1
|
Vandorou M, Plakidis C, Tsompanidou IM, Adamantidi T, Panagopoulou EA, Tsoupras A. A Review on Apple Pomace Bioactives for Natural Functional Food and Cosmetic Products with Therapeutic Health-Promoting Properties. Int J Mol Sci 2024; 25:10856. [PMID: 39409182 PMCID: PMC11476848 DOI: 10.3390/ijms251910856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Apples are consumed lavishly worldwide, while demand is increasing for the management of the huge apple-waste amounts that lead to significant disposal costs and ecological issues. Additionally, apples represent fruits with several bioactive constituents, which are key factors in a healthy, balanced diet. In the present study, an extensive review is presented regarding the bioactive compounds of an apple processing by-product, namely apple pomace, mentioning their significance as viable ingredients/substances in foods and cosmetics aiming at chronic disease prevention and health promotion. Apple pomace contains several constituents, such as polar lipids, phenolics, vitamins and dietary fibers, with potential antioxidant, anti-inflammatory, anti-thrombotic, anti-aging and skin-protecting properties, and thus, they may contribute to minimizing the risk of various health conditions. Additionally, the mechanisms of action of such functional bioactives from apple pomace exert health benefits that will be examined, while the potential synergistic effects will also be investigated. Moreover, we will present the methods and techniques needed for the utilization of apple pomace in the appropriate form, such as powder, extracts, essential oil and so on, and their several applications in the food and cosmeceutical industry sectors, which summarize that apple pomace represents an ideal alternative to synthetic bioactive compounds.
Collapse
Affiliation(s)
- Maria Vandorou
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lukas, 65404 Kavala, Greece; (M.V.); (C.P.); (I.M.T.); (T.A.)
| | - Christos Plakidis
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lukas, 65404 Kavala, Greece; (M.V.); (C.P.); (I.M.T.); (T.A.)
| | - Ilektra Maria Tsompanidou
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lukas, 65404 Kavala, Greece; (M.V.); (C.P.); (I.M.T.); (T.A.)
| | - Theodora Adamantidi
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lukas, 65404 Kavala, Greece; (M.V.); (C.P.); (I.M.T.); (T.A.)
| | - Eirini A. Panagopoulou
- Department of Dietetics and Nutrition, Harokopio University, 70, El. Venizelou Ave., 17676 Kallithea, Greece;
| | - Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lukas, 65404 Kavala, Greece; (M.V.); (C.P.); (I.M.T.); (T.A.)
| |
Collapse
|
2
|
Bai XD, Fei WC, Liu YC, Yang SP. Enzymatically modified isoquercitrin and its protective effects against photoaging: In-vitro and clinical studies. Photochem Photobiol 2024; 100:1475-1488. [PMID: 38185856 DOI: 10.1111/php.13891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 01/09/2024]
Abstract
This research examines the anti-aging potential of the flavonoid derivative of isoquercitrin known as enzymatically modified isoquercitrin (EMIQ). Initial HPLC analyses showed that EMIQ used in the study contained 1-12 glucosides and 10.7% pentahydroxyflavonoids, promising potent antioxidant properties. In subsequent in-vitro studies with UVA-exposed human dermal fibroblasts (HDFa), EMIQ demonstrated protective properties by reducing collagen damage. It modulated both the TGFβ/Smad pathway and the MMP1 pathway, contributing to collagen preservation. This protective effect was further confirmed using the T-Skin™ model, a reconstructed full-thickness human skin model, which illustrated that EMIQ could defend the physiological structures of both the epidermis and dermis against UV radiation. A 28-day clinical trial with 30 volunteers aged 31-55 years highlighted EMIQ's effectiveness. Participants using EMIQ-containing Essence displayed reduced facial trans-epidermal water loss and skin roughness, alongside improved skin elasticity. This study emphasizes EMIQ's potential as an anti-photoaging ingredient in cosmetics, warranting further research. The findings pave the way for developing innovative skincare products addressing photoaging effects.
