1
|
Feng Y, Dang X, Zheng P, Liu Y, Liu D, Che Z, Yao J, Lin Z, Liao Z, Nie X, Liu F, Zhang Y. Quercetin in Osteoporosis Treatment: A Comprehensive Review of Its Mechanisms and Therapeutic Potential. Curr Osteoporos Rep 2024; 22:353-365. [PMID: 38652430 DOI: 10.1007/s11914-024-00868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE OF REVIEW This review aims to provide a theoretical basis and insights for quercetin's clinical application in the prevention and treatment of osteoporosis (OP), analyzing its roles in bone formation promotion, bone resorption inhibition, anti-inflammation, antioxidant effects, and potential mechanisms. RECENT FINDINGS OP, a prevalent bone disorder, is marked by reduced bone mineral density and impaired bone architecture, elevating the risk of fractures in patients. The primary approach to OP management is pharmacotherapy, with quercetin, a phytochemical compound, emerging as a focus of recent interest. This natural flavonoid exerts regulatory effects on bone marrow mesenchymal stem cells, osteoblasts, and osteoclasts and promotes bone health and metabolic equilibrium via anti-inflammatory and antioxidative pathways. Although quercetin has demonstrated significant potential in regulating bone metabolism, there is a need for further high-quality clinical studies focused on medicinal quercetin.
Collapse
Affiliation(s)
- Yanchen Feng
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450099, China
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xue Dang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Pan Zheng
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yali Liu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Diyan Liu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zhiying Che
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jianping Yao
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zixuan Lin
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450099, China
| | - Ziyun Liao
- College of Acupuncture, Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xingyuan Nie
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Feixiang Liu
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450099, China.
| | - Yunke Zhang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, 450003, China.
| |
Collapse
|
2
|
Jiang X, Li W, Ge L, Lu M. Mesenchymal Stem Cell Senescence during Aging:From Mechanisms to Rejuvenation Strategies. Aging Dis 2023; 14:1651-1676. [PMID: 37196126 PMCID: PMC10529739 DOI: 10.14336/ad.2023.0208] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/08/2023] [Indexed: 05/19/2023] Open
Abstract
In cell transplantation therapy, mesenchymal stem cells(MSCs)are ideal seed cells due to their easy acquisition and cultivation, strong regenerative capacity, multi-directional differentiation abilities, and immunomodulatory effects. Autologous MSCs are better applicable compared with allogeneic MSCs in clinical practice. The elderly are the main population for cell transplantation therapy, but as donor aging, MSCs in the tissue show aging-related changes. When the number of generations of in vitro expansion is increased, MSCs will also exhibit replicative senescence. The quantity and quality of MSCs decline during aging, which limits the efficacy of autologous MSCs transplantation therapy. In this review, we examine the changes in MSC senescence as a result of aging, discuss the progress of research on mechanisms and signalling pathways of MSC senescence, and discuss possible rejuvenation strategies of aged MSCs to combat senescence and enhance the health and therapeutic potential of MSCs.
Collapse
Affiliation(s)
- Xinchen Jiang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Hunan provincical key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China.
| | - Wenshui Li
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Hunan provincical key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China.
| | - Lite Ge
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Hunan provincical key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China.
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, China, Changsha
| | - Ming Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Hunan provincical key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Changsha, China.
