1
|
Zhang H, Hao J, Hong H, Gu W, Li Z, Sun J, Zhan H, Wei X, Zhou L. Redox signaling regulates the skeletal tissue development and regeneration. Biotechnol Genet Eng Rev 2024; 40:2308-2331. [PMID: 37043672 DOI: 10.1080/02648725.2023.2199244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023]
Abstract
Skeletal tissue development and regeneration in mammals are intricate, multistep, and highly regulated processes. Various signaling pathways have been implicated in the regulation of these processes, including redox. Redox signaling is the signal transduction by electron transfer reactions involving free radicals or related species. Redox homeostasis is essential to cell metabolic states, as the ROS not only regulates cell biological processes but also mediates physiological processes. Following a bone fracture, redox signaling is also triggered to regulate bone healing and regeneration by targeting resident stromal cells, osteoblasts, osteoclasts and endothelial cells. This review will focus on how the redox signaling impact the bone development and bone regeneration.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | - Jin Hao
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | - HaiPing Hong
- FangTa Hospital of Traditional Chinese Medicine, Songjiang Branch, Shanghai, East China, China
| | - Wei Gu
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | | | - Jun Sun
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | - Hongsheng Zhan
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | - Xiaoen Wei
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| | - Lin Zhou
- Department of Orthopedics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, East China, Shanghai, China
| |
Collapse
|
2
|
Lai Z, Shu Q, Song Y, Tang A, Tian J. Effect of DNA methylation on the osteogenic differentiation of mesenchymal stem cells: concise review. Front Genet 2024; 15:1429844. [PMID: 39015772 PMCID: PMC11250479 DOI: 10.3389/fgene.2024.1429844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have promising potential for bone tissue engineering in bone healing and regeneration. They are regarded as such due to their capacity for self-renewal, multiple differentiation, and their ability to modulate the immune response. However, changes in the molecular pathways and transcription factors of MSCs in osteogenesis can lead to bone defects and metabolic bone diseases. DNA methylation is an epigenetic process that plays an important role in the osteogenic differentiation of MSCs by regulating gene expression. An increasing number of studies have demonstrated the significance of DNA methyltransferases (DNMTs), Ten-eleven translocation family proteins (TETs), and MSCs signaling pathways about osteogenic differentiation in MSCs. This review focuses on the progress of research in these areas.
Collapse
Affiliation(s)
- Zhihao Lai
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qing Shu
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yue Song
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Ao Tang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Jun Tian
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Jiang N, Tian X, Wang Q, Hao J, Jiang J, Wang H. Regulation Mechanisms and Maintenance Strategies of Stemness in Mesenchymal Stem Cells. Stem Cell Rev Rep 2024; 20:455-483. [PMID: 38010581 DOI: 10.1007/s12015-023-10658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Stemness pertains to the intrinsic ability of mesenchymal stem cells (MSCs) to undergo self-renewal and differentiate into multiple lineages, while simultaneously impeding their differentiation and preserving crucial differentiating genes in a state of quiescence and equilibrium. Owing to their favorable attributes, including uncomplicated isolation protocols, ethical compliance, and ease of procurement, MSCs have become a focal point of inquiry in the domains of regenerative medicine and tissue engineering. As age increases or ex vivo cultivation is prolonged, the functionality of MSCs decreases and their stemness gradually diminishes, thereby limiting their potential therapeutic applications. Despite the existence of several uncertainties surrounding the comprehension of MSC stemness, considerable advancements have been achieved in the clarification of the potential mechanisms that lead to stemness loss, as well as the associated strategies for stemness maintenance. This comprehensive review provides a systematic overview of the factors influencing the preservation of MSC stemness, the molecular mechanisms governing it, the strategies for its maintenance, and the therapeutic potential associated with stemness. Finally, we underscore the obstacles and prospective avenues in present investigations, providing innovative perspectives and opportunities for the preservation and therapeutic utilization of MSC stemness.
Collapse
Affiliation(s)
- Nizhou Jiang
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiliang Tian
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Quanxiang Wang
- Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Jiayu Hao
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China
| | - Jian Jiang
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China.
| | - Hong Wang
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China.
| |
Collapse
|
4
|
Pagni TC, Cunha JMD, Saez DM, Costa-Neves AD, Kerkis I, Silva MCPD. Nanog, Stat-3, and Sox-5 involvement in human fetal temporomandibular joint late development. J Oral Biol Craniofac Res 2023; 13:636-641. [PMID: 37637855 PMCID: PMC10450518 DOI: 10.1016/j.jobcr.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/14/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Background and aim The temporomandibular joint (TMJ) is a synovial joint that allows the complex movements essential for life. It connects the jawbone to the skull, working as a sliding hinge. Moreover, pluripotent stem cells are a source of precursors and tissue-specific cells in developing organisms, however, their biodistribution in developing fetal tissues is weakly studied. The aim of our study was analyse immunohistochemical expression of Nanog, Oct-4, Sox-2 and Stat-3 and Sox-5, in TMJ tissue samples from human fetuses aged between the 12th and 20th weeks of intrauterine life. Materials and methods We fixed and processed TMJ tissue samples from human fetuses, histological sections and immunohistochemical procedures were carried out. Results TMJ histological studies examination did not reveal any difference in the tissue organization between the samples in the studied periods. Immunohistochemical analysis demonstrated that Oct-4 and Sox-2 lack their expression in TMJ. In contrast, Nanog was expressed in nucleous of proliferative layer of mandibular condyle, Stat-3 was expressed in nuclear cells of articular disc, Stat-3 and Sox-5 showed positive nuclear and cytoplasmic immunostaining in codrocyte layers and in ossification areas. Conclusions Nanog acts in maintanence of pluripotency, Stat-3 in articular disc acts as a transcriptional factor. Stat-3 and Sox-2 act in chondrocyte and osteoblast diferentiation. Distribution of the cells, which express Nanog, Stat-3, and Sox-5 in TMJ tissue during fetal development, can help further understand its physiology, pathology, and repairing capacities.
