Strogulski NR, Almeida AS, Marques DM, Porciúncula LO, Portela LV. Intermittent fasting promotes anxiolytic-like effects unrelated to synaptic mitochondrial function and BDNF support. Behav Brain Res 2021; 404:113163. [PMID: 33549686 DOI: 10.1016/j.bbr.2021.113163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/05/2023]
Abstract
Anxiety disorders are linked to mitochondrial dysfunction and decreased neurotrophic support. Since anxiolytic drugs target mitochondria, non-pharmacological approaches to improve mitochondrial metabolism such as intermittent fasting (IF) may cause parallel behavioral benefits against anxiety disorders. Here, we investigated whether a chronic IF regimen could induce anxiolytic-like effects concomitantly to modulation in mitochondrial bioenergetics and trophic signaling in mice brain. A total of 44 Male C57BL/6 J mice (180 days old) were assigned to two dietary regimens: a normal, ad libitum diet (AL group) and an alternate-day fasting (IF group), where animals underwent 10 cycles of 24 h food restriction followed by 24 h ad libitum access. Animals underwent the open field test, dark/light box and elevated plus maze tasks. Isolated nerve terminals were obtained from mice brain and used for mitochondrial respirometry, hydrogen peroxide production and assessment of membrane potential dynamics, calcium handling and western blotting. We showed that IF significantly alters total daily food intake and food consumption patterns but not body weight. There were no differences in the exploratory and locomotory parameters. Remarkably, animals from IF showed decreased anxiety-like behavior. Mitochondrial metabolic responses in different coupling states and parameters linked with H2O2 production, Ca2+ buffering and electric gradient were not different between groups. Finally, no alterations in molecular indicators of apoptotic death (Bax/Bcl-2 ratio) and neuroplasticity (proBDNF/BDNF and synaptophysin were observed). In conclusion, IF exerts anxiolytic-like effect not associated with modulation in synaptic neuronergetics or expression of neurotrophic proteins. These results highlight a potential benefit of intermittent fasting as a nutritional intervention in anxiety-related disorders.
Collapse
Affiliation(s)
- Randhall B Carteri
- Laboratório de Neurotrauma e Biomarcadores - Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; Centro Universitário Metodista - Instituto Porto Alegre (IPA), Porto Alegre, Brazil.
| | - Lizia Nardi Menegassi
- Laboratório de Neurotrauma e Biomarcadores - Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Marceli Feldmann
- Laboratório de Neurotrauma e Biomarcadores - Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Afonso Kopczynski
- Laboratório de Neurotrauma e Biomarcadores - Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Marcelo Salimen Rodolphi
- Laboratório de Neurotrauma e Biomarcadores - Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Nathan Ryzewski Strogulski
- Laboratório de Neurotrauma e Biomarcadores - Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Amanda Staldoni Almeida
- Laboratório de Estudos sobre o Sistema Purinérgico - Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Daniela Melo Marques
- Laboratório de Estudos sobre o Sistema Purinérgico - Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Lisiane O Porciúncula
- Laboratório de Estudos sobre o Sistema Purinérgico - Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Luis Valmor Portela
- Laboratório de Neurotrauma e Biomarcadores - Departamento de Bioquímica, Programa de Pós-Graduação em Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Onyango IG, Bennett JP, Stokin GB. Regulation of neuronal bioenergetics as a therapeutic strategy in neurodegenerative diseases. Neural Regen Res 2021; 16:1467-1482. [PMID: 33433460 PMCID: PMC8323696 DOI: 10.4103/1673-5374.303007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are a heterogeneous group of debilitating disorders with multifactorial etiologies and pathogeneses that manifest distinct molecular mechanisms and clinical manifestations with abnormal protein dynamics and impaired bioenergetics. Mitochondrial dysfunction is emerging as an important feature in the etiopathogenesis of these age-related neurodegenerative diseases. The prevalence and incidence of these diseases is on the rise with the increasing global population and average lifespan. Although many therapeutic approaches have been tested, there are currently no effective treatment routes for the prevention or cure of these diseases. We present the current status of our knowledge and understanding of the involvement of mitochondrial dysfunction in these diseases and highlight recent advances in novel therapeutic strategies targeting neuronal bioenergetics as potential approach for treating these diseases.