| |
Collapse
|
3
|
Zhang W, Dong Z, Li D, Li B, Liu Y, Zheng X, Liu H, Zhou H, Hu K, Xue Y. Cathepsin K deficiency promotes alveolar bone regeneration by promoting jaw bone marrow mesenchymal stem cells proliferation and differentiation via glycolysis pathway. Cell Prolif 2021; 54:e13058. [PMID: 34053135 PMCID: PMC8249792 DOI: 10.1111/cpr.13058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/20/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
Objectives To clarify the possible role and mechanism of Cathepsin K (CTSK) in alveolar bone regeneration mediated by jaw bone marrow mesenchymal stem cells (JBMMSC). Materials and Methods Tooth extraction models of Ctsk knockout mice (Ctsk‐/‐) and their wildtype (WT) littermates were used to investigate the effect of CTSK on alveolar bone regeneration. The influences of deletion or inhibition of CTSK by odanacatib (ODN) on proliferation and osteogenic differentiation of JBMMSC were assessed by CCK‐8, Western blot and alizarin red staining. To explore the differently expressed genes, RNA from WT and Ctsk‐/‐ JBMMSC was sent to RNA‐seq. ECAR, glucose consumption and lactate production were measured to identify the effect of Ctsk deficiency or inhibition on glycolysis. At last, we explored whether Ctsk deficiency or inhibition promoted JBMMSC proliferation and osteogenic differentiation through glycolysis. Results We found out that Ctsk knockout could promote alveolar bone regeneration in vivo. In vitro, we confirmed that both Ctsk knockout and inhibition by ODN could promote proliferation of JBMMSC, up‐regulate expression of Runx2 and ALP, and enhance matrix mineralization. RNA‐seq results showed that coding genes of key enzymes in glycolysis were significantly up‐regulated in Ctsk‐/‐ JBMMSC, and Ctsk deficiency or inhibition could promote glycolysis in JBMMSC. After blocking glycolysis by 3PO, the effect of Ctsk deficiency or inhibition on JBMMSC’s regeneration was blocked subsequently. Conclusions Our findings revealed that Ctsk knockout or inhibition could promote alveolar bone regeneration by enhancing JBMMSC regeneration via glycolysis. These results shed new lights on the regulatory mechanism of CTSK on bone regeneration.
Collapse
Affiliation(s)
- Wuyang Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Zhiwei Dong
- State Key Laboratory of Military Stomatology, Xi'an, China
| | - Dengke Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Bei Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yuan Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xueni Zheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Hui Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Hongzhi Zhou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Kaijin Hu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yang Xue
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Efficacy of chitinase-3-like protein 1 as an in vivo bone formation predictable marker of maxillary/mandibular bone marrow stromal cells. Regen Ther 2021; 18:38-50. [PMID: 33869686 PMCID: PMC8027134 DOI: 10.1016/j.reth.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Maxillary/mandibular bone marrow stromal cells (MBMSCs) are a useful cell source for bone regeneration in the oral and maxillofacial region. To further ensure the clinical application of MBMSCs in bone regenerative therapy, it is important to determine the bone formation capacity of MBMSCs before transplantation. The aim of this study is to identify the molecular marker that determines the in vivo bone formation capacity of MBMSCs. Methods The cell growth, cell surface antigens, in vitro and in vivo bone formation capacity of MBMSCs were examined. The amount of chitinase-3-like protein 1 (CHI3L1) secreted into the conditioned medium was quantified. The effects of CHI3L1 on the cell growth and osteogenic differentiation potential of MBMSCs and on the cell growth and migration of vascular endothelial cells and fibroblasts were examined. Results The cell growth, and in vitro and in vivo bone formation capacity of the cells treated with different conditions were observed. MBMSCs that secreted a large amount of CHI3L1 into the conditioned medium tended to have low in vivo bone formation capacity, whereas MBMSCs that secreted a small amount of CHI3L1 had greater in vivo bone formation capacity. CHI3L1 promoted the migration of vascular endothelial cells, and the cell growth and migration of fibroblasts. Conclusion Our study indicates that the in vitro osteogenic differentiation capacity of MBMSCs and the in vivo bone formation capacities of MBMSCs were not necessarily correlated. The transplantation of high CHI3L1 secretory MBMSCs may suppress bone formation by inducing fibrosis at the site. These results suggest that the CHI3L1 secretion levels from MBMSCs may be used as a predictable marker of bone formation capacity in vivo. In vitro and in vivo bone formation capacities of MBMSCs were not correlated. MBMSCs with high CHI3L1 secretion tended to have low in vivo bone formation. MBMSCs with low CHI3L1 secretion tended to have high in vivo bone formation. CHI3L1 can be in vivo bone formation capacity predictable marker of MBMSCs.
