1
|
Frost OG, Ramkilawan P, Rebbaa A, Stolzing A. A systematic review of lifespan studies in rodents using stem cell transplantations. Ageing Res Rev 2024; 97:102295. [PMID: 38588866 DOI: 10.1016/j.arr.2024.102295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Organismal aging involves the progressive decline in organ function and increased susceptibility to age-associated diseases. Regardless of its origin, cellular aging is consequently reflected at the level of organ and associated systems dysfunction. Aging of stem cell populations within the body and their decreased ability to self-renew, differentiate, and regenerate damaged tissues, is a key contributor to organismal decline. Based on this, supplementing young stem cells may delay tissue aging, improve frailty and extend health and lifespan. This review investigates studies in rodents using stem cell transplantation from either mice or human donors. The aim is to consolidate available information on the efficacy of stem cell therapies in rodent models and provide insights to guide further research efforts. Out of the 21 studies included in this review, the methodology varied significantly including the lifespan measurement. To enable comparison the median lifespan was calculated using WebPlotDigitizer 4.6 if not provided by the literature. A total of 18 out of 21 studies evidenced significant lifespan extension post stem cell transplant, with 7 studies demonstrating benefits in reduced frailty and other aging complications.
Collapse
Affiliation(s)
- Oliver G Frost
- Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK; SENS Research Foundation, Mountain View, CA 94041, USA
| | | | | | - Alexandra Stolzing
- Centre for Biological Engineering, School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK.
| |
Collapse
|
2
|
Chiavellini P, Lehmann M, Gallardo MD, Mallat MC, Pasquini DC, Zoller JA, Gordevicius J, Girard M, Lacunza E, Herenu CB, Horvath S, Goya RG. Young Plasma Rejuvenates Blood DNA Methylation Profile, Extends Mean Lifespan, and Improves Physical Appearance in Old Rats. J Gerontol A Biol Sci Med Sci 2024; 79:glae071. [PMID: 38430547 PMCID: PMC11020299 DOI: 10.1093/gerona/glae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 03/04/2024] Open
Abstract
There is converging evidence that young blood conveys cells, vesicles, and molecules able to revitalize function and restore organ integrity in old individuals. We assessed the effects of young plasma on the lifespan, epigenetic age, and healthspan of old female rats. Beginning at 25.6 months of age, a group of 9 rats (group T) was intraperitoneally injected with plasma from young rats until their natural death. A group of 8 control rats of the same age received no treatment (group C). Blood samples were collected every other week. Survival curves showed that from age 26 to 30 months, none of the group T animals died, whereas the survival curve of group C rats began to decline at age 26 months. Blood DNAm age versus chronological age showed that DNAm age in young animals increased faster than chronological age, then slowed down, entering a plateau after 27 months. The DNAm age of the treated rats fell below the DNAm age of controls and, in numerical terms, remained consistently lower until natural death. When rats were grouped according to the similarities in their differential blood DNA methylation profile, samples from the treated and control rats clustered in separate groups. Analysis of promoter differential methylation in genes involved in systemic regulatory activities revealed specific GO term enrichment related to the insulin-like factors pathways as well as to cytokines and chemokines associated with immune and homeostatic functions. We conclude that young plasma therapy may constitute a natural, noninvasive intervention for epigenetic rejuvenation and health enhancement.