Collapse
Affiliation(s)
- Xue-Dong Bai
- R&D Center of Shanghai Huiwen Biotech Co., Ltd, Shanghai, China
| | - Wei-Cheng Fei
- R&D Center of Shanghai Huiwen Biotech Co., Ltd, Shanghai, China
| | - Yu-Chen Liu
- R&D Center of Shanghai Huiwen Biotech Co., Ltd, Shanghai, China
| | - Sheng-Ping Yang
- R&D Center of Shanghai Huiwen Biotech Co., Ltd, Shanghai, China
| |
Collapse
|
3
|
Li X, Cheng J, Guo K, Wan J, Wang C, Chen L, Xu N, Chen M. KGF-2 ameliorates UVB-triggered skin photodamage in mice by attenuating DNA damage and inflammatory response and mitochondrial dysfunction. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12993. [PMID: 39187972 DOI: 10.1111/phpp.12993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Long-term exposure to UVB induces DNA damage, inflammatory response, mitochondrial dysfunction, and apoptosis in skin cells, thus causing skin photodamage. Research has demonstrated the noteworthy antioxidant, anti-inflammatory, DNA repair, and mitochondrial protective properties of keratinocyte growth factor-2 (KGF-2). METHODS To examine the impact of KGF-2 on UVB-triggered skin photodamage in mice, hair-removed mice were initially exposed under UVB radiation and subsequently treated with KGF-2 hydrogel and repeated for 6 days. On day 7, the assessment of histopathological alterations, inflammation, DNA damage, mitochondrial function, and apoptosis in mouse skin was assessed. RESULTS It was found that KGF-2 could effectively relieve cutaneous photodamage symptoms and inhibit epidermal proliferation in mice. Meanwhile, KGF-2 was found to significantly reduce DNA damage, attenuate the inflammatory response, and inhibit the mitochondria-mediated intrinsic apoptotic pathway in the UVB-exposed mouse skin photodamage model. CONCLUSION To summarize, our results indicated that KGF-2 reduces the severity of mouse skin photodamage caused by UVB rays by attenuating DNA damage and the inflammatory response, besides inhibiting the mitochondria-mediated intrinsic apoptosis pathway.
Collapse
Affiliation(s)
- Xuenan Li
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jinli Cheng
- Department of Pharmacy, Nanjing Yuhua hospital, Nanjing, China
| | - Keke Guo
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jianwei Wan
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Cuihong Wang
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Lu Chen
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Min Chen
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
4
|
Huang L, You L, Aziz N, Yu SH, Lee JS, Choung ES, Luong VD, Jeon MJ, Hur M, Lee S, Lee BH, Kim HG, Cho JY. Antiphotoaging and Skin-Protective Activities of Ardisia silvestris Ethanol Extract in Human Keratinocytes. PLANTS (BASEL, SWITZERLAND) 2023; 12:1167. [PMID: 36904025 PMCID: PMC10007040 DOI: 10.3390/plants12051167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Ardisia silvestris is a traditional medicinal herb used in Vietnam and several other countries. However, the skin-protective properties of A. silvestris ethanol extract (As-EE) have not been evaluated. Human keratinocytes form the outermost barrier of the skin and are the main target of ultraviolet (UV) radiation. UV exposure causes skin photoaging via the production of reactive oxygen species. Protection from photoaging is thus a key component of dermatological and cosmetic products. In this research, we found that As-EE can prevent UV-induced skin aging and cell death as well as enhance the barrier effect of the skin. First, the radical-scavenging ability of As-EE was checked using DPPH, ABTS, TPC, CUPRAC, and FRAP assays, and a 3-(4-5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assay was used to examine cytotoxicity. Reporter gene assays were used to determine the doses that affect skin-barrier-related genes. A luciferase assay was used to identify possible transcription factors. The anti-photoaging mechanism of As-EE was investigated by determining correlated signaling pathways using immunoblotting analyses. As-EE had no harmful effects on HaCaT cells, according to our findings, and As-EE revealed moderate radical-scavenging ability. With high-performance liquid chromatography (HPLC) analysis, rutin was found to be one of the major components. In addition, As-EE enhanced the expression levels of hyaluronic acid synthase-1 and occludin in HaCaT cells. Moreover, As-EE dose-dependently up-regulated the production of occludin and transglutaminase-1 after suppression caused by UVB blocking the activator protein-1 signaling pathway, in particular, the extracellular response kinase and c-Jun N-terminal kinase. Our findings suggest that As-EE may have anti-photoaging effects by regulating mitogen-activated protein kinase, which is good news for the cosmetics and dermatology sectors.