Collapse
Affiliation(s)
- Isaac G Onyango
- Center for Translational Medicine, International Clinical Research Centre (ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - James P Bennett
- Neurodegeneration Therapeutics, 3050A Berkmar Drive, Charlottesville, VA, USA
| | - Gorazd B Stokin
- Center for Translational Medicine, International Clinical Research Centre (ICRC), St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
6
|
Bigland MJ, Brichta AM, Smith DW. Effects of Ageing on the Mitochondrial Genome in Rat Vestibular Organs. Curr Aging Sci 2019; 11:108-117. [PMID: 30777575 PMCID: PMC6388513 DOI: 10.2174/1874609811666180830143358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/21/2018] [Accepted: 08/01/2018] [Indexed: 01/07/2023]
Abstract
Background: Deterioration in vestibular function occurs with ageing and is linked to age-related falls. Sensory hair cells located in the inner ear vestibular labyrinth are critical to vestibular function. Vestibular hair cells rely predominantly on oxidative phosphorylation (OXPHOS) for ener-gy production and contain numerous mitochondria. Mitochondrial DNA (mtDNA) mutations and perturbed energy production are associated with the ageing process. Objective: We investigated the effects of ageing on mtDNA in vestibular hair and support cells, and vestibular organ gene expression, to better understand mechanisms of age-related vestibular deficits. Methods: Vestibular hair and supporting cell layers were microdissected from young and old rats, and mtDNA was quantified by qPCR. Additionally, vestibular organ gene expression was analysed by microarray and gene set enrichment analyses. Results: In contrast to most other studies, we found no evidence of age-related mtDNA deletion mu-tations. However, we found an increase in abundance of major arc genes near the mtDNA control re-gion. There was also a marked age-related reduction in mtDNA copy number in both cell types. Ves-tibular organ gene expression, gene set enrichment analysis showed the OXPHOS pathway was down regulated in old animals. Conclusion: Given the importance of mtDNA to mitochondrial OXPHOS and hair cell function, our findings suggest the vestibular organs are potentially on the brink of an energy crisis in old animals
Collapse
Affiliation(s)
- Mark J Bigland
- Neurobiology of Ageing and Dementia Laboratory, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.,Preclinical Neurobiology Program, Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Alan M Brichta
- Neurobiology of Ageing and Dementia Laboratory, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.,Preclinical Neurobiology Program, Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Doug W Smith
- Neurobiology of Ageing and Dementia Laboratory, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia.,Preclinical Neurobiology Program, Priority Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
7
|
Osborne B, Brandon AE, Smith GC, Turner N. Impact of Lifestyle and Clinical Interventions on Mitochondrial Function in Obesity and Type 2 Diabetes. MITOCHONDRIA IN OBESITY AND TYPE 2 DIABETES 2019:367-397. [DOI: 10.1016/b978-0-12-811752-1.00016-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Onyango IG. Modulation of mitochondrial bioenergetics as a therapeutic strategy in Alzheimer's disease. Neural Regen Res 2018; 13:19-25. [PMID: 29451200 PMCID: PMC5840984 DOI: 10.4103/1673-5374.224362] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2018] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is an increasingly pressing worldwide public-health, social, political and economic concern. Despite significant investment in multiple traditional therapeutic strategies that have achieved success in preclinical models addressing the pathological hallmarks of the disease, these efforts have not translated into any effective disease-modifying therapies. This could be because interventions are being tested too late in the disease process. While existing therapies provide symptomatic and clinical benefit, they do not fully address the molecular abnormalities that occur in AD neurons. The pathophysiology of AD is complex; mitochondrial bioenergetic deficits and brain hypometabolism coupled with increased mitochondrial oxidative stress are antecedent and potentially play a causal role in the disease pathogenesis. Dysfunctional mitochondria accumulate from the combination of impaired mitophagy, which can also induce injurious inflammatory responses, and inadequate neuronal mitochondrial biogenesis. Altering the metabolic capacity of the brain by modulating/potentiating its mitochondrial bioenergetics may be a strategy for disease prevention and treatment. We present insights into the mechanisms of mitochondrial dysfunction in AD brain as well as an overview of emerging treatments with the potential to prevent, delay or reverse the neurodegenerative process by targeting mitochondria.