Collapse
Affiliation(s)
- Tacia Catharine Pagni
- Departament of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu 740, Ed. Leitão da Cunha – Térreo, CEP: 04023-900, São Paulo, SP, Brazil
| | - Juliana Malta da Cunha
- Departament of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu 740, Ed. Leitão da Cunha – Térreo, CEP: 04023-900, São Paulo, SP, Brazil
| | - Daniel Martinez Saez
- Departament of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu 740, Ed. Leitão da Cunha – Térreo, CEP: 04023-900, São Paulo, SP, Brazil
| | - Adriana da Costa-Neves
- Genetics Laboratory, Instituto Butantan, Av Vital Brazil,1500, Predio Novo-Térreo, CEP: 05503-900, São Paulo, Brazil
| | - Irina Kerkis
- Genetics Laboratory, Instituto Butantan, Av Vital Brazil,1500, Predio Novo-Térreo, CEP: 05503-900, São Paulo, Brazil
| | - Marcelo Cavenaghi Pereira da Silva
- Departament of Morphology and Genetics, Universidade Federal de São Paulo, Rua Botucatu 740, Ed. Leitão da Cunha – Térreo, CEP: 04023-900, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Lee SS, Vũ TT, Weiss AS, Yeo GC. Stress-induced senescence in mesenchymal stem cells: Triggers, hallmarks, and current rejuvenation approaches. Eur J Cell Biol 2023; 102:151331. [PMID: 37311287 DOI: 10.1016/j.ejcb.2023.151331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as promising cell-based therapies in the treatment of degenerative and inflammatory conditions. However, despite accumulating evidence of the breadth of MSC functional potency, their broad clinical translation is hampered by inconsistencies in therapeutic efficacy, which is at least partly due to the phenotypic and functional heterogeneity of MSC populations as they progress towards senescence in vitro. MSC senescence, a natural response to aging and stress, gives rise to altered cellular responses and functional decline. This review describes the key regenerative properties of MSCs; summarises the main triggers, mechanisms, and consequences of MSC senescence; and discusses current cellular and extracellular strategies to delay the onset or progression of senescence, or to rejuvenate biological functions lost to senescence.
Collapse
Affiliation(s)
- Sunny Shinchen Lee
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Thu Thuy Vũ
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Viet Nam
| | - Anthony S Weiss
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia; Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| | - Giselle C Yeo
- Charles Perkins Centre, The University of Sydney, NSW 2006, Australia; School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
6
|
Chen W, Wang C, Yang ZX, Zhang F, Wen W, Schaniel C, Mi X, Bock M, Zhang XB, Qiu H, Wang C. Reprogramming of human peripheral blood mononuclear cells into induced mesenchymal stromal cells using non-integrating vectors. Commun Biol 2023; 6:393. [PMID: 37041280 PMCID: PMC10090171 DOI: 10.1038/s42003-023-04737-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/20/2023] [Indexed: 04/13/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have great value in cell therapies. The MSC therapies have many challenges due to its inconsistent potency and limited quantity. Here, we report a strategy to generate induced MSCs (iMSCs) by directly reprogramming human peripheral blood mononuclear cells (PBMCs) with OCT4, SOX9, MYC, KLF4, and BCL-XL using a nonintegrating episomal vector system. While OCT4 was not required to reprogram PBMCs into iMSCs, omission of OCT4 significantly impaired iMSC functionality. The omission of OCT4 resulted in significantly downregulating MSC lineage specific and mesoderm-regulating genes, including SRPX, COL5A1, SOX4, SALL4, TWIST1. When reprogramming PBMCs in the absence of OCT4, 67 genes were significantly hypermethylated with reduced transcriptional expression. These data indicate that transient expression of OCT4 may serve as a universal reprogramming factor by increasing chromatin accessibility and promoting demethylation. Our findings represent an approach to produce functional MSCs, and aid in identifying putative function associated MSC markers.
Collapse
Affiliation(s)
- Wanqiu Chen
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Chenguang Wang
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
- Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Xue Yang
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA
- State Key Laboratory of Experimental Hematology, Tianjin, China
| | - Feng Zhang
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA
- State Key Laboratory of Experimental Hematology, Tianjin, China
| | - Wei Wen
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA
- State Key Laboratory of Experimental Hematology, Tianjin, China
| | - Christoph Schaniel
- Division of Hematology and Medical Oncology, Black Family Stem Cell Institute, Tisch Cancer Institute, Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xianqiang Mi
- Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences, Shanghai, China
| | - Matthew Bock
- Department of Pediatrics, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Xiao-Bing Zhang
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA.
| | - Hongyu Qiu
- Translational Cardiovascular Research Center, Department of Internal Medicine, University of Arizona - College of Medicine at Phoenix, Phoenix, AZ, USA.
| | - Charles Wang
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA, USA.