Collapse
Affiliation(s)
- Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Long You
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Nur Aziz
- Pharmacy Program, Faculty of Science and Technology, Ma Chung University, Malang 65151, Indonesia
| | - Seung Hui Yu
- DanjoungBio, Co., Ltd., Wonju 26303, Republic of Korea
| | - Jong Sub Lee
- DanjoungBio, Co., Ltd., Wonju 26303, Republic of Korea
| | - Eui Su Choung
- DanjoungBio, Co., Ltd., Wonju 26303, Republic of Korea
| | - Van Dung Luong
- Department of Biology, Dalat University, 01 Phu Dong Thien Vuong, Dalat 66106, Vietnam
| | - Mi-Jeong Jeon
- National Institute of Biological Resources, Environmental Research Complex, Incheon 222689, Republic of Korea
| | - Moonsuk Hur
- National Institute of Biological Resources, Environmental Research Complex, Incheon 222689, Republic of Korea
| | - Sarah Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 222689, Republic of Korea
| | - Byoung-Hee Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon 222689, Republic of Korea
| | - Han Gyung Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Youl Cho
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Research Institute of Biomolecule Control and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Dagher J, Arcand C, Auger FA, Germain L, Moulin VJ. The Self-Assembled Skin Substitute History: Successes, Challenges, and Current Treatment Indications. J Burn Care Res 2023; 44:S57-S64. [PMID: 36567476 PMCID: PMC9790893 DOI: 10.1093/jbcr/irac074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The self-assembled skin substitute (SASS) is an autologous bilayered skin substitute designed by our academic laboratory, the Laboratoire d'Organogenèse Expérimentale (LOEX) to offer definitive treatment for patients lacking donor sites (unwounded skin) to cover their burn wounds. This product shows skin-like attributes, such as an autologous dermal and epidermal layer, and is easily manipulable by the surgeon. Its development stems from the need for skin replacement in high total body surface area burned survivors presenting few donor sites for standard split-thickness skin grafting. This review aims to present the history, successes, challenges, and current therapeutic indications of this skin substitute. We review the product's development history, before discussing current production techniques, as well as clinical use. The progression observed since the initial SASS production technique described in 1999, up to the most recent technique expresses significant advances made in the technical aspect of our product, such as the reduction of the production time. We then explore the efficacy and benefits of SASS over existing skin substitutes and discuss the outcomes of a recent study focusing on the successful treatment of 14 patients. Moreover, an ongoing cross-Canada study is further assessing the product's safety and efficacy. The limitations and technical challenges of SASS are also discussed.