Collapse
Key Words
- ALP, Alkaline phosphatase
- BMSC, bone marrow-derived stem cell
- Bone formation capacity
- CHI3L1, chitinase-3-like protein 1
- Chitinase-3-like protein 1
- FBS, fetal bovine serum
- HUVEC, human umbilical vein endothelial cells
- Jaw bone marrow stromal cells
- MBMSC, maxillary/mandibular bone marrow stromal cells
- MSCs, mesenchymal stem cells
- Migration
- NHDF, normal human dermal fibroblasts
- α-MEM, alpha modified Eagle's minimum essential medium
- β-TCP, beta-tricalcium phosphate
Collapse
|
5
|
Aging of Bone Marrow Mesenchymal Stromal Cells: Hematopoiesis Disturbances and Potential Role in the Development of Hematologic Cancers. Cancers (Basel) 2020; 13:cancers13010068. [PMID: 33383723 PMCID: PMC7794884 DOI: 10.3390/cancers13010068] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary As for many other cancers, the risk of developing hematologic malignancies increases considerably as people age. In recent years, a growing number of studies have highlighted the influence of the aging microenvironment on hematopoiesis and tumor progression. Mesenchymal stromal cells are a major player in intercellular communication inside the bone marrow microenvironment involved in hematopoiesis support. With aging, their functions may be altered, leading to hematopoiesis disturbances which can lead to hematologic cancers. A good understanding of the mechanisms involved in mesenchymal stem cell aging and the consequences on hematopoiesis and tumor progression is therefore necessary for a better comprehension of hematologic malignancies and for the development of therapeutic approaches. Abstract Aging of bone marrow is a complex process that is involved in the development of many diseases, including hematologic cancers. The results obtained in this field of research, year after year, underline the important role of cross-talk between hematopoietic stem cells and their close environment. In bone marrow, mesenchymal stromal cells (MSCs) are a major player in cell-to-cell communication, presenting a wide range of functionalities, sometimes opposite, depending on the environmental conditions. Although these cells are actively studied for their therapeutic properties, their role in tumor progression remains unclear. One of the reasons for this is that the aging of MSCs has a direct impact on their behavior and on hematopoiesis. In addition, tumor progression is accompanied by dynamic remodeling of the bone marrow niche that may interfere with MSC functions. The present review presents the main features of MSC senescence in bone marrow and their implications in hematologic cancer progression.
Collapse
|
6
|
Shi Q, Huo N, Wang X, Yang S, Wang J, Zhang T. Exosomes from oral tissue stem cells: biological effects and applications. Cell Biosci 2020; 10:108. [PMID: 32944222 PMCID: PMC7490964 DOI: 10.1186/s13578-020-00471-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023] Open
Abstract
As natural nanoparticles, exosomes are a type of extracellular vesicles that are enclosed by a lipid bilayer and contain various cargos, including miRNA, mRNA, DNA and proteins. Exosomes have rapidly gained attention as a highly promising cell-free therapy. Because the cargo of exosomes changes with the changes in parent cells and status, exosomes from different types of cells may exhibit different biological effects. Considering the particularity of oral tissue stem cells, their exosomes were isolated and used to examine their related biological functions and the possibility of replacing stem cells. A variety of exosomes of oral tissue stem cells were studied, and the results revealed many special biological characteristics of these exosomes and their parent cells, especially immunomodulation, osteogenesis, odontogenesis, neuroprotection, nerve regeneration, wound healing, skin regeneration and vascularization. The oral tissue stem cell exosomes may be loaded with drugs or genes and act as tools for tumor treatment. The relevant results showed that exosomes from oral tissue stem cells were potent therapeutic tools. The present review focuses on the biological function and application of oral tissue stem cell-derived exosomes.