Collapse
|
9
|
Herbst A, Widjaja K, Nguy B, Lushaj EB, Moore TM, Hevener AL, McKenzie D, Aiken JM, Wanagat J. Digital PCR Quantitation of Muscle Mitochondrial DNA: Age, Fiber Type, and Mutation-Induced Changes. J Gerontol A Biol Sci Med Sci 2017; 72:1327-1333. [PMID: 28460005 DOI: 10.1093/gerona/glx058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/21/2017] [Indexed: 01/07/2023] Open
Abstract
Definitive quantitation of mitochondrial DNA (mtDNA) and mtDNA deletion mutation abundances would help clarify the role of mtDNA instability in aging. To more accurately quantify mtDNA, we applied the emerging technique of digital polymerase chain reaction to individual muscle fibers and muscle homogenates from aged rodents. Individual fiber mtDNA content correlated with fiber type and decreased with age. We adapted a digital polymerase chain reaction deletion assay that was accurate in mixing experiments to a mutation frequency of 0.03% and quantitated an age-induced increase in deletion frequency from rat muscle homogenates. Importantly, the deletion frequency measured in muscle homogenates strongly correlated with electron transport chain-deficient fiber abundance determined by histochemical analyses. These data clarify the temporal accumulation of mtDNA deletions that lead to electron chain-deficient fibers, a process culminating in muscle fiber loss.
Collapse
Affiliation(s)
- Allen Herbst
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Canada
| | - Kevin Widjaja
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Beatrice Nguy
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Entela B Lushaj
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison
| | - Timothy M Moore
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Andrea L Hevener
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Judd M Aiken
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Canada
| | - Jonathan Wanagat
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles
| |
Collapse
|
10
|
Janssen BG, Byun HM, Gyselaers W, Lefebvre W, Baccarelli AA, Nawrot TS. Placental mitochondrial methylation and exposure to airborne particulate matter in the early life environment: An ENVIRONAGE birth cohort study. Epigenetics 2016; 10:536-44. [PMID: 25996590 PMCID: PMC4623402 DOI: 10.1080/15592294.2015.1048412] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Most research to date has focused on epigenetic modifications in the nuclear genome, with little attention devoted to mitochondrial DNA (mtDNA). Placental mtDNA content has been shown to respond to environmental exposures that induce oxidative stress, including airborne particulate matter (PM). Damaged or non-functioning mitochondria are specifically degraded through mitophagy, exemplified by lower mtDNA content, and could be primed by epigenetic modifications in the mtDNA. We studied placental mtDNA methylation in the context of the early life exposome. We investigated placental tissue from 381 mother-newborn pairs that were enrolled in the ENVIRONAGE birth cohort. We determined mtDNA methylation by bisulfite-pyrosequencing in 2 regions, i.e., the D-loop control region and 12S rRNA (MT-RNR1), and measured mtDNA content by qPCR. PM2.5 exposure was calculated for each participant's home address using a dispersion model. An interquartile range (IQR) increment in PM2.5 exposure over the entire pregnancy was positively associated with mtDNA methylation (MT-RNR1: +0.91%, P = 0.01 and D-loop: +0.21%, P = 0.05) and inversely associated with mtDNA content (relative change of −15.60%, P = 0.001) in placental tissue. mtDNA methylation was estimated to mediate 54% [P = 0.01 (MT-RNR1)] and 27% [P = 0.06 (D-loop)] of the inverse association between PM2.5 exposure and mtDNA content. This study provides new insight into the mechanisms of altered mitochondrial function in the early life environment. Epigenetic modifications in the mitochondrial genome, especially in the MT-RNR1 region, substantially mediate the association between PM2.5 exposure during gestation and placental mtDNA content, which could reflect signs of mitophagy and mitochondrial death.
Collapse
Affiliation(s)
- Bram G Janssen
- a Centre for Environmental Sciences; Hasselt University ; Diepenbeek , Belgium
| | | | | | | | | | | |
Collapse
|
11
|
Picca A, Lezza AMS. Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions: Useful insights from aging and calorie restriction studies. Mitochondrion 2015; 25:67-75. [PMID: 26437364 DOI: 10.1016/j.mito.2015.10.001] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/24/2015] [Accepted: 10/01/2015] [Indexed: 11/24/2022]
Abstract
Mitochondrial biogenesis is regulated to adapt mitochondrial population to cell energy demands. Mitochondrial transcription factor A (TFAM) performs several functions for mtDNA and interactions between TFAM and mtDNA participate to regulation of mitochondrial biogenesis. Such interactions are modulated through different mechanisms: regulation of TFAM expression and turnover, modulation of TFAM binding activity to mtDNA through post-translational modifications and differential affinity of TFAM, occurrence of TFAM sliding on mtDNA filaments and of cooperative binding among TFAM molecules, modulation of protein-protein interactions. The tissue-specific regulation of mitochondrial biogenesis in aging and calorie restriction (CR) highlights the relevance of modulation of TFAM-mtDNA interactions.