- Division of Microbiology & Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
7
|
Gómez R, Barter MJ, Alonso-Pérez A, Skelton AJ, Proctor C, Herrero-Beaumont G, Young DA. DNA methylation analysis identifies key transcription factors involved in mesenchymal stem cell osteogenic differentiation. Biol Res 2023; 56:9. [PMID: 36890579 PMCID: PMC9996951 DOI: 10.1186/s40659-023-00417-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/23/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Knowledge about regulating transcription factors (TFs) for osteoblastogenesis from mesenchymal stem cells (MSCs) is limited. Therefore, we investigated the relationship between genomic regions subject to DNA-methylation changes during osteoblastogenesis and the TFs known to directly interact with these regulatory regions. RESULTS The genome-wide DNA-methylation signature of MSCs differentiated to osteoblasts and adipocytes was determined using the Illumina HumanMethylation450 BeadChip array. During adipogenesis no CpGs passed our test for significant methylation changes. Oppositely, during osteoblastogenesis we identified 2462 differently significantly methylated CpGs (adj. p < 0.05). These resided outside of CpGs islands and were significantly enriched in enhancer regions. We confirmed the correlation between DNA-methylation and gene expression. Accordingly, we developed a bioinformatic tool to analyse differentially methylated regions and the TFs interacting with them. By overlaying our osteoblastogenesis differentially methylated regions with ENCODE TF ChIP-seq data we obtained a set of candidate TFs associated to DNA-methylation changes. Among them, ZEB1 TF was highly related with DNA-methylation. Using RNA interference, we confirmed that ZEB1, and ZEB2, played a key role in adipogenesis and osteoblastogenesis processes. For clinical relevance, ZEB1 mRNA expression in human bone samples was evaluated. This expression positively correlated with weight, body mass index, and PPARγ expression. CONCLUSIONS In this work we describe an osteoblastogenesis-associated DNA-methylation profile and, using these data, validate a novel computational tool to identify key TFs associated to age-related disease processes. By means of this tool we identified and confirmed ZEB TFs as mediators involved in the MSCs differentiation to osteoblasts and adipocytes, and obesity-related bone adiposity.
Collapse
Affiliation(s)
- Rodolfo Gómez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Laboratorio 18, Edificio B, Planta -2, 15706, Santiago de Compostela, Spain.
| | - Matt J Barter
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, UK
| | - Ana Alonso-Pérez
- Musculoskeletal Pathology Group, Institute IDIS, Santiago University Clinical Hospital, Laboratorio 18, Edificio B, Planta -2, 15706, Santiago de Compostela, Spain
| | - Andrew J Skelton
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, UK
- Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Carole Proctor
- Campus for Ageing and Vitality, Newcastle University, Newcastle-Upon-Tyne, NE2 4HH, UK
| | - Gabriel Herrero-Beaumont
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz, UAM, 28040, Madrid, Avda Reyes Católicos, Spain
| | - David A Young
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, NE1 3BZ, UK
| |
Collapse
|
8
|
Chueaphromsri P, Kunhorm P, Phonchai R, Chaicharoenaudomrung N, Noisa P. Cordycepin Enhances SIRT1 Expression and Maintains Stemness of Human Mesenchymal Stem Cells. In Vivo 2023; 37:596-610. [PMID: 36881089 PMCID: PMC10026684 DOI: 10.21873/invivo.13118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND/AIM Mesenchymal stem cells (MSCs) have been employed for therapeutic applications of various degenerative diseases. However, the major concern is MSC aging during the in vitro cultivation. Thus, the approach to delay MSC aging was examined in this research by focusing on the expression of Sirtuin 1 (SIRT1), a key anti-aging marker. MATERIALS AND METHODS Cordycepin, a bioactive compound derived from Cordyceps militaris, was used to up-regulate SIRT1 and maintain stemness of MSCs. Upon treatment with cordycepin, MSCs were investigated for cell viability, doubling time, key gene/protein expression, galactosidase-associated senescence assay, relative telomere length, and telomerase expression. RESULTS Cordycepin significantly increased the expression of SIRT1 in MSCs by activating the adenosine monophosphate activated protein kinase (AMPK)-SIRT1 signalling pathway. Moreover, cordycepin maintained the stemness of MSCs by deacetylating SRY-box transcription factor 2 (SOX2) via SIRT1, and cordycepin delayed cellular senescence and aging of MSCs by enhancing autophagy, inhibiting the activity of senescence-associated-galactosidase, maintaining proliferation rate, and increasing telomere activity. CONCLUSION Cordycepin could be used to increase SIRT1 expression in MSCs for anti-aging applications.
Collapse
Affiliation(s)
- Phongsakorn Chueaphromsri
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Ruchee Phonchai
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
9
|
Differentiation Capacity of Bone Marrow-Derived Rat Mesenchymal Stem Cells from DsRed and Cre Transgenic Cre/ loxP Models. Cells 2022; 11:cells11172769. [PMID: 36078177 PMCID: PMC9455627 DOI: 10.3390/cells11172769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Cre/loxP recombination is a well-established technique increasingly used for modifying DNA both in vitro and in vivo. Nucleotide alterations can be edited in the genomes of mammalian cells, and genetic switches can be designed to target the expression or excision of a gene in any tissue at any time in animal models. In this study, we propose a system which worked via the Cre/loxP switch gene and DsRed/emGFP dual-color fluorescence imaging. Mesenchymal stem cells (MSCs) can be used to regenerate damaged tissue because of their differentiation capacity. Although previous studies have presented evidence of fusion of transplanted MSCs with recipient cells, the possibility of fusion in such cases remains debated. Moreover, the effects and biological implications of the fusion of MSCs at the tissue and organ level have not yet been elucidated. Thus, the method for determining this issue is significant and the models we proposed can illustrate the question. However, the transgenic rats exhibited growth slower than that of wild-type rats over several weeks. The effects on the stemness, proliferation, cell cycle, and differentiation ability of bone marrow–derived rat MSCs (BM-rMSCs) from the models were examined to ensure our design was appropriate for the in vivo application. We demonstrated that MSC surface markers were maintained in DsRed and Cre transgenic rMSCs (DsRed-rMSCs and Cre-rMSCs, respectively). A WST-8 assay revealed decreased proliferative activity in these DsRed-rMSCs and Cre-rMSCs; this result was validated through cell counting. Furthermore, cell cycle analysis indicated a decrease in the proportion of G1-phase cells and a concomitant increase in the proportion of S-phase cells. The levels of cell cycle–related proteins also decreased in the DsRed-rMSCs and Cre-rMSCs, implying decelerated phase transition. However, the BM-rMSCs collected from the transgenic rats did not exhibit altered adipogenesis, osteogenesis, or chondrogenesis. The specific markers of these types of differentiation were upregulated after induction. Therefore, BM-rMSCs from DsRed and Cre transgenic models can be used to investigate the behavior of MSCs and related mechanisms. Such application may further the development of stem cell therapy for tissue damage and other diseases.