Collapse
Affiliation(s)
- Quan Shi
- Institute of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| | - Na Huo
- Institute of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China.,Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001 China
| | - Shuo Yang
- Institute of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| | - Juncheng Wang
- Institute of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| | - Tong Zhang
- Institute of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| |
Collapse
|
7
|
Wang X, Qi F, Xing H, Zhang X, Lu C, Zheng J, Ren X. Uniform-sized insulin-loaded PLGA microspheres for improved early-stage peri-implant bone regeneration. Drug Deliv 2019; 26:1178-1190. [PMID: 31738084 PMCID: PMC6882491 DOI: 10.1080/10717544.2019.1682719] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/08/2019] [Accepted: 10/16/2019] [Indexed: 11/05/2022] Open
Abstract
Poor initial stability at the first four weeks after surgery is becoming the major causes for metal implant failure. Previous attempts neglected the control release of insulin for the bone regeneration among nondiabetic subjects. The major reason may lie in the adverse effects, such as attenuated bone formation, hypoglycemia or hyperinsulinemia, that caused by the excessive insulin. Thus, spatiotemporal release of insulin may serve as the promising strategy. To address this, through solvent extraction (EMS), solvent evaporation (SMS) and cosolvent methods (CMS), we prepared three types of PLGA microspheres with various internal structures, but similar size distribution. The effects of the preparation methods on the properties of the microspheres, such as their release behavior, degradation of molecular weight, and structural evolution, were investigated. Human bone marrow mesenchymal stromal cells (BMSCs) and rabbit implant models were used to test the bioactivity of the microspheres in vitro and in vivo, respectively. The result demonstrated that these three preparation methods did not influence the polymer degradation but instead affected the internal structural evolution, which plays a crucial role in the release behavior, osteogenesis and peri-implant bone regeneration. Compared with EMS and CMS microspheres, SMS microspheres exhibited a relatively steady release rate in the first four weeks, which evidently stimulated the osteogenic differentiation of the stem cells and peri-implant bone regeneration. Meanwhile, SMS microspheres significantly enhanced the stability of the implant at Week 4, which is promising to reduce early failure rate of the implant without inducing adverse effects on the serum biochemical indices.
Collapse
Affiliation(s)
- Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Feng Qi
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Helin Xing
- Department of Prosthodontics, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Beijing, China
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Chunxiang Lu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Jiajia Zheng
- First Clinical Division, Peking University Hospital of Stomatology, Beijing, China
| | - Xiuyun Ren
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| |
Collapse
|
8
|
Coutel X, Delattre J, Marchandise P, Falgayrac G, Béhal H, Kerckhofs G, Penel G, Olejnik C. Mandibular bone is protected against microarchitectural alterations and bone marrow adipose conversion in ovariectomized rats. Bone 2019; 127:343-352. [PMID: 31276849 DOI: 10.1016/j.bone.2019.06.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/02/2019] [Accepted: 06/29/2019] [Indexed: 02/05/2023]
Abstract
Osteoporosis is a disease that leads to a loss of bone mass and to alterations in the bone microarchitecture that occur in a site-specific manner; however it remains controversial in the jaw. The involvement of bone marrow adipose tissue (BMAT) in the bone metabolism has been suggested in several physiopathological contexts, such as in aging and osteoporosis. To test whether the BMAT content is related to mandibular bone loss, this study aimed to investigate the potential correlations between the trabecular bone microarchitecture on one hand and BMAT content and its spatial distribution in relation to bone surface on the other hand during aging and ovariectomy (OVX) during a long-term follow-up in a mature rat model. No age-related microarchitectural or BMAT changes were observed in the mandible. The OVX-induced bone loss was three-fold lower in the mandible than in the tibia and was observed only in the alveolar bone (not in the condyle). We also report a delayed increase in the mandibular BMAT content that remained 4-6-fold lower compared to tibia. This low BMAT content in the mandible was located at a distance from the trabecular bone surface (only 5% in contact with the bone surface versus 87% in the tibia). These findings highlight a specific mandibular response to OVX, in particular fewer microarchitectural alterations compared to that in the tibia. For the latter, the trabecular bone thickness and surface were correlated with the BMAT content. Oral functions may have a protective effect on the mandibular BMAT conversion in an OVX context.
Collapse
Affiliation(s)
- Xavier Coutel
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, EA 4490 - PMOI, F-59000 Lille, France.