Collapse
Affiliation(s)
- Anna Picca
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70125, Bari, Italy
| | - Angela Maria Serena Lezza
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70125, Bari, Italy.
| |
Collapse
|
12
|
Song J, Kang SM, Lee WT, Park KA, Lee KM, Lee JE. Glutathione protects brain endothelial cells from hydrogen peroxide-induced oxidative stress by increasing nrf2 expression. Exp Neurobiol 2014; 23:93-103. [PMID: 24737944 PMCID: PMC3984961 DOI: 10.5607/en.2014.23.1.93] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/05/2014] [Accepted: 03/05/2014] [Indexed: 01/20/2023] Open
Abstract
Glutathione (GSH) protects cells against oxidative stress by playing an antioxidant role. Protecting brain endothelial cells under oxidative stress is key to treating cerebrovascular diseases and neurodegenerative diseases including Alzheimer's disease and Huntington's disease. In present study, we investigated the protective effect of GSH on brain endothelial cells against hydrogen peroxide (H2O2). We showed that GSH attenuates H2O2-induced production of nitric oxide (NO), reactive oxygen species (ROS), and 8-Oxo-2'-deoxyguanosine (8-OHdG), an oxidized form of deoxiguanosine. GSH also prevents H2O2-induced reduction of tight junction proteins. Finally, GSH increases the level of nuclear factor erythroid 2-related factor 2 (Nrf2) and activates Nrf2-mediated signaling pathways. Thus, GSH is a promising target to protect brain endothelial cells in conditions of brain injury and disease.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-572, Korea
| | - So Mang Kang
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-572, Korea. ; BK21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 120-572, Korea
| | - Won Taek Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-572, Korea
| | - Kyung Ah Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-572, Korea
| | - Kyoung Min Lee
- Department of Neurology, Seoul National University College of Medicine, Seoul 110-744, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul 120-572, Korea. ; BK21 Plus Project for Medical Sciences, Yonsei University College of Medicine, Seoul 120-572, Korea
| |
Collapse
|
13
|
Picca A, Pesce V, Fracasso F, Joseph AM, Leeuwenburgh C, Lezza AMS. A comparison among the tissue-specific effects of aging and calorie restriction on TFAM amount and TFAM-binding activity to mtDNA in rat. Biochim Biophys Acta Gen Subj 2014; 1840:2184-91. [PMID: 24631828 DOI: 10.1016/j.bbagen.2014.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/03/2014] [Accepted: 03/05/2014] [Indexed: 01/30/2023]
Abstract
BACKGROUND Mitochondrial Transcription Factor A (TFAM) is regarded as a histone-like protein of mitochondrial DNA (mtDNA), performing multiple functions for this genome. Aging affects mitochondria in a tissue-specific manner and only calorie restriction (CR) is able to delay or prevent the onset of several age-related changes also in mitochondria. METHODS Samples of the frontal cortex and soleus skeletal muscle from 6- and 26-month-old ad libitum-fed and 26-month-old calorie-restricted rats and of the livers from 18- and 28-month-old ad libitum-fed and 28-month-old calorie-restricted rats were used to detect TFAM amount, TFAM-binding to mtDNA and mtDNA content. RESULTS We found an age-related increase in TFAM amount in the frontal cortex, not affected by CR, versus an age-related decrease in the soleus and liver, fully prevented by CR. The semi-quantitative analysis of in vivo binding of TFAM to specific mtDNA regions, by mtDNA immunoprecipitation assay and following PCR, showed a marked age-dependent decrease in TFAM-binding activity in the frontal cortex, partially prevented by CR. An age-related increase in TFAM-binding to mtDNA, fully prevented by CR, was found in the soleus and liver. MtDNA content presented a common age-related decrease, completely prevented by CR in the soleus and liver, but not in the frontal cortex. CONCLUSIONS The modulation of TFAM expression, TFAM-binding to mtDNA and mtDNA content with aging and CR showed a trend shared by the skeletal muscle and liver, but not by the frontal cortex counterpart. GENERAL SIGNIFICANCE Aging and CR appear to induce similar mitochondrial molecular mechanisms in the skeletal muscle and liver, different from those elicited in the frontal cortex.