Collapse
|
10
|
Comparison of Biological Features of Wild European Rabbit Mesenchymal Stem Cells Derived from Different Tissues. Int J Mol Sci 2022; 23:ijms23126420. [PMID: 35742872 PMCID: PMC9224375 DOI: 10.3390/ijms23126420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
Although the European rabbit is an "endangered" species and a notorious biological model, the analysis and comparative characterization of new tissue sources of rabbit mesenchymal stem cells (rMSCs) have not been well addressed. Here, we report for the first time the isolation and characterization of rMSCs derived from an animal belonging to a natural rabbit population within the native region of the species. New rMSC lines were isolated from different tissues: oral mucosa (rOM-MSC), dermal skin (rDS-MSC), subcutaneous adipose tissue (rSCA-MSC), ovarian adipose tissue (rOA-MSC), oviduct (rO-MSC), and mammary gland (rMG-MSC). The six rMSC lines showed plastic adhesion with fibroblast-like morphology and were all shown to be positive for CD44 and CD29 expression (characteristic markers of MSCs), and negative for CD34 or CD45 expression. In terms of pluripotency features, all rMSC lines expressed NANOG, OCT4, and SOX2. Furthermore, all rMSC lines cultured under osteogenic, chondrogenic, and adipogenic conditions showed differentiation capacity. In conclusion, this study describes the isolation and characterization of new rabbit cell lines from different tissue origins, with a clear mesenchymal pattern. We show that rMSC do not exhibit differences in terms of morphological features, expression of the cell surface, and intracellular markers of pluripotency and in vitro differentiation capacities, attributable to their tissue of origin.
Collapse
|
11
|
A Comprehensive Cancer-Associated MicroRNA Expression Profiling and Proteomic Analysis of Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes. Tissue Eng Regen Med 2022; 19:1013-1031. [PMID: 35511336 PMCID: PMC9478013 DOI: 10.1007/s13770-022-00450-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Background: The mesenchymal stem cells (MSCs) have enormous therapeutic potential owing to their multi-lineage differentiation and self-renewal properties. MSCs express growth factors, cytokines, chemokines, and non-coding regulatory RNAs with immunosuppressive, anti-tumor, and migratory properties. MSCs also release several anti-cancer molecules via extracellular vesicles, that act as pro-apoptotic/tumor suppressor factors. This study aimed to identify the stem cell-derived secretome that could exhibit anti-cancer properties through molecular profiling of cargos in MSC-derived exosomes.
Methods: Human umbilical cord mesenchymal stem cells (hUCMSCs) were isolated from umbilical cord tissues and culture expanded. Subsequently, exosomes were isolated from hUCMSC conditioned medium and characterized by DLS, electron microscopy. Western blot for exosome surface marker protein CD63 expression was performed. The miRNA profiling of hUCMSCs and hUCMSC-derived exosomes was performed, followed by functional enrichment analysis. Results: The tri-lineage differentiation potential, fibroblastic morphology, and strong expression of pluripotency genes indicated that isolated fibroblasts are MSCs. The isolated extracellular vesicles were 133.8 ± 42.49 nm in diameter, monodispersed, and strongly expressed the exosome surface marker protein CD63. The miRNA expression profile and gene ontology (GO) depicted the differential expression patterns of high and less-expressed miRNAs that are crucial to be involved in the regulation of apoptosis. The LCMS/MS data and GO analysis indicate that hUCMSC secretomes are involved in several oncogenic and inflammatory signaling cascades. Conclusion: Primary human MSCs released miRNAs and growth factors via exosomes that are increasingly implicated in intercellular communications, and hUCMSC-exosomal miRNAs have a critical influence in regulating cell death and apoptosis of cancer cells. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s13770-022-00450-8.
Collapse
|
12
|
Oct4 facilitates chondrogenic differentiation of mesenchymal stem cells by mediating CIP2A expression. Cell Tissue Res 2022; 389:11-21. [PMID: 35435493 DOI: 10.1007/s00441-022-03619-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/25/2022] [Indexed: 12/15/2022]
Abstract
Bone development and cartilage formation require strict modulation of gene expression for mesenchymal stem cells (MSCs) to progress through their differentiation stages. Octamer-binding transcription factor 4 (Oct4) expression is generally restricted to developing embryonic pluripotent cells, but its role in chondrogenic differentiation (CD) of MSCs remains unclear. We therefore investigated the role of Oct4 in CD using a microarray, quantitative real-time polymerase chain reaction, and western blotting. The expression of Oct4 was elevated when the CD of cultured MSCs was induced. Silencing Oct4 damaged MSC growth and proliferation and decreased CD, indicated by decreased cartilage matrix formation and the expression of Col2a1, Col10a1, Acan, and Sox9. We found a positive correlation between the expression of CIP2A, a natural inhibitor of protein phosphatase 2A (PP2A) and that of Oct4. Cellular inhibitor of PP2A (CIP2A) expression gradually increased after CD. Overexpression of CIP2A in MSCs with Oct4 depletion promoted cartilage matrix deposition as well as Col2a1, Col10a1, Acan, and Sox9 expression. The chondrogenic induction triggered c-Myc, Akt, ERK, and MEK phosphorylation and upregulated c-Myc and mTOR expression, which was downregulated upon Oct4 knockdown and restored by CIP2A overexpression. These findings indicated that Oct4 functions as an essential chondrogenesis regulator, partly via the CIP2A/PP2A pathway.