Collapse
Affiliation(s)
- Jason Dagher
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval (LOEX), Québec, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Québec, Canada
- Département de chirurgie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Charles Arcand
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval (LOEX), Québec, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Québec, Canada
- Département de chirurgie, Faculté de Médecine, Université Laval, Québec, Canada
| | - François A Auger
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval (LOEX), Québec, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Québec, Canada
- Département de chirurgie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Lucie Germain
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval (LOEX), Québec, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Québec, Canada
- Département de chirurgie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Véronique J Moulin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval (LOEX), Québec, Canada
- Centre de Recherche du CHU de Québec-Université Laval, Québec, Canada
- Département de chirurgie, Faculté de Médecine, Université Laval, Québec, Canada
| |
Collapse
|
6
|
Chai J, Chen X, Jin C, Chai F, Tian M. Selective enrichment of Rutin in sunscreen by boronate affinity molecularly imprinted polymer prior to determination by high performance liquid chromatography. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Martins RM, de Siqueira Martins S, Barbosa GLF, Fonseca MJV, Rochette PJ, Moulin VJ, de Freitas LAP, de Freitas LAP. Photoprotective effect of solid lipid nanoparticles of rutin against UVB radiation damage on skin biopsies and tissue-engineered skin. J Microencapsul 2022; 39:668-679. [PMID: 36476253 DOI: 10.1080/02652048.2022.2156631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solid lipid nanoparticles (SLNs) containing rutin were prepared to enhance their photochemopreventive effect on the skin. SLNs were produced by the hot melt microemulsion technique. Two 3D skin models: ex vivo skin explants and 3D tissue engineering skin were used to evaluate the photochemopreventive effect of topical formulations containing rutin SLNs, against ultraviolet B (UVB) radiation, inducing sunburn cells, caspase-3, cyclobutane pyrimidine dimers, lipid peroxidation, and metalloproteinase formation. The rutin SLNs presented average size of 74.22 ± 2.77 nm, polydispersion index of 0.16 ± 0.04, encapsulation efficiency of 98.90 ± 0.25%, and zeta potential of -53.0 ± 1.61 mV. The rutin SLNs were able to efficiently protect against UVB induced in the analysed parameters in both skin models. Furthermore, the rutin SLNs inhibited lipid peroxidation and metalloproteinase formation. These results support the use of rutin SLNs as skin photochemopreventive agents for topical application to the skin.
Collapse
Affiliation(s)
- Rodrigo Molina Martins
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, State University of Paraíba, Paraíba, Brazil.,Center of Higher Education and Development (CESED)-UNIFACISA, Campina Grande, Paraíba, Brazil
| | - Silvia de Siqueira Martins
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Maria José Vieira Fonseca
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Patrick J Rochette
- Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada.,Department of Ophthalmology, Faculty of Medicine, Université Laval, Quebec, Canada.,Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec, Canada
| | - Véronique J Moulin
- Centre de recherche du CHU de Québec, Université Laval, Quebec, Canada.,Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Quebec, Canada.,Department of Surgery, Faculty of Medicine, Université Laval, Quebec, Canada
| | - Luis Alexandre Pedro de Freitas
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Luis Alexandre Pedro de Freitas
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
8
|
Juncan AM, Moisă DG, Santini A, Morgovan C, Rus LL, Vonica-Țincu AL, Loghin F. Advantages of Hyaluronic Acid and Its Combination with Other Bioactive Ingredients in Cosmeceuticals. Molecules 2021; 26:molecules26154429. [PMID: 34361586 PMCID: PMC8347214 DOI: 10.3390/molecules26154429] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
This study proposes a review on hyaluronic acid (HA) known as hyaluronan or hyaluronate and its derivates and their application in cosmetic formulations. HA is a glycosaminoglycan constituted from two disaccharides (N-acetylglucosamine and D-glucuronic acid), isolated initially from the vitreous humour of the eye, and subsequently discovered in different tissues or fluids (especially in the articular cartilage and the synovial fluid). It is ubiquitous in vertebrates, including humans, and it is involved in diverse biological processes, such as cell differentiation, embryological development, inflammation, wound healing, etc. HA has many qualities that recommend it over other substances used in skin regeneration, with moisturizing and anti-ageing effects. HA molecular weight influences its penetration into the skin and its biological activity. Considering that, nowadays, hyaluronic acid has a wide use and a multitude of applications (in ophthalmology, arthrology, pneumology, rhinology, aesthetic medicine, oncology, nutrition, and cosmetics), the present study describes the main aspects related to its use in cosmetology. The biological effect of HA on the skin level and its potential adverse effects are discussed. Some available cosmetic products containing HA have been identified from the brand portfolio of most known manufacturers and their composition was evaluated. Further, additional biological effects due to the other active ingredients (plant extracts, vitamins, amino acids, peptides, proteins, saccharides, probiotics, etc.) are presented, as well as a description of their possible toxic effects.
