1
|
Ungvari A, Gulej R, Csik B, Mukli P, Negri S, Tarantini S, Yabluchanskiy A, Benyo Z, Csiszar A, Ungvari Z. The Role of Methionine-Rich Diet in Unhealthy Cerebrovascular and Brain Aging: Mechanisms and Implications for Cognitive Impairment. Nutrients 2023; 15:4662. [PMID: 37960316 PMCID: PMC10650229 DOI: 10.3390/nu15214662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
As aging societies in the western world face a growing prevalence of vascular cognitive impairment and Alzheimer's disease (AD), understanding their underlying causes and associated risk factors becomes increasingly critical. A salient concern in the western dietary context is the high consumption of methionine-rich foods such as red meat. The present review delves into the impact of this methionine-heavy diet and the resultant hyperhomocysteinemia on accelerated cerebrovascular and brain aging, emphasizing their potential roles in cognitive impairment. Through a comprehensive exploration of existing evidence, a link between high methionine intake and hyperhomocysteinemia and oxidative stress, mitochondrial dysfunction, inflammation, and accelerated epigenetic aging is drawn. Moreover, the microvascular determinants of cognitive deterioration, including endothelial dysfunction, reduced cerebral blood flow, microvascular rarefaction, impaired neurovascular coupling, and blood-brain barrier (BBB) disruption, are explored. The mechanisms by which excessive methionine consumption and hyperhomocysteinemia might drive cerebromicrovascular and brain aging processes are elucidated. By presenting an intricate understanding of the relationships among methionine-rich diets, hyperhomocysteinemia, cerebrovascular and brain aging, and cognitive impairment, avenues for future research and potential therapeutic interventions are suggested.
Collapse
Affiliation(s)
- Anna Ungvari
- Department of Public Health, Semmelweis University, 1089 Budapest, Hungary
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Sharon Negri
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary;
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Translational Medicine, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
2
|
Wu Y, Tang L, Huang H, Yu Q, Hu B, Wang G, Ge F, Yin T, Li S, Yu X. Phosphoglycerate dehydrogenase activates PKM2 to phosphorylate histone H3T11 and attenuate cellular senescence. Nat Commun 2023; 14:1323. [PMID: 36899022 PMCID: PMC10006232 DOI: 10.1038/s41467-023-37094-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Vascular endothelial cells (ECs) senescence correlates with the increase of cardiovascular diseases in ageing population. Although ECs rely on glycolysis for energy production, little is known about the role of glycolysis in ECs senescence. Here, we report a critical role for glycolysis-derived serine biosynthesis in preventing ECs senescence. During senescence, the expression of serine biosynthetic enzyme PHGDH is significantly reduced due to decreased transcription of the activating transcription factor ATF4, which leads to reduction of intracellular serine. PHGDH prevents premature senescence primarily by enhancing the stability and activity of pyruvate kinase M2 (PKM2). Mechanistically, PHGDH interacts with PKM2, which prevents PCAF-catalyzed PKM2 K305 acetylation and subsequent degradation by autophagy. In addition, PHGDH facilitates p300-catalyzed PKM2 K433 acetylation, which promotes PKM2 nuclear translocation and stimulates its activity to phosphorylate H3T11 and regulate the transcription of senescence-associated genes. Vascular endothelium-targeted expression of PHGDH and PKM2 ameliorates ageing in mice. Our findings reveal that enhancing serine biosynthesis could become a therapy to promote healthy ageing.