Collapse
|
13
|
Borojević A, Jauković A, Kukolj T, Mojsilović S, Obradović H, Trivanović D, Živanović M, Zečević Ž, Simić M, Gobeljić B, Vujić D, Bugarski D. Vitamin D3 Stimulates Proliferation Capacity, Expression of Pluripotency Markers, and Osteogenesis of Human Bone Marrow Mesenchymal Stromal/Stem Cells, Partly through SIRT1 Signaling. Biomolecules 2022; 12:biom12020323. [PMID: 35204824 PMCID: PMC8868595 DOI: 10.3390/biom12020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/02/2022] Open
Abstract
The biology of vitamin D3 is well defined, as are the effects of its active metabolites on various cells, including mesenchymal stromal/stem cells (MSCs). However, the biological potential of its precursor, cholecalciferol (VD3), has not been sufficiently investigated, although its significance in regenerative medicine—mainly in combination with various biomaterial matrices—has been recognized. Given that VD3 preconditioning might also contribute to the improvement of cellular regenerative potential, the aim of this study was to investigate its effects on bone marrow (BM) MSC functions and the signaling pathways involved. For that purpose, the influence of VD3 on BM-MSCs obtained from young human donors was determined via MTT test, flow cytometric analysis, immunocytochemistry, and qRT-PCR. Our results revealed that VD3, following a 5-day treatment, stimulated proliferation, expression of pluripotency markers (NANOG, SOX2, and Oct4), and osteogenic differentiation potential in BM-MSCs, while it reduced their senescence. Moreover, increased sirtuin 1 (SIRT1) expression was detected upon treatment with VD3, which mediated VD3-promoted osteogenesis and, partially, the stemness features through NANOG and SOX2 upregulation. In contrast, the effects of VD3 on proliferation, Oct4 expression, and senescence were SIRT1-independent. Altogether, these data indicate that VD3 has strong potential to modulate BM-MSCs’ features, partially through SIRT1 signaling, although the precise mechanisms merit further investigation.
Collapse
Affiliation(s)
- Ana Borojević
- Mother and Child Health Care Institute of Serbia ‘’Dr Vukan Čupić’’, 11000 Belgrade, Serbia; (Ž.Z.); (M.S.); (B.G.); (D.V.)
- Correspondence: ; Tel.: +381-11-3108-175
| | - Aleksandra Jauković
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (T.K.); (S.M.); (H.O.); (D.T.); (M.Ž.); (D.B.)
| | - Tamara Kukolj
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (T.K.); (S.M.); (H.O.); (D.T.); (M.Ž.); (D.B.)
| | - Slavko Mojsilović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (T.K.); (S.M.); (H.O.); (D.T.); (M.Ž.); (D.B.)
| | - Hristina Obradović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (T.K.); (S.M.); (H.O.); (D.T.); (M.Ž.); (D.B.)
| | - Drenka Trivanović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (T.K.); (S.M.); (H.O.); (D.T.); (M.Ž.); (D.B.)
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Clinics, Röntgenring 11, 97070 Würzburg, Germany
- Bernhard-Heine-Center for Locomotion Research, University Würzburg, Sanderring 2, 97070 Würzburg, Germany
| | - Milena Živanović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (T.K.); (S.M.); (H.O.); (D.T.); (M.Ž.); (D.B.)
| | - Željko Zečević
- Mother and Child Health Care Institute of Serbia ‘’Dr Vukan Čupić’’, 11000 Belgrade, Serbia; (Ž.Z.); (M.S.); (B.G.); (D.V.)
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija Simić
- Mother and Child Health Care Institute of Serbia ‘’Dr Vukan Čupić’’, 11000 Belgrade, Serbia; (Ž.Z.); (M.S.); (B.G.); (D.V.)
| | - Borko Gobeljić
- Mother and Child Health Care Institute of Serbia ‘’Dr Vukan Čupić’’, 11000 Belgrade, Serbia; (Ž.Z.); (M.S.); (B.G.); (D.V.)
| | - Dragana Vujić
- Mother and Child Health Care Institute of Serbia ‘’Dr Vukan Čupić’’, 11000 Belgrade, Serbia; (Ž.Z.); (M.S.); (B.G.); (D.V.)
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Diana Bugarski
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11129 Belgrade, Serbia; (A.J.); (T.K.); (S.M.); (H.O.); (D.T.); (M.Ž.); (D.B.)
| |
Collapse
|
14
|
Hypoxia, a dynamic tool to amplify the gingival mesenchymal stem cells potential for neurotrophic factor secretion. Saudi J Biol Sci 2022; 29:3568-3576. [PMID: 35844419 PMCID: PMC9280216 DOI: 10.1016/j.sjbs.2022.02.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/05/2022] [Accepted: 02/23/2022] [Indexed: 12/27/2022] Open
Abstract
Gingival mesenchymal stem cells (GMSCs) have significant regenerative potential. Their potential applications range from the treatment of inflammatory diseases, wound healing, and oral disorders. Preconditioning these stem cells can optimize their biological properties. Hypoxia preconditioning of MSCs improves stem cell properties like proliferation, survival, and differentiation potential. This research explored the possible impact of hypoxia on the pluripotent stem cell properties that GMSCs possess. We evaluated the morphology, stemness, neurotrophic factors, and stemness-related genes. We compared the protein levels of secreted neurotrophic factors between normoxic and hypoxic GMSC-conditioned media (GMSC-CM). Results revealed that hypoxic cultured GMSC’s had augmented expression of neurotrophic factors BDNF, GDNF, VEGF, and IGF1 and stemness-related gene NANOG. Hypoxic GMSCs showed decreased expression of the OCT4 gene. In hypoxic GMSC-CM, the neurotrophic factors secretions were significantly higher than normoxic GMSC-CM. Our data demonstrate that culturing of GMSCs in hypoxia enhances the secretion of neurotrophic factors that can lead to neuronal lineage differentiation.