Collapse
Affiliation(s)
- Anna Picca
- Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, 2004 Mowry Rd, Gainesville, FL 32611, USA
| | - Vito Pesce
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Flavio Fracasso
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Anna-Maria Joseph
- Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, 2004 Mowry Rd, Gainesville, FL 32611, USA
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, 2004 Mowry Rd, Gainesville, FL 32611, USA
| | - Angela Maria Serena Lezza
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70125 Bari, Italy.
| |
Collapse
|
14
|
Torres-Gonzalez M, Gawlowski T, Kocalis H, Scott BT, Dillmann WH. Mitochondrial 8-oxoguanine glycosylase decreases mitochondrial fragmentation and improves mitochondrial function in H9C2 cells under oxidative stress conditions. Am J Physiol Cell Physiol 2013; 306:C221-9. [PMID: 24304833 DOI: 10.1152/ajpcell.00140.2013] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The mitochondrial DNA base modification 8-hydroxy 2'-deoxyguanine (8-OHdG) is one of the most common DNA lesions induced by reactive oxygen species (ROS) and is considered an index of DNA damage. High levels of mitochondrial 8-OHdG have been correlated with increased mutation, deletion, and loss of mitochondrial (mt) DNA, as well as apoptosis. 8-Oxoguanosine DNA glycosylase-1 (OGG1) recognizes and removes 8-OHdG to prevent further DNA damage. We evaluated the effects of OGG1 on mtDNA damage, mitochondrial function, and apoptotic events induced by oxidative stress using H9C2 cardiac cells treated with menadione and transduced with either Adv-Ogg1 or Adv-Control (empty vector). The levels of mtDNA 8-OHdG and the presence of apurinic/apyrimidinic (AP) sites were decreased by 30% and 35%, respectively, in Adv-Ogg1 transduced cells (P < 0.0001 and P < 0.005, respectively). In addition, the expression of base excision repair (BER) pathway members APE1 and DNA polymerase γ was upregulated by Adv-Ogg1 transduction. Cells overexpressing Ogg1 had increased membrane potential (P < 0.05) and decreased mitochondrial fragmentation (P < 0.005). The mtDNA content was found to be higher in cells with increased OGG1 (P < 0.005). The protein levels of fission and apoptotic factors such as DRP1, FIS1, cytoplasmic cytochrome c, activated caspase-3, and activated caspase-9 were lower in Adv-Ogg1 transduced cells. These observations suggest that Ogg1 overexpression may be an important mechanism to protect cardiac cells against oxidative stress damage.
Collapse
|
15
|
Picca A, Fracasso F, Pesce V, Cantatore P, Joseph AM, Leeuwenburgh C, Gadaleta MN, Lezza AMS. Age- and calorie restriction-related changes in rat brain mitochondrial DNA and TFAM binding. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1607-20. [PMID: 22945739 PMCID: PMC3776104 DOI: 10.1007/s11357-012-9465-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/27/2012] [Indexed: 06/01/2023]
Abstract
Aging markedly affects mitochondrial biogenesis and functions particularly in tissues highly dependent on the organelle's bioenergetics capability such as the brain's frontal cortex. Calorie restriction (CR) diet is, so far, the only intervention able to delay or prevent the onset of several age-related alterations in different organisms. We determined the contents of mitochondrial transcription factor A (TFAM), mitochondrial DNA (mtDNA), and the 4.8-kb mtDNA deletion in the frontal cortex from young (6-month-old) and aged (26-month-old), ad libitum-fed (AL) and calorie-restricted (CR), rats. We found a 70 % increase in TFAM amount, a 25 % loss in mtDNA content, and a 35 % increase in the 4.8-kb deletion content in the aged AL animals with respect to the young rats. TFAM-specific binding to six mtDNA regions was analyzed by mtDNA immunoprecipitation and semiquantitative polymerase chain reaction (PCR), showing a marked age-related decrease. Quantitative real-time PCR at two subregions involved in mtDNA replication demonstrated, in aged AL rats, a remarkable decrease (60-70 %) of TFAM-bound mtDNA. The decreased TFAM binding is a novel finding that may explain the mtDNA loss in spite of the compensatory TFAM increased amount. In aged CR rats, TFAM amount increased and mtDNA content decreased with respect to young rats' values, but the extent of the changes was smaller than in aged AL rats. Attenuation of the age-related effects due to the diet in the CR animals was further evidenced by the unchanged content of the 4.8-kb deletion with respect to that of young animals and by the partial prevention of the age-related decrease in TFAM binding to mtDNA.