| | - Jérôme Delattre
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, EA 4490 - PMOI, F-59000 Lille, France
| | - Pierre Marchandise
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, EA 4490 - PMOI, F-59000 Lille, France
| | - Guillaume Falgayrac
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, EA 4490 - PMOI, F-59000 Lille, France
| | - Hélène Béhal
- Univ. Lille, CHU Lille, EA 2694 - Santé publique: épidémiologie et qualité des soins, Unité de Méthodologie et Biostatistiques, F-59000 Lille, France
| | - Greet Kerckhofs
- Biomechanics Lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium; Institute of Experimental and Clinical Research, UCLouvain, Woluwe, Belgium; Department Materials Engineering, KU Leuven, Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Guillaume Penel
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, EA 4490 - PMOI, F-59000 Lille, France
| | - Cécile Olejnik
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, EA 4490 - PMOI, F-59000 Lille, France
| |
Collapse
|
9
|
Li M, Mei X, Lv S, Zhang Z, Xu J, Sun D, Xu J, He X, Chi G, Li Y. Rat vibrissa dermal papilla cells promote healing of spinal cord injury following transplantation. Exp Ther Med 2018; 15:3929-3939. [PMID: 29581745 PMCID: PMC5863572 DOI: 10.3892/etm.2018.5916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 01/18/2018] [Indexed: 12/24/2022] Open
Abstract
Bone marrow mesenchymal stem cell (BMSC) transplantation is effective for repairing spinal cord injuries (SCIs); however, there are limitations of clinical BMSC applications. Previously, we reported that dermal papilla cells (DPCs) secrete brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor more actively than BMSCs. To analyze the therapeutic function of DPCs in SCI, primary DPCs and BMSCs were cultured from the same green fluorescence protein-transgenic rat. The cells were suspended in rat-tail collagen I and transplanted separately into completely transected spinal cord lesion sites. Grafted-cell survival was examined with a small animal in vivo imaging detection system, and lesion sites were examined histochemically. In vivo imaging revealed enhanced lesion filling and survival with DPC grafts compared with BMSC grafts on days 14 and 21 post-transplantation. Hematoxylin and eosin staining demonstrated that lesion area sizes in the two groups were not markedly different. In the DPC transplant group, more axons formed within the lesion sites. CD31-positive vessel-like structures were more abundant in lesion sites near the grafted cells in the DPC group. The results of the present study suggest that DPCs may be a valuable alternative source of stem cells for autologous cell therapy for the treatment of SCI.
Collapse
Affiliation(s)
- Meiying Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, P.R. China.,Department of Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xianglin Mei
- Department of Pathology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China.,National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Shuang Lv
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zechuan Zhang
- Clinical Medical College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jinying Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dongjie Sun
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jiayi Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xia He
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Guangfan Chi
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yulin Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
10
|
Wang X, Wang L, Qi F, Zhao J. The effect of a single injection of uniform-sized insulin-loaded PLGA microspheres on peri-implant bone formation. RSC Adv 2018; 8:40417-40425. [PMID: 35558211 PMCID: PMC9091419 DOI: 10.1039/c8ra08505f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 11/18/2018] [Indexed: 12/25/2022] Open
Abstract
Titanium implants are widely used treatment modalities, with a long list of clinical successes in orthopaedics, orthopedics and maxillofacial surgery.
Collapse
Affiliation(s)
- Xing Wang
- Shanxi Medical University School and Hospital of Stomatology
- Taiyuan
- China
| | - Lu Wang
- Shanxi Medical University School and Hospital of Stomatology
- Taiyuan
- China
| | - Feng Qi
- Department of Mechanical and Aerospace Engineering
- University of Missouri
- Columbia
- USA
| | - Jing Zhao
- Shanxi Medical University School and Hospital of Stomatology
- Taiyuan
- China
| |
Collapse
|
11
|
Wang X, Zhang G, Qi F, Cheng Y, Lu X, Wang L, Zhao J, Zhao B. Enhanced bone regeneration using an insulin-loaded nano-hydroxyapatite/collagen/PLGA composite scaffold. Int J Nanomedicine 2017; 13:117-127. [PMID: 29317820 PMCID: PMC5743129 DOI: 10.2147/ijn.s150818] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Insulin is widely considered as a classical hormone and drug in maintaining energy and glucose homeostasis. Recently, insulin has been increasingly recognized as an indispensable factor for osteogenesis and bone turnover, but its applications in bone regeneration have been restricted because of the short periods of activity and uncontrolled release. In this study, we incorporated insulin-loaded poly lactic-co-glycolic-acid (PLGA) nanospheres into nano-hydroxyapatite/collagen (nHAC) scaffolds and investigated the bioactivity of the composite scaffolds in vitro and in vivo. Bioactive insulin was successfully released from the nanospheres within the scaffold, and the release kinetics of insulin could be efficiently controlled by uniform-sized nanospheres. The physical characterizations of the composite scaffolds demonstrated that incorporation of nanospheres in nHAC scaffolds using this method did not significantly change the porosity, pore diameters, and compressive strengths of nHAC. In vitro, the insulin-loaded nHAC/PLGA composite scaffolds possessed favorable biological function for bone marrow mesenchymal stem cells adhesion and proliferation, as well as the differentiation into osteoblasts. In vivo, the optimized bone regenerative capability of this composite scaffold was confirmed in rabbit mandible critical size defects. These results demonstrated successful development of a functional insulin-PLGA-nHAC composite scaffold that enhances the bone regeneration capability of nHAC.