Collapse
Affiliation(s)
- Yinsheng Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Lixu Tang
- School of Martial Arts, Wuhan Sports University, Wuhan, Hubei, 430079, China
| | - Han Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Qi Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Bicheng Hu
- The Central Laboratory, Wuhan No.1 Hospital, Wuhan, Hubei, 430022, China
| | - Gang Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| |
Collapse
|
3
|
Wang D, Ye J, Shi R, Zhao B, Liu Z, Lin W, Liu X. Dietary protein and amino acid restriction: Roles in metabolic health and aging-related diseases. Free Radic Biol Med 2022; 178:226-242. [PMID: 34890767 DOI: 10.1016/j.freeradbiomed.2021.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022]
Abstract
The prevalence of obesity is a worldwide phenomenon in all age groups and is associated with aging-related diseases such as type 2 diabetes, as well metabolic and cardiovascular diseases. The use of dietary restriction (DR) while avoiding malnutrition has many profound beneficial effects on aging and metabolic health, and dietary protein or specific amino acid (AA) restrictions, rather than overall calorie intake, are considered to play key roles in the effects of DR on host health. Whereas comprehensive reviews of the underlying mechanisms are limited, protein restriction and methionine (Met) restriction improve metabolic health and aging-related neurodegenerative diseases, and may be associated with FGF21, mTOR and autophagy, improved mitochondrial function and oxidative stress. Circulating branched-chain amino acids (BCAAs) are inversely correlated with metabolic health, and BCAAs and leucine (Leu) restriction promote metabolic homeostasis in rodents. Although tryptophan (Trp) restriction extends the lifespan of rodents, the Trp-restricted diet is reported to increase inflammation in aged mice, while severe Trp restriction has side effects such as anorexia. Furthermore, inadequate protein intake in the elderly increases the risk of muscle-centric health. Therefore, the restriction of specific AAs may be an effective and executable dietary manipulation for metabolic and aging-related health in humans, which warrants further investigation to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Danna Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jin Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Renjie Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Wei Lin
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Air Force Medical University, Xi'an, Shanxi, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| |
Collapse
|
4
|
Effect of Methionine Restriction on Bone Density and NK Cell Activity. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3571810. [PMID: 27882323 PMCID: PMC5110873 DOI: 10.1155/2016/3571810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/29/2016] [Accepted: 09/25/2016] [Indexed: 01/15/2023]
Abstract
Methionine restriction (MR) is proven to increase the lifespan; and it also affects the bone density and the innate immune system. The aim of this study is to explore the effect of methionine restriction on bone density and natural killer (NK) cells. C57BL/6J mice were subjected to either basal diet (BD, containing 0.80% methionine) or methionine-restricted diet (containing 0.14% methionine). Mice with MR diet displayed reduced bone mass and decrease in the cytotoxicity of NK from the spleen, compared to BD animals. Also, mice with MR diet had an inferior body weight (P < 0.05) and higher plasma levels of adiponectin and FGF21 (P < 0.05) but lower concentrations of leptin and IGF-1 (P < 0.05). Overall, the investigation shows that methionine affects bone density and NK cell cytotoxicity.
Collapse
|
5
|
Carnosine and the processes of ageing. Maturitas 2016; 93:28-33. [DOI: 10.1016/j.maturitas.2016.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/19/2022]
|
6
|
Kozieł R, Ruckenstuhl C, Albertini E, Neuhaus M, Netzberger C, Bust M, Madeo F, Wiesner RJ, Jansen‐Dürr P. Methionine restriction slows down senescence in human diploid fibroblasts. Aging Cell 2014; 13:1038-48. [PMID: 25273919 PMCID: PMC4326930 DOI: 10.1111/acel.12266] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2014] [Indexed: 12/31/2022] Open
Abstract
Methionine restriction (MetR) extends lifespan in animal models including rodents. Using human diploid fibroblasts (HDF), we report here that MetR significantly extends their replicative lifespan, thereby postponing cellular senescence. MetR significantly decreased activity of mitochondrial complex IV and diminished the accumulation of reactive oxygen species. Lifespan extension was accompanied by a significant decrease in the levels of subunits of mitochondrial complex IV, but also complex I, which was due to a decreased translation rate of several mtDNA-encoded subunits. Together, these findings indicate that MetR slows down aging in human cells by modulating mitochondrial protein synthesis and respiratory chain assembly.