Collapse
Affiliation(s)
- Anna Picca
- />Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Flavio Fracasso
- />Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Vito Pesce
- />Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Via Orabona, 4, 70125 Bari, Italy
| | - Palmiro Cantatore
- />Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Via Orabona, 4, 70125 Bari, Italy
- />Institute of Biomembranes and Bioenergetics, CNR-National Research Council of Italy, Via Amendola, 165/A, 70126 Bari, Italy
| | - Anna-Maria Joseph
- />Division of Biology of Aging, Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL USA
| | - Christiaan Leeuwenburgh
- />Division of Biology of Aging, Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL USA
| | - Maria Nicola Gadaleta
- />Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Via Orabona, 4, 70125 Bari, Italy
- />Institute of Biomembranes and Bioenergetics, CNR-National Research Council of Italy, Via Amendola, 165/A, 70126 Bari, Italy
| | - Angela Maria Serena Lezza
- />Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Via Orabona, 4, 70125 Bari, Italy
| |
Collapse
|
16
|
Picca A, Pesce V, Fracasso F, Joseph AM, Leeuwenburgh C, Lezza AMS. Aging and calorie restriction oppositely affect mitochondrial biogenesis through TFAM binding at both origins of mitochondrial DNA replication in rat liver. PLoS One 2013; 8:e74644. [PMID: 24058615 PMCID: PMC3772924 DOI: 10.1371/journal.pone.0074644] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/02/2013] [Indexed: 11/19/2022] Open
Abstract
Aging affects mitochondria in a tissue-specific manner. Calorie restriction (CR) is, so far, the only intervention able to delay or prevent the onset of several age-related changes also in mitochondria. Using livers from middle age (18-month-old), 28-month-old and 32-month-old ad libitum-fed and 28-month-old calorie-restricted rats we found an age-related decrease in mitochondrial DNA (mtDNA) content and mitochondrial transcription factor A (TFAM) amount, fully prevented by CR. We revealed also an age-related decrease, completely prevented by CR, for the proteins PGC-1α NRF-1 and cytochrome c oxidase subunit IV, supporting the efficiency of CR to forestall the age-related decrease in mitochondrial biogenesis. Furthermore, CR counteracted the age-related increase in oxidative damage to proteins, represented by the increased amount of oxidized peroxiredoxins (PRX-SO3) in the ad libitum-fed animals. An unexpected age-related decrease in the mitochondrial proteins peroxiredoxin III (Prx III) and superoxide dismutase 2 (SOD2), usually induced by increased ROS and involved in mitochondrial biogenesis, suggested a prevailing relevance of the age-reduced mitochondrial biogenesis above the induction by ROS in the regulation of expression of these genes with aging. The partial prevention of the decrease in Prx III and SOD2 proteins by CR also supported the preservation of mitochondrial biogenesis in the anti-aging action of CR. To investigate further the age- and CR-related effects on mitochondrial biogenesis we analyzed the in vivo binding of TFAM to specific mtDNA regions and demonstrated a marked increase in the TFAM-bound amounts of mtDNA at both origins of replication with aging, fully prevented by CR. A novel, positive correlation between the paired amounts of TFAM-bound mtDNA at these sub-regions was found in the joined middle age ad libitum-fed and 28-month-old calorie-restricted groups, but not in the 28-month-old ad libitum-fed counterpart suggesting a quite different modulation of TFAM binding at both origins of replication in aging and CR.