Collapse
Affiliation(s)
- Xing Wang
- Shanxi Medical University Stomatological Hospital, Taiyuan
| | - Guilan Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Qi
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Yongfeng Cheng
- Shanxi Medical University Stomatological Hospital, Taiyuan
| | - Xuguang Lu
- Shanxi Medical University Stomatological Hospital, Taiyuan
| | - Lu Wang
- Shanxi Medical University Stomatological Hospital, Taiyuan
| | - Jing Zhao
- Shanxi Medical University Stomatological Hospital, Taiyuan
| | - Bin Zhao
- Shanxi Medical University Stomatological Hospital, Taiyuan
| |
Collapse
|
12
|
Wang X, Wu X, Xing H, Zhang G, Shi Q, E L, Liu N, Yang T, Wang D, Qi F, Wang L, Liu H. Porous Nanohydroxyapatite/Collagen Scaffolds Loading Insulin PLGA Particles for Restoration of Critical Size Bone Defect. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11380-11391. [PMID: 28256126 DOI: 10.1021/acsami.6b13566] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Insulin is considered to be a classical central regulator of energy homeostasis. Recently, the effect of insulin on bone has gained a lot of attention, but little attention has been paid to the application in bone tissue engineering. In this study, porous nanohydroxyapatite/collagen (nHAC) scaffolds incorporating poly lactic-co-glycolic acid (PLGA) particles were successfully developed as an insulin delivery platform for bone regeneration. Bioactive insulin was successfully released from the PLGA particles within the scaffold, and the size of the particles as well as the release kinetics of the insulin could be efficiently controlled through Shirasu porous glass premix membrane emulsification technology. It was indicated that the nHAC/PLGA composite scaffolds possessed favorable mechanical and structural properties for cell adhesion and proliferation, as well as the differentiation into osteoblasts. It was also demonstrated that the nHAC/PLGA scaffolds implanted into a rabbit critical-size mandible defect possessed tissue compatibility and higher bone restoration capacity compared with the defects that were filled with or without nHAC scaffolds. Furthermore, the in vivo results showed that the nHAC/PLGA scaffolds which incorporated insulin-loaded microspheres with a size of 1.61 μm significantly accelerated bone healing compared with two other composite scaffolds. Our study indicated that the local insulin released at the optimal time could substantially and reproducibly improve bone repair.
Collapse
Affiliation(s)
- Xing Wang
- Institute of Stomatology, Chinese PLA General Hospital , Beijing 100853, China
- Hospital of Stomatology, Shanxi Medical University , Taiyuan, 030001, China
| | - Xia Wu
- Institute of Stomatology, Chinese PLA General Hospital , Beijing 100853, China
| | - Helin Xing
- Institute of Stomatology, Chinese PLA General Hospital , Beijing 100853, China
| | - Guilan Zhang
- Institute of Stomatology, Chinese PLA General Hospital , Beijing 100853, China
| | - Quan Shi
- Institute of Stomatology, Chinese PLA General Hospital , Beijing 100853, China
| | - Lingling E
- Institute of Stomatology, Chinese PLA General Hospital , Beijing 100853, China
| | - Na Liu
- Institute of Stomatology, Chinese PLA General Hospital , Beijing 100853, China
| | - Tingyuan Yang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing, 100190, China
| | - Dongsheng Wang
- Institute of Stomatology, Chinese PLA General Hospital , Beijing 100853, China
| | - Feng Qi
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing, 100190, China
| | - Lianyan Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing, 100190, China
| | - Hongchen Liu
- Institute of Stomatology, Chinese PLA General Hospital , Beijing 100853, China
| |
Collapse
|
13
|
Miguita L, Mantesso A, Pannuti CM, Deboni MCZ. Can stem cells enhance bone formation in the human edentulous alveolar ridge? A systematic review and meta-analysis. Cell Tissue Bank 2017; 18:217-228. [PMID: 28233169 DOI: 10.1007/s10561-017-9612-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 02/16/2017] [Indexed: 12/22/2022]
Abstract