Collapse
Affiliation(s)
- Priscila Chiavellini
- Institute for Biochemical Research (INIBIOLP)—Histology B and Pathology B, Faculty of Medicine, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | - Marianne Lehmann
- Institute for Biochemical Research (INIBIOLP)—Histology B and Pathology B, Faculty of Medicine, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | - Maria D Gallardo
- Institute for Biochemical Research (INIBIOLP)—Histology B and Pathology B, Faculty of Medicine, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | - Martina Canatelli Mallat
- Institute for Biochemical Research (INIBIOLP)—Histology B and Pathology B, Faculty of Medicine, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | - Diana C Pasquini
- Institute for Biochemical Research (INIBIOLP)—Histology B and Pathology B, Faculty of Medicine, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | - Joseph A Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA
| | | | - Mauricio Girard
- Institute for Biochemical Research (INIBIOLP)—Histology B and Pathology B, Faculty of Medicine, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | - Ezequiel Lacunza
- Centro de Investigaciones Inmunologicas Basicas y Aplicadas (CINIBA), School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
| | - Claudia B Herenu
- Institute for Experimental Pharmacology (IFEC), School of Chemical Sciences, National University of Cordoba, Cordoba, Argentina
| | - Steve Horvath
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA
- Altos Labs, San Diego, California, USA
| | - Rodolfo G Goya
- Institute for Biochemical Research (INIBIOLP)—Histology B and Pathology B, Faculty of Medicine, School of Medicine, National University of La Plata (UNLP), La Plata, Argentina
- Vitality in Aging Research Group (VIA), Fort Lauderdale, Florida, USA
| |
Collapse
|
3
|
Xing C, Hang Z, Guo W, Li Y, Shah R, Zhao Y, Zeng Z, Du H. Stem cells from human exfoliated deciduous teeth rejuvenate the liver in naturally aged mice by improving ribosomal and mitochondrial proteins. Cytotherapy 2023; 25:1285-1292. [PMID: 37815776 DOI: 10.1016/j.jcyt.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND AIMS Aging is accompanied by a decline in cellular proteome homeostasis, mitochondrial, and metabolic function. Mesenchymal stromal cell (MSC) therapies have been reported to extend lifespan and delay some age-related pathologies, yet the anti-aging rate and mechanisms remain unclear. Here, we investigated the effects and mechanism by transplantation of stem cells from human exfoliated deciduous teeth (SHED) into the naturally aged mice model. METHODS SHED were cultured in vitro and injected into mice by caudal vein. The in vivo imaging uncovered that SHED labeled by DiR dye mainly migrated to the liver, spleen, and lung organs of wild-type mice. As the main metabolic organ and SHED homing place, the liver was selected for proteomics and aging clock algorithm (LiverClock) analysis, which was constructed to estimate the proteomic pattern related to liver age state. RESULTS After 6 months of continuous SHED injections, the liver proteomic pattern was reversed from senescent (∼30 months) to a youthful state (∼3 months), accompanied with upregulation of hepatocytes marker genes, anti-aging protein Klotho, a global improvement of liver functional pathways proteins, and a dramatic regulation of ribosomal and mitochondrial proteins, including upregulation of translation elongation and ribosome-sparing proteins Rpsa and Rplp0; elongation factors Eif4a1, Eef1b2, Eif5a; protein-folding chaperones Hsp90aa and Hspe1; ATP synthesis proteins Atp5b, Atp5o, Atp5j; and downregulation of most ribosomal proteins, suggesting that the proteome homeostasis destruction and mitochondria dysfunction in the aged mice liver might be relieved after SHED treatment. CONCLUSIONS SHED treatment could dramatically relieve the senescent state of the aged liver, affect ribosome component proteins and upregulate the ribosomal biogenesis proteins in the aged mice liver. These results may help understand the improvements and mechanisms of SHED treatment in anti-aging.
Collapse
Affiliation(s)
- Cencan Xing
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
| | - Zhongci Hang
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
| | - Wenhuan Guo
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China; Reproductive Center, Peking University Third Hospital, Beijing, China
| | - Yingxian Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Roshan Shah
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
| | - Yihan Zhao
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China
| | - Zehua Zeng
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China.
| | - Hongwu Du
- Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing (USTB), Beijing, China.
| |
Collapse
|
4
|
Garay RP. Recent clinical trials with stem cells to slow or reverse normal aging processes. FRONTIERS IN AGING 2023; 4:1148926. [PMID: 37090485 PMCID: PMC10116573 DOI: 10.3389/fragi.2023.1148926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/24/2023] [Indexed: 04/25/2023]
Abstract
Aging is associated with a decline in the regenerative potential of stem cells. In recent years, several clinical trials have been launched in order to evaluate the efficacy of mesenchymal stem cell interventions to slow or reverse normal aging processes (aging conditions). Information concerning those clinical trials was extracted from national and international databases (United States, EU, China, Japan, and World Health Organization). Mesenchymal stem cell preparations were in development for two main aging conditions: physical frailty and facial skin aging. With regard to physical frailty, positive results have been obtained in phase II studies with intravenous Lomecel-B (an allogeneic bone marrow stem cell preparation), and a phase I/II study with an allogeneic preparation of umbilical cord-derived stem cells was recently completed. With regard to facial skin aging, positive results have been obtained with an autologous preparation of adipose-derived stem cells. A further sixteen clinical trials for physical frailty and facial skin aging are currently underway. Reducing physical frailty with intravenous mesenchymal stem cell administration can increase healthy life expectancy and decrease costs to the public health system. However, intravenous administration runs the risk of entrapment of the stem cells in the lungs (and could raise safety concerns). In addition to aesthetic purposes, clinical research on facial skin aging allows direct evaluation of tissue regeneration using sophisticated and precise methods. Therefore, research on both conditions is complementary, which facilitates a global vision.