Collapse
Affiliation(s)
- Anca Maria Juncan
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Str., 400349 Cluj-Napoca, Romania;
- SC Aviva Cosmetics SRL, 71A Kövari Str., 400217 Cluj-Napoca, Romania
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
- Correspondence: or (A.M.J.); (D.G.M.); (C.M.)
| | - Dana Georgiana Moisă
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
- Correspondence: or (A.M.J.); (D.G.M.); (C.M.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
- Correspondence: or (A.M.J.); (D.G.M.); (C.M.)
| | - Luca-Liviu Rus
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
| | - Andreea Loredana Vonica-Țincu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Str., 400349 Cluj-Napoca, Romania;
| |
Collapse
|
9
|
Pistelli L, Sansone C, Smerilli A, Festa M, Noonan DM, Albini A, Brunet C. MMP-9 and IL-1β as Targets for Diatoxanthin and Related Microalgal Pigments: Potential Chemopreventive and Photoprotective Agents. Mar Drugs 2021; 19:354. [PMID: 34206447 PMCID: PMC8303339 DOI: 10.3390/md19070354] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 12/13/2022] Open
Abstract
Photochemoprevention can be a valuable approach to counteract the damaging effects of environmental stressors (e.g., UV radiations) on the skin. Pigments are bioactive molecules, greatly attractive for biotechnological purposes, and with promising applications for human health. In this context, marine microalgae are a valuable alternative and eco-sustainable source of pigments that still need to be taken advantage of. In this study, a comparative in vitro photochemopreventive effects of twenty marine pigments on carcinogenic melanoma model cell B16F0 from UV-induced injury was setup. Pigment modulation of the intracellular reactive oxygen species (ROS) concentration and extracellular release of nitric oxide (NO) was investigated. At the cell signaling level, interleukin 1-β (IL-1β) and matrix metallopeptidase 9 protein (MMP-9) protein expression was examined. These processes are known to be involved in the signaling pathway, from UV stress to cancer induction. Diatoxanthin resulted the best performing pigment in lowering MMP-9 levels and was able to strongly lower IL-1β. This study highlights the pronounced bioactivity of the exclusively aquatic carotenoid diatoxanthin, among the others. It is suggested increasing research efforts on this molecule, emphasizing that a deeper integration of plant ecophysiological studies into a biotechnological context could improve the exploration and exploitation of bioactive natural products.
Collapse
Affiliation(s)
- Luigi Pistelli
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Villa Comunale, 80121 Napoli, Italy; (L.P.); (A.S.); (C.B.)
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Villa Comunale, 80121 Napoli, Italy; (L.P.); (A.S.); (C.B.)
| | - Arianna Smerilli
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Villa Comunale, 80121 Napoli, Italy; (L.P.); (A.S.); (C.B.)
| | - Marco Festa
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, 20138 Milan, Italy; (M.F.); (A.A.)
| | - Douglas M. Noonan
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
- Unit of Molecular Pathology, Biochemistry and Immunology, IRCCS MultiMedica, 20138 Milan, Italy
| | - Adriana Albini
- Laboratory of Vascular Biology and Angiogenesis, IRCCS MultiMedica, 20138 Milan, Italy; (M.F.); (A.A.)
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, Villa Comunale, 80121 Napoli, Italy; (L.P.); (A.S.); (C.B.)
| |
Collapse
|