Collapse
|
15
|
Phelps J, Leonard C, Shah S, Krawetz R, Hart DA, Duncan NA, Sen A. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:73-87. [PMID: 35641171 PMCID: PMC8895489 DOI: 10.1093/stcltm/szab008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal progenitor cells (MPCs) have shown promise initiating articular cartilage repair, with benefits largely attributed to the trophic factors they secrete. These factors can be found in the conditioned medium (CM) collected from cell cultures, and it is believed that extracellular vesicles (EVs) within this CM are at least partially responsible for MPC therapeutic efficacy. This study aimed to examine the functionality of the EV fraction of CM compared to whole CM obtained from human adipose-derived MPCs in an in vivo murine cartilage defect model. Mice treated with whole CM or the EV fraction demonstrated an enhanced cartilage repair score and type II collagen deposition at the injury site compared to saline controls. We then developed a scalable bioprocess using stirred suspension bioreactors (SSBs) to generate clinically relevant quantities of MPC-EVs. Whereas static monolayer culture systems are simple to use and readily accessible, SSBs offer increased scalability and a more homogenous environment due to constant mixing. This study evaluated the biochemical and functional properties of MPCs and their EV fractions generated in static culture versus SSBs. Functionality was assessed using in vitro MPC chondrogenesis as an outcome measure. SSBs supported increased MPC expression of cartilage-specific genes, and EV fractions derived from both static and SSB culture systems upregulated type II collagen production by MPCs. These results suggest that SSBs are an effective platform for the generation of MPC-derived EVs with the potential to induce cartilage repair.
Collapse
Affiliation(s)
- Jolene Phelps
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Catherine Leonard
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Sophia Shah
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Roman Krawetz
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - David A Hart
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Neil A Duncan
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
- Musculoskeletal Mechanobiology and Multiscale Mechanics Bioengineering Lab, Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - Arindom Sen
- Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
- Center for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
- Corresponding author: Arindom Sen, Pharmaceutical Production Research Facility, Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada. Tel: +403-210-9452; Fax: +403-220-8962;
| |
Collapse
|
16
|
Chen J, Zhou D, Nie Z, Lu L, Lin Z, Zhou D, Zhang Y, Long X, Fan S, Xu T. A scalable coaxial bioprinting technology for mesenchymal stem cell microfiber fabrication and high extracellular vesicle yield. Biofabrication 2021; 14:015012. [PMID: 34798619 DOI: 10.1088/1758-5090/ac3b90] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/19/2021] [Indexed: 02/08/2023]
Abstract
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) are promising candidates for regenerative medicine; however, the lack of scalable methods for high quantity EV production limits their application. In addition, signature EV-derived proteins shared in 3D environments and 2D surfaces, remain mostly unknown. Herein, we present a platform combining MSC microfiber culture with ultracentrifugation purification for high EV yield. Within this platform, a high quantity MSC solution (∼3 × 108total cells) is encapsulated in a meter-long hollow hydrogel-microfiber via coaxial bioprinting technology. In this 3D core-shell microfiber environment, MSCs express higher levels of stemness markers (Oct4, Nanog, Sox2) than in 2D culture, and maintain their differentiation capacity. Moreover, this platform enriches particles by ∼1009-fold compared to conventional 2D culture, while preserving their pro-angiogenic properties. Liquid chromatography-mass spectrometry characterization results demonstrate that EVs derived from our platform and conventional 2D culturing have unique protein profiles with 3D-EVs having a greater variety of proteins (1023 vs 605), however, they also share certain proteins (536) and signature MSC-EV proteins (10). This platform, therefore, provides a new tool for EV production using microfibers in one culture dish, thereby reducing space, labor, time, and cost.