Collapse
Affiliation(s)
- Ricardo P. Garay
- Pharmacology and Therapeutics, Craven, 91360 Villemoisson-sur-Orge, France
- CNRS, National Centre of Scientific Research, Paris, France
- *Correspondence: Ricardo P. Garay,
| |
Collapse
|
5
|
Govindasamy V, Rajendran A, Lee ZX, Ooi GC, Then KY, Then KL, Gayathri M, Kumar Das A, Cheong SK. The potential role of mesenchymal stem cells in modulating antiageing process. Cell Biol Int 2021; 45:1999-2016. [PMID: 34245637 DOI: 10.1002/cbin.11652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/24/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022]
Abstract
Ageing and age-related diseases share some basic origin that largely converges on inflammation. Precisely, it boils down to a common pathway characterised by the appearance of a fair amount of proinflammatory cytokines known as inflammageing. Among the proposed treatment for antiageing, MSCs gained attention in recent years. Since mesenchymal stem cells (MSCs) can differentiate itself into a myriad of terminal cells, previously it was believed that these cells migrate to the site of injury and perform their therapeutic effect. However, with the more recent discovery of huge amounts of paracrine factors secreted by MSCs, it is now widely accepted that these cells do not engraft upon transplantation but rather unveil their benefits through excretion of bioactive molecules namely those involved in inflammatory and immunomodulatory activities. Conversely, the true function of these paracrine changes has not been thoroughly investigated all these years. Hence, this review will describe in detail on ways MSCs may capitalize its paracrine properties in modulating antiageing process. Through a comprehensive literature search various elements in the antiageing process, we aim to provide a novel treatment perspective of MSCs in antiageing related clinical conditions.
Collapse
Affiliation(s)
- Vijayendran Govindasamy
- Research and Development Department, CryoCord Sdn Bhd, Bio-X Centre, Cyberjaya, Selangor, Malaysia
| | - Abilashini Rajendran
- Research and Development Department, CryoCord Sdn Bhd, Bio-X Centre, Cyberjaya, Selangor, Malaysia
| | - Zhi-Xin Lee
- Research and Development Department, CryoCord Sdn Bhd, Bio-X Centre, Cyberjaya, Selangor, Malaysia
| | - Ghee-Chien Ooi
- Research and Development Department, CryoCord Sdn Bhd, Bio-X Centre, Cyberjaya, Selangor, Malaysia
| | - Kong-Yong Then
- Research and Development Department, CryoCord Sdn Bhd, Bio-X Centre, Cyberjaya, Selangor, Malaysia.,Brighton Healthcare (Bio-X Healthcare Sdn Bhd), Bio-X Centre, Cyberjaya, Selangor, Malaysia
| | - Khong-Lek Then
- Research and Development Department, CryoCord Sdn Bhd, Bio-X Centre, Cyberjaya, Selangor, Malaysia
| | - Merilynn Gayathri
- Brighton Healthcare (Bio-X Healthcare Sdn Bhd), Bio-X Centre, Cyberjaya, Selangor, Malaysia
| | - Anjan Kumar Das
- Deparment of Surgery, IQ City Medical College, Durgapur, West Bengal, India
| | - Soon-Keng Cheong
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman (UTAR), Kajang, Selangor, Malaysia
| |
Collapse
|
6
|
Abstract
There is a growing interest in the potential of adult stem cells for implementing regenerative medicine in the brain. We assessed the effect of intracerebroventricular (icv) administration of human umbilical cord perivascular cells (HUCPVCs) on spatial memory of senile (27 mo) female rats, using intact senile counterparts as controls. Approximately one third of the animals were injected in the lateral ventricles with a suspension containing 4.8 X 105 HUCPVC in 8 μl per side. The other third received 4.8 X 105 transgenic HUCPVC overexpressing Insulin-like growth factor-1 (IGF-1) and the last third of the rats received no treatment. Spatial memory performance was evaluated using a modified version of the Barnes maze test. In order to evaluate learning ability as well as spatial memory retention, we assessed the time spent (permanence) by animals in goal sector 1 (GS1) and 3 (GS3) when the escape box was removed. Fluorescence microscopy revealed the prescence of Dil-labeled HUCPVC in coronal sections of treated brains. The HUCPVC were located in close contact with the ependymal cells with only a few labeled cells migrating into the brain parenchyma. After treatment with naïve or IGF-1 transgenic HUCPVC, permanence in GS1 and GS3 increased significantly whereas there were no changes in the intact animals. We conclude that HUCPVC injected icv are effective to improve some components of spatial memory in senile rats. The ready accessibility of HUCPVC constitutes a significant incentive to continue the exploration of their therapeutic potential on neurodegenerative diseases.