Collapse
Affiliation(s)
- Anna Picca
- Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, Gainesville, United States of America
| | - Vito Pesce
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Flavio Fracasso
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Anna-Maria Joseph
- Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, Gainesville, United States of America
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Institute on Aging, Division of Biology of Aging, University of Florida, Gainesville, United States of America
| | - Angela M. S. Lezza
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
17
|
|
18
|
Lu J, E L, Wang W, Frontera J, Zhu H, Wang WT, Lee P, Choi IY, Brooks WM, Burns JM, Aires D, Swerdlow RH. Alternate day fasting impacts the brain insulin-signaling pathway of young adult male C57BL/6 mice. J Neurochem 2011; 117:154-63. [PMID: 21244426 DOI: 10.1111/j.1471-4159.2011.07184.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dietary restriction (DR) has recognized health benefits that may extend to brain. We examined how DR affects bioenergetics-relevant enzymes and signaling pathways in the brains of C57BL/6 mice. Five-month-old male mice were placed in ad libitum or one of two repeated fasting and refeeding (RFR) groups, an alternate day (intermittent fed; IF) or alternate day plus antioxidants (blueberry, pomegranate, and green tea extracts) (IF + AO) fed group. During the 24-h fast blood glucose levels initially fell but stabilized within 6 h of starting the fast, thus avoiding frank hypoglycemia. DR in general appeared to enhance insulin sensitivity. After six weeks brain AKT and glycogen synthase kinase 3 beta phosphorylation were lower in the RFR mice, suggesting RFR reduced brain insulin-signaling pathway activity. Pathways that mediate mitochondrial biogenesis were not activated; AMP kinase phosphorylation, silent information regulator 2 phosphorylation, peroxisomal proliferator-activated receptor-gamma coactivator 1 alpha levels, and cytochrome oxidase subunit 4 levels did not change. ATP levels also did not decline, which suggests the RFR protocols did not directly impact brain bioenergetics. Antioxidant supplementation did not affect the brain parameters we evaluated. Our data indicate in young adult male C57BL/6 mice, RFR primarily affects brain energy metabolism by reducing brain insulin signaling, which potentially results indirectly as a consequence of reduced peripheral insulin production.
Collapse
Affiliation(s)
- Jianghua Lu
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Swerdlow RH. Role and treatment of mitochondrial DNA-related mitochondrial dysfunction in sporadic neurodegenerative diseases. Curr Pharm Des 2011; 17:3356-73. [PMID: 21902672 PMCID: PMC3351798 DOI: 10.2174/138161211798072535] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 08/26/2011] [Indexed: 12/12/2022]
Abstract
Several sporadic neurodegenerative diseases display phenomena that directly or indirectly relate to mitochondrial function. Data suggesting altered mitochondrial function in these diseases could arise from mitochondrial DNA (mtDNA) are reviewed. Approaches for manipulating mitochondrial function and minimizing the downstream consequences of mitochondrial dysfunction are discussed.
Collapse
Affiliation(s)
- Russell H Swerdlow
- Department of Neurology, University of Kansas School of Medicine, Kansas City, 66160, USA.
| |
Collapse
|
20
|
Direct quantification of mitochondrial DNA and its 4.9-kb common deletion without DNA purification. Anal Biochem 2010; 409:298-300. [PMID: 20951113 DOI: 10.1016/j.ab.2010.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 10/06/2010] [Indexed: 11/22/2022]
Abstract
Quantitative analysis of mitochondrial DNA (mtDNA) and its common deletion (CD) are sensitive and early markers for mitochondrial mutations and suffering. However, the use of purified DNA can lead to quantification errors because of variable DNA extraction yields due to the significant differences in size and structure between genomic DNA (gDNA) and mtDNA. We report a real-time qPCR-based protocol directly on tissue lysate, without DNA extraction. This method, which allows both absolute and relative measure, increases the measuring accuracy of the mtDNA/gDNA ratio and leads to reliable and more reproducible results when measuring the deleted/total mtDNA ratio.