Collapse
Affiliation(s)
- Rafał Kozieł
- Institute for Biomedical Aging Research (IBA) Universität Innsbruck Rennweg 10 6020Innsbruck Austria
| | - Christoph Ruckenstuhl
- Institute of Molecular Biosciences Karl‐Franzens University Humboldtstrasse 50 8010Graz Austria
| | - Eva Albertini
- Institute for Biomedical Aging Research (IBA) Universität Innsbruck Rennweg 10 6020Innsbruck Austria
| | - Michael Neuhaus
- Institute for Biomedical Aging Research (IBA) Universität Innsbruck Rennweg 10 6020Innsbruck Austria
| | - Christine Netzberger
- Institute of Molecular Biosciences Karl‐Franzens University Humboldtstrasse 50 8010Graz Austria
| | - Maria Bust
- Institute for Vegetative Physiology University of Köln Robert‐Kochstr. 39 50931Köln Germany
| | - Frank Madeo
- Institute of Molecular Biosciences Karl‐Franzens University Humboldtstrasse 50 8010Graz Austria
| | - Rudolf J. Wiesner
- Institute for Vegetative Physiology University of Köln Robert‐Kochstr. 39 50931Köln Germany
- Center for Molecular Medicine Cologne University of Köln Robert‐Kochstr. 21 50931Köln Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐associated Diseases (CECAD) Joseph‐Stelzmannstr. 26 50931Köln Germany
| | - Pidder Jansen‐Dürr
- Institute for Biomedical Aging Research (IBA) Universität Innsbruck Rennweg 10 6020Innsbruck Austria
| |
Collapse
|
7
|
Mitochondrial metabolism in aging: effect of dietary interventions. Ageing Res Rev 2013; 12:22-8. [PMID: 22504406 DOI: 10.1016/j.arr.2012.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/20/2012] [Accepted: 03/30/2012] [Indexed: 01/09/2023]
Abstract
Mitochondrial energy metabolism and mitochondrially-derived oxidants have, for many years, been recognized as central toward the effects of aging. A body of recent work has focused on the relationship between mitochondrial redox state, aging and dietary interventions that affect lifespan. These studies have uncovered mechanisms through which diet alters mitochondrial metabolism, in addition to determining how these changes affect oxidant generation, which in itself has an impact on mitochondrial function in aged animals. Many of the studies conducted to date, however, are correlative, and it remains to be determined which of the energy metabolism and redox modifications induced by diet are central toward lifespan extent. Furthermore, dietary interventions used for laboratory animals are often unequal, and of difficult comparison with humans (for whom, by nature, no long-term sound scientific information on the effects of diet on mitochondrial redox state and aging is available). We hope future studies will be able to mechanistically characterize which energy metabolism and redox changes promoted by dietary interventions have positive lifespan effects, and translate these findings into human prevention and treatment of age-related disease.
Collapse
|
8
|
Hipkiss AR. Can the beneficial effects of methionine restriction in rats be explained in part by decreased methylglyoxal generation resulting from suppressed carbohydrate metabolism? Biogerontology 2012; 13:633-6. [DOI: 10.1007/s10522-012-9401-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022]
|
9
|
Ramalingam A, Wang X, Gabello M, Valenzano MC, Soler AP, Ko A, Morin PJ, Mullin JM. Dietary methionine restriction improves colon tight junction barrier function and alters claudin expression pattern. Am J Physiol Cell Physiol 2010; 299:C1028-35. [PMID: 20739626 DOI: 10.1152/ajpcell.00482.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The beneficial effects of caloric restriction in increasing longevity and forestalling age-related diseases are well known. Dietary restriction of methionine also renders similar benefits. We recently showed in a renal epithelial cell culture system that reduction of culture medium methionine by 80% resulted in altered tight junctional (TJ) claudin composition and also improved epithelial barrier function (51). In the current study, we examined the effect of dietary restriction of methionine on TJ barrier function in rat gastrointestinal tissue to see whether this phenomenon also holds true in a tissue model and for a different epithelial cell type. After 28 days on methionine-restricted (MR) diet, rats showed small but significant reductions in the plasma and (intracellular) colonocyte levels of methionine. Colon mucosal sheets from rats on the MR diet showed increased transepithelial electrical resistance with concomitant decrease in paracellular diffusion of (14)C-D-mannitol, suggesting improved barrier function relative to rats on control diet. This improved barrier function could not be explained by changes in colon crypt length or frequency. Neither was the colonocyte mitotic index nor the apoptotic frequency altered significantly. However, TJ composition/structure was being altered by the MR diet. RT-PCR and Western blot analysis showed an increase in the abundance of claudin-3 and an apparent change in the posttranslational modification of occludin, data reinforcing a paracellular barrier alteration. Overall, our data suggest that reduction in dietary intake of methionine results in improved epithelial barrier function by inducing altered TJ protein composition.
