1
|
Correale M, Tricarico L, Bevere EML, Chirivì F, Croella F, Severino P, Mercurio V, Magrì D, Dini F, Licordari R, Beltrami M, Dattilo G, Salzano A, Palazzuoli A. Circulating Biomarkers in Pulmonary Arterial Hypertension: An Update. Biomolecules 2024; 14:552. [PMID: 38785959 PMCID: PMC11117582 DOI: 10.3390/biom14050552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare subtype of group 1 pulmonary hypertension (PH) diseases, characterized by high pulmonary artery pressure leading to right ventricular dysfunction and potential life-threatening consequences. PAH involves complex mechanisms: vasoconstriction, vascular remodeling, endothelial dysfunction, inflammation, oxidative stress, fibrosis, RV remodeling, cellular hypoxia, metabolic imbalance, and thrombosis. These mechanisms are mediated by several pathways, involving molecules like nitric oxide and prostacyclin. PAH diagnosis requires clinical evaluation and right heart catheterization, confirming a value of mPAP ≥ 20 mmHg at rest and often elevated pulmonary vascular resistance (PVR). Even if an early and accurate diagnosis is crucial, PAH still lacks effective biomarkers to assist in its diagnosis and prognosis. Biomarkers could contribute to arousing clinical suspicion and serve for prognosis prediction, risk stratification, and dynamic monitoring in patients with PAH. The aim of the present review is to report the main novelties on new possible biomarkers for the diagnosis, prognosis, and treatment monitoring of PAH.
Collapse
Affiliation(s)
- Michele Correale
- Cardiothoracic Department, Ospedali Riuniti University Hospital, 71100 Foggia, Italy
| | - Lucia Tricarico
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (L.T.); (E.M.L.B.); (F.C.)
| | - Ester Maria Lucia Bevere
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (L.T.); (E.M.L.B.); (F.C.)
| | - Francesco Chirivì
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (L.T.); (E.M.L.B.); (F.C.)
| | - Francesca Croella
- Cardiothoracic Vascular Department, Division of Provincial Cardiology, Santissima Annunziata Hospital and Delta Hospital, Azienda Unità Sanitaria Locale di Ferrara, 44121 Ferrara, Italy;
| | - Paolo Severino
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 00185 Rome, Italy;
| | - Valentina Mercurio
- Department of Translational Medical Sciences, Federico II University, 80138 Naples, Italy;
| | - Damiano Magrì
- Department of Clinical and Molecular Medicine, Azienda Ospedaliera Sant’Andrea, “Sapienza” Università degli Studi di Roma, 00161 Rome, Italy;
| | - Frank Dini
- Istituto Auxologico IRCCS, Centro Medico Sant’Agostino, Via Temperanza, 6, 20127 Milan, Italy;
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Roberto Licordari
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Cardiology, University of Messina, 98122 Messina, Italy; (R.L.); (G.D.)
| | - Matteo Beltrami
- Arrhythmia and Electrophysiology Unit, Careggi University Hospital, 50134 Florence, Italy;
| | - Giuseppe Dattilo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Cardiology, University of Messina, 98122 Messina, Italy; (R.L.); (G.D.)
| | - Andrea Salzano
- Cardiology Unit, AORN A Cardarelli, 80131 Naples, Italy;
| | - Alberto Palazzuoli
- Cardiovascular Diseases Unit, Cardio-Thoracic and Vascular Department, S. Maria alle Scotte Hospital, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
2
|
C-Fiber Degeneration Enhances Alveolar Macrophage-Mediated IFN-α/β Response to Respiratory Syncytial Virus. Microbiol Spectr 2022; 10:e0241022. [PMID: 36350149 PMCID: PMC9769737 DOI: 10.1128/spectrum.02410-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Stimulation of unmyelinated C fibers, the nociceptive sensory nerves, by noxious stimuli is able to initiate host responses. Host defensive responses against respiratory syncytial virus (RSV) infection rely on the induction of a robust alpha/beta interferon (IFN-α/β) response, which acts to restrict viral production and promote antiviral immune responses. Alveolar macrophages (AMs) are the major source of IFN-α/β upon RSV infection. Here, we found that C fibers are involved in host defense against RSV infection. Compared to the control mice post-RSV infection, degeneration and inhibition of C fibers by blockade of transient receptor potential vanilloid 1 (TRPV1) lowered viral replication and alleviated lung inflammation. Importantly, AMs were markedly elevated in C-fiber-degenerated (KCF) mice post-RSV infection, which was associated with higher IFN-α/β secretion as measured in bronchoalveolar lavage fluid (BALF) samples. Degeneration of C fibers contributed to the production of vasoactive intestinal peptide (VIP), which modulated AM and IFN-α/β levels to protect against RSV infection. Collectively, these findings revealed the key role of C fibers in regulating AM and IFN-α/β responses against RSV infection via VIP, opening the possibility for new therapeutic strategies against RSV. IMPORTANCE Despite continuous advances in medicine, safe and effective drugs against RSV infection remain elusive. As such, host-RSV interactions and host-directed therapies require further research. Unmyelinated C fibers, the nociceptive sensory nerves, play an important role in regulating the host response to virus. In the present study, from the perspective of neuroimmune interactions, we clarified that C-fiber degeneration enhanced the AM-mediated IFN-α/β response against RSV via VIP, providing potential therapeutic targets for the treatment of RSV infection.
Collapse
|
3
|
Mandal J, Roth M, Costa L, Boeck L, Rakic J, Scherr A, Tamm M, Stolz D. Vasoactive Intestinal Peptide for Diagnosing Exacerbation in Chronic Obstructive Pulmonary Disease. Respiration 2015; 90:357-68. [PMID: 26447811 DOI: 10.1159/000439228] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/29/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Vasoactive intestinal peptide (VIP) is the most abundant neuropeptide in the lung. VIP has been linked to pulmonary arterial hypertension and hypoxia. OBJECTIVES We aimed to assess circulating VIP levels at exacerbation and at stable chronic obstructive pulmonary disease (COPD) and to evaluate the diagnostic performance in a well-characterized cohort of COPD patients. METHODS The nested cohort study included patients with Global Initiative for Chronic Obstructive Lung Disease stage II-IV. Patients were examined at stable state and at acute exacerbation of COPD (AE-COPD), and dedicated serum was collected at both conditions. Serum VIP levels were determined by enzyme-linked immunosorbent assay. Diagnostic accuracy was analyzed by receiver operating characteristic curve and area under the curve (AUC). RESULTS Patients with acute exacerbation (n = 120) and stable COPD (n = 163) had similar characteristics at baseline. Serum VIP levels did not correlate with oxygen saturation at rest (p = 0.722) or at exercise (p = 0.168). Serum VIP levels were significantly higher at AE-COPD (130.25 pg/ml, 95% CI 112.19-151.83) as compared to stable COPD (40.07 pg/ml, 95% CI 37.13-43.96, p < 0.001). The association of increased serum VIP with AE-COPD remained significant after propensity score matching (p < 0.001). Analysis of the Youden index indicated the optimal serum VIP cutoff value as 56.6 pg/ml. The probability of AE-COPD was very low if serum VIP was ≤35 pg/ml (sensitivity >90%) and very high if serum VIP was ≥88 pg/ml (specificity >90%). Serum VIP levels presented a robust performance to diagnose AE-COPD (AUC 0.849, 95% CI 0.779-0.899). CONCLUSIONS Increased serum VIP levels are associated with AE-COPD.
Collapse
Affiliation(s)
- Jyotshna Mandal
- Clinic of Pulmonary Medicine and Respiratory Cell Research, University Hospital Basel, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|