Collapse
Affiliation(s)
- Jianwei Chen
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Duchao Zhou
- East China Institute of Digital Medical Engineering, Shangrao 334000, People's Republic of China
| | - Zhenguo Nie
- Department of Orthopedics, Fourth Medical Center of PLA general hospital, 100048 Beijing, People's Republic of China
| | - Liang Lu
- Department of Neurosurgery, The First Affiliated Hospital of Shantou University Medical College, 515041 Shantou, Guangdong, People's Republic of China
| | - Zhidong Lin
- The Second Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People's Republic of China
| | - Dezhi Zhou
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yi Zhang
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Xiaoyan Long
- East China Institute of Digital Medical Engineering, Shangrao 334000, People's Republic of China
| | - Siyang Fan
- Heart Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Tao Xu
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, People's Republic of China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
17
|
Wang Y, Pei YA, Sun Y, Zhou S, Zhang XB, Pei M. Stem cells immortalized by hTERT perform differently from those immortalized by SV40LT in proliferation, differentiation, and reconstruction of matrix microenvironment. Acta Biomater 2021; 136:184-198. [PMID: 34551328 PMCID: PMC8627502 DOI: 10.1016/j.actbio.2021.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022]
Abstract
Although matrix microenvironment has the potential to improve expanded stem cell proliferation and differentiation capacity, decellularized extracellular matrix (dECM) deposited by senescent cells does not contribute to the rejuvenation of adult stem cells, which has become a barrier to personalized stem cell therapy. Genetic modification is an effective strategy to protect cells from senescence but it carries the increased risk of malignant transformation and genetic instability. In this study, lentivirus carrying either human telomerase reverse transcriptase (hTERT) or simian virus 40 large T antigen (SV40LT) was used to transduce human infrapatellar fat pad-derived stem cells (IPFSCs). We found that virus transduction modified the proliferative, chondrogenic, and adipogenic abilities of IPFSCs. Interestingly, dECM deposited by immortalized cells significantly influenced replicative senescent IPFSCs in proliferation and differentiation preference, the effect of which is hinged on the approach of immortalization using either SV40LT or hTERT. Our findings indicate both dECM expansion and immortalization strategies can be used for replicative senescent adult stem cells' proliferation and lineage-specific differentiation, which benefits future stem cell-based tissue regeneration. This approach may also work for adult stem cells with premature senescence in elderly/aged patients, which needs further investigation. STATEMENT OF SIGNIFICANCE: Adult stem cells are a promising solution for autologous cell-based therapy. Unfortunately, cell senescence due to donor age and/or ex vivo expansion prevents clinical application. Recent progress with decellularized extracellular matrix provides a potential for the rejuvenation of senescent stem cells by improving their proliferation and differentiation capacities. Given the fact that the young matrix can provide a healthy and energetic microenvironment, in this study, two approaches using lentivirus transduction of hTERT and SV40LT were compared. The goal was to immortalize donor cells for deposition of decellularized extracellular matrix. The matrix was demonstrated to contribute diverging effects on the chondrogenic and adipogenic differentiation of expanded stem cells and exhibited proliferation benefits as well. These findings provide an invaluable asset for stem cell-based tissue regeneration.
Collapse
Affiliation(s)
- Yiming Wang
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA; Department of Joint Surgery, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Yixuan Amy Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Yuan Sun
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
| | - Sheng Zhou
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, Tianjin, China; Department of Medicine, Loma Linda University, Loma Linda, CA, USA.
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA; WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
18
|
Kotova AV, Lobov AA, Dombrovskaya JA, Sannikova VY, Ryumina NA, Klausen P, Shavarda AL, Malashicheva AB, Enukashvily NI. Comparative Analysis of Dental Pulp and Periodontal Stem Cells: Differences in Morphology, Functionality, Osteogenic Differentiation and Proteome. Biomedicines 2021; 9:1606. [PMID: 34829835 PMCID: PMC8616025 DOI: 10.3390/biomedicines9111606] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 12/18/2022] Open
Abstract
Dental stem cells are heterogeneous in their properties. Despite their common origin from neural crest stem cells, they have different functional capacities and biological functions due to niche influence. In this study, we assessed the differences between dental pulp stem cells (DPSC) and periodontal ligament stem cells (PDLSC) in their pluripotency and neuroepithelial markers transcription, morphological and functional features, osteoblast/odontoblast differentiation and proteomic profile during osteogenic differentiation. The data were collected in paired observations: two cell cultures, DPSC and PDLSC, were obtained from each donor. Both populations had the mesenchymal stem cells surface marker set exposed on their membranes but differed in Nestin (a marker of neuroectodermal origin) expression, morphology, and proliferation rate. OCT4 mRNA was revealed in DPSC and PDLSC, while OCT4 protein was present in the nuclei of DPSC only. However, transcription of OCT4 mRNA was 1000-10,000-fold lower in dental stem cells than in blastocysts. DPSC proliferated at a slower rate and have a shape closer to polygonal but they responded better to osteogenic stimuli as compared to PDLSC. RUNX2 mRNA was detected by qPCR in both types of dental stem cells but RUNX2 protein was detected by LC-MS/MS shotgun proteomics only in PDLSC suggesting the posttranscriptional regulation. DSPP and DMP1, marker genes of odontoblastic type of osteogenic differentiation, were transcribed in DPSC but not in PDLSC samples. Our results prove that DPSC and PDLSC are different in their biology and therapeutic potential: DPSC are a good candidate for osteogenic or odontogenic bone-replacement cell-seeded medicines, while fast proliferating PDLSC are a prospective candidate for other cell products.
Collapse
Affiliation(s)
- Anastasia V. Kotova
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.K.); (A.A.L.); (V.Y.S.); (P.K.); (A.B.M.)
- Cell Technologies Laboratory, General Dentistry Department, North-Western State Medical University, 191015 St. Petersburg, Russia;
| | - Arseniy A. Lobov
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.K.); (A.A.L.); (V.Y.S.); (P.K.); (A.B.M.)
| | - Julia A. Dombrovskaya
- Cell Technologies Laboratory, General Dentistry Department, North-Western State Medical University, 191015 St. Petersburg, Russia;
| | - Valentina Y. Sannikova
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.K.); (A.A.L.); (V.Y.S.); (P.K.); (A.B.M.)
| | | | - Polina Klausen
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.K.); (A.A.L.); (V.Y.S.); (P.K.); (A.B.M.)
| | - Alexey L. Shavarda
- Research Resource Center Molecular and Cell Technologies, Saint-Petersburg State University, 199034 St. Petersburg, Russia;
| | - Anna B. Malashicheva
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.K.); (A.A.L.); (V.Y.S.); (P.K.); (A.B.M.)
| | - Natella I. Enukashvily
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.K.); (A.A.L.); (V.Y.S.); (P.K.); (A.B.M.)