Collapse
|
10
|
de Grey AD. Reaping the Longevity Dividend in Time: Biogerontology Heavyweights Advocate Seeking Late-Onset Interventions Against Aging. Rejuvenation Res 2010; 13:383-5. [DOI: 10.1089/rej.2010.1090] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
11
|
Caro P, Gomez J, Sanchez I, Naudi A, Ayala V, López-Torres M, Pamplona R, Barja G. Forty percent methionine restriction decreases mitochondrial oxygen radical production and leak at complex I during forward electron flow and lowers oxidative damage to proteins and mitochondrial DNA in rat kidney and brain mitochondria. Rejuvenation Res 2010; 12:421-34. [PMID: 20041736 DOI: 10.1089/rej.2009.0902] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Eighty percent dietary methionine restriction (MetR) in rodents (without calorie restriction), like dietary restriction (DR), increases maximum longevity and strongly decreases mitochondrial reactive oxygen species (ROS) production and oxidative stress. Eighty percent MetR also lowers the degree of membrane fatty acid unsaturation in rat liver. Mitochondrial ROS generation and the degree of fatty acid unsaturation are the only two known factors linking oxidative stress with longevity in vertebrates. However, it is unknown whether 40% MetR, the relevant methionine restriction degree to clarify the mechanisms of action of standard (40%) DR can reproduce these effects in mitochondria from vital tissues of strong relevance for aging. Here we study the effect of 40% MetR on ROS production and oxidative stress in rat brain and kidney mitochondria. Male Wistar rats were fed during 7 weeks semipurified diets differing only in their methionine content: control or 40% MetR diets. It was found that 40% MetR decreases mitochondrial ROS production and percent free radical leak (by 62-71%) at complex I during forward (but not during reverse) electron flow in both brain and kidney mitochondria, increases the oxidative phosphorylation capacity of brain mitochondria, lowers oxidative damage to kidney mitochondrial DNA, and decreases specific markers of mitochondrial protein oxidation, lipoxidation, and glycoxidation in both tissues. Forty percent MetR also decreased the amount of respiratory complexes I, III, and IV and apoptosis-inducing factor (AIF) in brain mitochondria and complex IV in kidney mitochondria, without changing the degree of mitochondrial membrane fatty acid unsaturation. Forty percent MetR, differing from 80% MetR, did not inhibit the increase in rat body weight. These changes are very similar to the ones previously found during dietary and protein restriction in rats. We conclude that methionine is the only dietary factor responsible for the decrease in mitochondrial ROS production and oxidative stress, and likely for part of the longevity extension effect, occurring in DR.
Collapse
Affiliation(s)
- Pilar Caro
- Department of Animal Physiology II, Complutense University of Madrid, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hipkiss AR. Carnosine and its possible roles in nutrition and health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2009; 57:87-154. [PMID: 19595386 DOI: 10.1016/s1043-4526(09)57003-9] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The dipeptide carnosine has been observed to exert antiaging activity at cellular and whole animal levels. This review discusses the possible mechanisms by which carnosine may exert antiaging action and considers whether the dipeptide could be beneficial to humans. Carnosine's possible biological activities include scavenger of reactive oxygen species (ROS) and reactive nitrogen species (RNS), chelator of zinc and copper ions, and antiglycating and anticross-linking activities. Carnosine's ability to react with deleterious aldehydes such as malondialdehyde, methylglyoxal, hydroxynonenal, and acetaldehyde may also contribute to its protective functions. Physiologically carnosine may help to suppress some secondary complications of diabetes, and the deleterious consequences of ischemic-reperfusion injury, most likely due to antioxidation and carbonyl-scavenging functions. Other, and much more speculative, possible functions of carnosine considered include transglutaminase inhibition, stimulation of proteolysis mediated via effects on proteasome activity or induction of protease and stress-protein gene expression, upregulation of corticosteroid synthesis, stimulation of protein repair, and effects on ADP-ribose metabolism associated with sirtuin and poly-ADP-ribose polymerase (PARP) activities. Evidence for carnosine's possible protective action against secondary diabetic complications, neurodegeneration, cancer, and other age-related pathologies is briefly discussed.
Collapse
Affiliation(s)
- Alan R Hipkiss
- School of Clinicial and Experimental Medicine, College of Medical and Dental Sciences, The Univeristy of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|