Collapse
|
21
|
Pesce V, Fracasso F, Cassano P, Lezza AMS, Cantatore P, Gadaleta MN. Acetyl-l-Carnitine Supplementation to Old Rats Partially Reverts the Age-Related Mitochondrial Decay of Soleus Muscle by Activating Peroxisome Proliferator-Activated Receptor γ Coactivator-1α–Dependent Mitochondrial Biogenesis. Rejuvenation Res 2010; 13:148-51. [DOI: 10.1089/rej.2009.0955] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Vito Pesce
- Department of Biochemistry and Molecular Biology “E. Quagliariello,” University of Bari, Bari, Italy
| | - Flavio Fracasso
- Department of Biochemistry and Molecular Biology “E. Quagliariello,” University of Bari, Bari, Italy
| | - Pierluigi Cassano
- Department of Biochemistry and Molecular Biology “E. Quagliariello,” University of Bari, Bari, Italy
| | - Angela Maria Serena Lezza
- Department of Biochemistry and Molecular Biology “E. Quagliariello,” University of Bari, Bari, Italy
| | - Palmiro Cantatore
- Department of Biochemistry and Molecular Biology “E. Quagliariello,” University of Bari, Bari, Italy
- Institute of Biomembranes and Bioenergetics, CNR, Bari, Italy
| | - Maria Nicola Gadaleta
- Department of Biochemistry and Molecular Biology “E. Quagliariello,” University of Bari, Bari, Italy
- Institute of Biomembranes and Bioenergetics, CNR, Bari, Italy
| |
Collapse
|
22
|
McInerny SC, Brown AL, Smith DW. Region-specific changes in mitochondrial D-loop in aged rat CNS. Mech Ageing Dev 2009; 130:343-9. [PMID: 19428453 DOI: 10.1016/j.mad.2009.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 12/22/2008] [Accepted: 01/25/2009] [Indexed: 01/06/2023]
Abstract
Impaired mitochondrial oxidative phosphorylation (OXPHOS) is considered a cause of aging. A reduction in mitochondrial DNA (mtDNA) replication and/or transcription may contribute to this OXPHOS diminution. Impairments in the displacement (D) loop, or non-coding, region of the mitochondrial genome, or accumulation of mtDNA mutations, may affect mtDNA replication and transcription. We determined the effects of age on the D-loop and on mtDNA deletion mutations in the spinal cord, medulla, midbrain, cerebellum, striatum, and cerebral cortex of Fischer 344 rats. D-loop, 7S DNA levels were reduced by 3-fold in striatum, 2.5-fold in cortex, and 2-fold in the spinal cord of older animals. We did not detect a population of mtDNA affected by the most prevalent known (ND4-containing) deletions, indicating they do not comprise a significant portion of total mtDNA. However, we detected an age-related and region-specific increase in the common deletion, which comprised 0.0003-0.0007% of total mtDNA. Mitochondrial genome copy number varied between regions, in addition to an overall 18% decrease with age across the whole brain. These results suggest the age-related decline in OXPHOS may be related to a reduction in D-loop function.
Collapse
Affiliation(s)
- Simone C McInerny
- Discipline of Anatomy, School of Biomedical Sciences, Faculty of Health and The Center for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | | |
Collapse
|
23
|
de Grey ADNJ. The case for prioritizing research on late-onset life-extension interventions in mammals. Rejuvenation Res 2007; 10:257-9. [PMID: 17822351 DOI: 10.1089/rej.2007.0547] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Swerdlow RH. Treating neurodegeneration by modifying mitochondria: potential solutions to a "complex" problem. Antioxid Redox Signal 2007; 9:1591-603. [PMID: 17663643 DOI: 10.1089/ars.2007.1676] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondria function differently in aged brains than they do in young brains. Consistently reported changes include reduced electron transport chain (ETC) enzyme activities, reduced phosphorylation of ADP, and increased reactive oxygen species (ROS) production. Various neurodegenerative diseases are also associated with changes in mitochondrial function, and these changes both recapitulate and extend those seen in "normal" aging. Unfortunately, attempts to treat neurodegenerative diseases by treating mitochondria-related pathology have thus far minimally impacted affected patients. A better understanding of how mitochondrial function changes in aging and neurodegenerative diseases, though, now suggests new approaches to mitochondrial therapy may prove more efficacious. Increasing ETC capacity, increasing oxidative phosphorylation, or decreasing mitochondrial ROS may yet prove useful for the treatment of brain aging and neurodegenerative diseases, and accomplishing this seems increasingly feasible. This review will discuss the role of mitochondrial function and dysfunction in aging and neurodegenerative diseases, and will focus on potential treatment strategies.
Collapse
Affiliation(s)
- Russell H Swerdlow
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.
| |
Collapse
|
25
|
|