Collapse
|
7
|
Oliva AA, McClain-Moss L, Pena A, Drouillard A, Hare JM. Allogeneic mesenchymal stem cell therapy: A regenerative medicine approach to geroscience. Aging Med (Milton) 2019; 2:142-146. [PMID: 31667462 PMCID: PMC6820701 DOI: 10.1002/agm2.12079] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Extraordinary advances in medicine and public health have contributed to increasing life expectancy worldwide. However, health span-"healthy aging"-has paradoxically lagged to parallel this increase. Consequently, aging-associated illnesses, such as Alzheimer's disease and aging frailty, are having a growing impact on patients, their families, and entire health-care systems. Typically, such disorders have been treated as isolated disease entities. However, the inextricable links between aging-associated disorders and the aging process itself have become increasingly recognized, leading to formation of the field of geroscience. The geroscience concept is that treating the aging process itself should lead to treatment and prevention of aging-related disorders. However, the aging process is complex, dictated by highly interrelated pleiotropic processes. As such, therapeutics with pleiotropic mechanisms of action (either alone, or as part of combinatorial strategies) will be required for preventing and treating both aging and related disorders. Mesenchymal stem cells (MSCs) have multiple mechanisms of action that make these highly promising geroscience therapeutic candidates. These cells have a high safety profile for clinical use, are amenable to allogeneic use since tissue-type matching is not required, and can have sustained activity after transplantation. Herein, we review preclinical and clinical data supporting the utility of allogeneic MSCs as a geroscience therapeutic candidate.
Collapse
Affiliation(s)
| | | | | | | | - Joshua M Hare
- Longeveron LLC, Miami, FL, USA.,Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
8
|
Attenuation of frailty in older adults with mesenchymal stem cells. Mech Ageing Dev 2019; 181:47-58. [DOI: 10.1016/j.mad.2019.111120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 01/13/2023]
|
9
|
Zappa Villar MF, Lehmann M, García MG, Mazzolini G, Morel GR, Cónsole GM, Podhajcer O, Reggiani PC, Goya RG. Mesenchymal stem cell therapy improves spatial memory and hippocampal structure in aging rats. Behav Brain Res 2019; 374:111887. [PMID: 30951751 DOI: 10.1016/j.bbr.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
Abstract
There is a growing interest in the potential of mesenchymal stem cells (MSCs) for implementing regenerative medicine in the brain as they have shown neurogenic and immunomodulatory activities. We assessed the effect of intracerebroventricular (icv) administration of human bone marrow-derived MSCs (hBM-MSCs) on spatial memory and hippocampal morphology of senile (27 months) female rats, using 3-months-old counterparts as young controls. Half of the animals were injected in the lateral ventricles (LV) with a suspension containing 5 × 105hBM-MSCs in 8 μl per side. The other half received no treatment (senile controls). Spatial memory performance was assessed with a modified version of the Barnes maze test. We employed one probe trial, one day after training in order to evaluate learning ability as well as spatial memory retention. Neuroblast (DCX) and microglial (Iba-1 immunoreactive) markers were also immunohistochemically quantitated in the animals by means of an unbiased stereological approach. In addition, hippocampal presynaptic protein expression was assessed by immunoblotting analysis. After treatment, the senile MSC-treated group showed a significant improvement in spatial memory accuracy and extended permanence in a one- and 3-hole goal sectors as compared with senile controls. The MSC treatment increased the number of neuroblasts in the hippocampal dentate gyrus, reduced the number of reactive microglial cells, and restored presynaptic protein levels as compared to senile controls. We conclude that icv injected hBM-MSCs are effective in improving spatial memory in senile rats and that the strategy improves some functional and morphologic brain features typically altered in aging rats.