Several non-biological materials are currently being used to increase the alveolar bone volume to support dental implants. Recently, stem cell therapy has emerged as a promising biological substitute or adjuvant to enhance bone healing. In order to determine if stem cell therapy has enough clinical evidence to bone ridge augmentation in humans, a systematic review and meta-analysis were conducted. Two independent investigators searched the Entrez PubMed, SCOPUS and Web of Science databases for eligible randomized clinical trials that describe stem cell therapies for alveolar bone formation. The included studies were evaluated for risk of bias. A random-effects meta-analysis model was used to evaluate the percentage of bone formation in the selected studies. Heterogeneity was evaluated using the Cochrane Chi 2 and I 2. Nine eligible trials were included. These studies presented an overall unclear risk of bias. A comparison between the lower heterogeneity studies and the long term observational outcomes showed a slight tendency to enhance bone formation. High heterogeneity between the included studies was observed. The lack of outcome standardization made a wide-ranging comparison difficult. The application of stem cells in oral surgery and implantology appears to be promising although more standardized study designs, increased samples and long-term observations are needed to strength the clinical evidence that stem cell therapy is effective for alveolar bone formation.
Collapse
Affiliation(s)
- Lucyene Miguita
- Department of Oral Medicine, Discipline of Oral Pathology, Dental School, University of São Paulo (FOUSP), Av Professor Lineu Prestes, 2227, Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - Andrea Mantesso
- Department of Oral Medicine, Discipline of Oral Pathology, Dental School, University of São Paulo (FOUSP), Av Professor Lineu Prestes, 2227, Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - Claudio Mendes Pannuti
- Department of Oral Medicine, Discipline of Periodontology, Dental School, University of São Paulo (FOUSP), Av Professor Lineu Prestes, 2227, Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - Maria Cristina Zindel Deboni
- Department of Oral and Maxillofacial Surgery, Discipline of Oral Surgery, Dental School, University of São Paulo (FOUSP), Av Professor Lineu Prestes, 2227, Cidade Universitária, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
14
|
Commentary on Some Recent Theses Relevant to Combating Aging: February 2017. Rejuvenation Res 2017; 20:67-74. [DOI: 10.1089/rej.2017.1925] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
15
|
Restoration of a Critical Mandibular Bone Defect Using Human Alveolar Bone-Derived Stem Cells and Porous Nano-HA/Collagen/PLA Scaffold. Stem Cells Int 2016; 2016:8741641. [PMID: 27118977 PMCID: PMC4826948 DOI: 10.1155/2016/8741641] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 03/08/2016] [Indexed: 12/18/2022] Open
Abstract
Periodontal bone defects occur in a wide variety of clinical situations. Adult stem cell- and biomaterial-based bone tissue regeneration are a promising alternative to natural bone grafts. Recent evidence has demonstrated that two populations of adult bone marrow mesenchymal stromal cells (BMSCs) can be distinguished based on their embryonic origins. These BMSCs are not interchangeable, as bones preferentially heal using cells that share the same embryonic origin. However, the feasibility of tissue engineering using human craniofacial BMSCs was unclear. The goal of this study was to explore human craniofacial BMSC-based therapy for the treatment of localized mandibular defects using a standardized, minimally invasive procedure. The BMSCs' identity was confirmed. Scanning electron microscopy, a cell proliferation assay, and supernatant detection indicated that the nHAC/PLA provided a suitable environment for aBMSCs. Real-time PCR and electrochemiluminescence immunoassays demonstrated that osteogenic markers were upregulated by osteogenic preinduction. Moreover, in a rabbit critical-size mandibular bone defect model, total bone formation in the nHAC/PLA + aBMSCs group was significantly higher than in the nHAC/PLA group but significantly lower than in the nHAC/PLA + preinduced aBMSCs. These findings demonstrate that this engineered bone is a valid alternative for the correction of mandibular bone defects.
Collapse
|