Collapse
Affiliation(s)
- Maria F Zappa Villar
- INIBIOLP-Pathology B, School of Medicine, National University of La Plata, Argentina; Department of Histology and of Embryology B, School of Medicine, National University of La Plata, Argentina
| | - Marianne Lehmann
- INIBIOLP-Pathology B, School of Medicine, National University of La Plata, Argentina; Department of Histology and of Embryology B, School of Medicine, National University of La Plata, Argentina
| | - Mariana G García
- Gene Therapy Laboratory, IIMT, School of Medical Science, Austral University, Buenos Aires, Argentina
| | - Guillermo Mazzolini
- Gene Therapy Laboratory, IIMT, School of Medical Science, Austral University, Buenos Aires, Argentina
| | - Gustavo R Morel
- INIBIOLP-Pathology B, School of Medicine, National University of La Plata, Argentina; Department of Histology and of Embryology B, School of Medicine, National University of La Plata, Argentina
| | - Gloria M Cónsole
- Department of Histology and of Embryology B, School of Medicine, National University of La Plata, Argentina
| | - Osvaldo Podhajcer
- Laboratory of Molecular and Cellular Therapy, Fundacion Instituto Leloir, Buenos Aires, Argentina
| | - Paula C Reggiani
- INIBIOLP-Pathology B, School of Medicine, National University of La Plata, Argentina; Department of Histology and of Embryology B, School of Medicine, National University of La Plata, Argentina
| | - Rodolfo G Goya
- INIBIOLP-Pathology B, School of Medicine, National University of La Plata, Argentina; Department of Histology and of Embryology B, School of Medicine, National University of La Plata, Argentina.
| |
Collapse
|
10
|
Falomir-Lockhart E, Dolcetti FJC, García-Segura LM, Hereñú CB, Bellini MJ. IGF1 Gene Therapy Modifies Microglia in the Striatum of Senile Rats. Front Aging Neurosci 2019; 11:48. [PMID: 30890930 PMCID: PMC6411822 DOI: 10.3389/fnagi.2019.00048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/19/2019] [Indexed: 12/20/2022] Open
Abstract
Microglial cells become dystrophic with aging; this phenotypic alteration contributes to basal central nervous system (CNS) neuroinflammation being a risk factor for age related neurodegenerative diseases. In previous studies we have observed that insulin like growth factor 1 (IGF1) gene therapy is a feasible approach to target brain cells, and that is effective to modify inflammatory response in vitro and to ameliorate cognitive or motor deficits in vivo. Based on these findings, the main aim of the present study is to investigate the effect of IGF1 gene therapy on microglia distribution and morphology in the senile rat. We found that IGF1 therapy leads to a region-specific modification of aged microglia population.
Collapse
Affiliation(s)
- Eugenia Falomir-Lockhart
- Laboratorio de Bioquimica del Envejecimiento, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, UNLP-CONICET, La Plata, Argentina
| | - Franco Juan Cruz Dolcetti
- Laboratorio de Bioquimica del Envejecimiento, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, UNLP-CONICET, La Plata, Argentina
| | - Luis Miguel García-Segura
- Instituto Cajal, CSIC, Madrid, Spain
- Centro de Investigación, Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Claudia Beatriz Hereñú
- Instituto de Farmacología Experimental de Córdoba-CONICET, Departamento de Farmacología, Facultad de Ciencias Químicas, UNC-CONICET, Córdoba, Argentina
| | - Maria Jose Bellini
- Laboratorio de Bioquimica del Envejecimiento, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, UNLP-CONICET, La Plata, Argentina
| |
Collapse
|
11
|
Abstract
In this review, we focus on new approaches that could lead to the regeneration of heart muscle and the restoration of cardiac muscle function derived from newly-formed cardiomyocytes. Various strategies for the production of cardiomyocytes from embryonic stem cells, induced pluripotent stem cells, adult bone marrow stem cells and cardiac spheres from human heart biopsies are described. Pathological conditions which lead to atherosclerosis and coronary artery disease often are followed by myocardial infarction causing myocardial cell death. After cell death, there is very little self-regeneration of the cardiac muscle tissue, which is replaced by non-contractile connective tissue, thus weakening the ability of the heart muscle to contract fully and leading to heart failure. A number of experimental research approaches to stimulate heart muscle regeneration with the hope of regaining normal or near normal heart function in the damaged heart muscle have been attempted. Some of these very interesting studies have used a variety of stem cell types in combination with potential cardiogenic differentiation factors in an attempt to promote differentiation of new cardiac muscle for possible future use in the clinical treatment of patients who have suffered heart muscle damage from acute myocardial infarctions or related cardiovascular diseases. Although progress has been made in recent years relative to promoting the differentiation of cardiac muscle tissue from non-muscle cells, much work remains to be done for this technology to be used routinely in translational clinical medicine to treat patients with damaged heart muscle tissue and return such individuals to pre-heart-attack activity levels.
Collapse
Affiliation(s)
- Andrei Kochegarov
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, Texas, USA
| | - Larry F Lemanski
- Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, Texas, USA
| |
Collapse
|
12
|
Warmack RA, Mansilla E, Goya RG, Clarke SG. Racemized and Isomerized Proteins in Aging Rat Teeth and Eye Lens. Rejuvenation Res 2016; 19:309-17. [PMID: 26650547 DOI: 10.1089/rej.2015.1778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The quantification of aspartic acid racemization in the proteins of nonmetabolically active tissues can be used as a measure of chronological aging in humans and other long-lived organisms. However, very few studies have been conducted in shorter-lived animals such as rodents, which are increasingly used as genetic and metabolic models of aging. An initial study had reported significant changes in the ratio of d- to l-aspartate in rat molars with age. Using a sensitive HPLC method for the determination of d- and l-aspartate from protein hydrolysates, we found no accumulation of d-aspartate in the molars of 17 rats that ranged in age from 2 to 44 months, and the amount of d-aspartate per molar did not correspond with molar eruption date as had been previously reported. However, developing an alternate approach, we found significant accumulation of isomerized aspartyl residues in eye lens proteins that are also formed by spontaneous degradation processes. In this study, we used the human protein l-isoaspartate/d-aspartate O-methyltransferase (PCMT1) as an analytical reagent in a sensitive and convenient procedure that could be used to rapidly examine multiple samples simultaneously. We found levels of isomerized aspartyl residues to be about 35 times higher in the lens extracts of 18-month-old rats versus 2-month-old rats, suggesting that isomerization may be an effective marker for biological aging in this range of ages. Importantly, we found that the accumulation appeared to plateau in rats of 18 months and older, indicating that potentially novel mechanisms for removing altered proteins may develop with age.
Collapse
Affiliation(s)
- Rebeccah A Warmack
- 1 Department of Chemistry and Biochemistry, The Molecular Biology Institute, University of California , Los Angeles, Los Angeles, California
| | - Eduardo Mansilla
- 2 Tissue Engineering, Regenerative Medicine and Cell Therapies Laboratory, CUCAIBA, Buenos Aires Province Ministry of Public Health , Buenos Aires, Argentina
| | - Rodolfo G Goya
- 3 Institute for Biochemical Research (INIBIOLP)-Cathedra of Histology B, Cathedra of Pathology B, School of Medicine, National University of La Plata , La Plata, Argentina
| | - Steven G Clarke
- 1 Department of Chemistry and Biochemistry, The Molecular Biology Institute, University of California , Los Angeles, Los Angeles, California
| |
Collapse
|