- Cell Technologies Laboratory, General Dentistry Department, North-Western State Medical University, 191015 St. Petersburg, Russia;
| |
Collapse
|
19
|
Zhao X, Chen Y, Tan M, Zhao L, Zhai Y, Sun Y, Gong Y, Feng X, Du J, Fan Y. Extracellular Matrix Stiffness Regulates DNA Methylation by PKCα-Dependent Nuclear Transport of DNMT3L. Adv Healthc Mater 2021; 10:e2100821. [PMID: 34174172 DOI: 10.1002/adhm.202100821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/31/2021] [Indexed: 01/02/2023]
Abstract
Extracellular matrix (ECM) stiffness has profound effects on the regulation of cell functions. DNA methylation is an important epigenetic modification governing gene expression. However, the effects of ECM stiffness on DNA methylation remain elusive. Here, it is reported that DNA methylation is sensitive to ECM stiffness, with a global hypermethylation under stiff ECM condition in mouse embryonic stem cells (mESCs) and embryonic fibroblasts compared with soft ECM. Stiff ECM enhances DNA methylation of both promoters and gene bodies, especially the 5' promoter regions of pluripotent genes. The enhanced DNA methylation is functionally required for the loss of pluripotent gene expression in mESCs grown on stiff ECM. Further experiments reveal that the nuclear transport of DNA methyltransferase 3-like (DNMT3L) is promoted by stiff ECM in a protein kinase C α (PKCα)-dependent manner and DNMT3L can be binding to Nanog promoter regions during cell-ECM interactions. These findings unveil DNA methylation as a novel target for the mechanical sensing mechanism of ECM stiffness, which provides a conserved mechanism for gene expression regulation during cell-ECM interactions.
Collapse
Affiliation(s)
- Xin‐Bin Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| | - Yun‐Ping Chen
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - Min Tan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| | - Lan Zhao
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - Yuan‐Yuan Zhai
- School of Materials Science and Engineering Beijing Institute of Fashion Technology Beijing 100029 China
| | - Yan‐Ling Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| | - Yan Gong
- School of Materials Science and Engineering Beijing Institute of Fashion Technology Beijing 100029 China
| | - Xi‐Qiao Feng
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - Jing Du
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| | - Yu‐Bo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| |
Collapse
|
20
|
Sanap A, Joshi K, Shah T, Tillu G, Bhonde R. Pre-conditioning of Mesenchymal Stem Cells with Piper longum L. augments osteogenic differentiation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113999. [PMID: 33705921 DOI: 10.1016/j.jep.2021.113999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 11/28/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Indian Traditional Medicine, Ayurveda prescribes Piper longum L. popularly known as Long Pepper (Pippali) for the treatment of inflammatory and degenerative diseases. Therapeutic benefits of Piper longum L. are mainly attributed to the anti-inflammatory and arthritic potential. AIM OF THE STUDY This study was aimed to explore the activity of Piper longum L. fruit extract on proliferation and osteogenic differentiation of human Wharton's Jelly Mesenchymal Stem Cells (WJMSCs) to find out it's possible role as anti-osteoporotic agent. MATERIALS AND METHODS Proliferation of WJMSCs treated with Piper longum L. fruit extract was assessed by MTT assay and Cell Cycle Analysis. Effect of Piper longum L. preconditioning on osteogenic differentiation was performed. Ca2+ accumulation and matrix mineralization (Von Kossa and Alizarin Red Staining), alkaline phosphatase (ALP) activity and gene expression of key mRNA (RT PCR) was analyzed. RESULTS Significant increase in the proliferation of WJMSCs was observed upon treatment of Piper longum L. at 5 μg/mL (P < 0.001) which can be attributed to the significant decrease in apoptotic cells (P < 0.05) as evidenced by cell cycle analysis. Preconditioning of Piper longum L. (10-100 μg/mL) enhanced Ca2+ accumulation and matrix mineralization as observed by Von Kossa and Alizarin Red staining where ALP activity was elevated 3.6 folds as compared to untreated WJMSCs (P < 0.001). RT-PCR analysis exhibited up regulation of Runx2, Osterix, ALP and OPN mRNAs. CONCLUSIONS We demonstrate for the first time that Piper longum L. fruit extract enhanced osteogenic differentiation of WJMSCs. This finding can be clinically translated into development of an anti-osteoporotic agent.
Collapse
Affiliation(s)
- Avinash Sanap
- Department of Biotechnology, Sinhgad College of Engineering, Affiliated to Savitribai Phule Pune University, Pune, 411041, India; Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Pune, 411018, India
| | - Kalpana Joshi
- Department of Biotechnology, Sinhgad College of Engineering, Affiliated to Savitribai Phule Pune University, Pune, 411041, India.
| | - Tejas Shah
- Department of Biotechnology, Sinhgad College of Engineering, Affiliated to Savitribai Phule Pune University, Pune, 411041, India
| | - Girish Tillu
- Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, 411007, India
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Pune, 411018, India
| |
Collapse
|
21
|
Paduano F, Aiello E, Cooper PR, Marrelli B, Makeeva I, Islam M, Spagnuolo G, Maged D, De Vito D, Tatullo M. A Dedifferentiation Strategy to Enhance the Osteogenic Potential of Dental Derived Stem Cells. Front Cell Dev Biol 2021; 9:668558. [PMID: 34124050 PMCID: PMC8192975 DOI: 10.3389/fcell.2021.668558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
Dental stem cells (DSCs) holds the ability to differentiate into numerous cell types. This property makes these cells particularly appropriate for therapeutic use in regenerative medicine. We report evidence that when DSCs undergo osteogenic differentiation, the osteoblast-like cells can be reverted back to a stem-like state and then further differentiated toward the osteogenic phenotype again, without gene manipulation. We have investigated two different MSCs types, both from dental tissues: dental follicle progenitor stem cells (DFPCs) and dental pulp stem cells (DPSCs). After osteogenic differentiation, both DFPCs and DPSCs can be reverted to a naïve stem cell-like status; importantly, dedifferentiated DSCs showed a greater potential to further differentiate toward the osteogenic phenotype. Our report aims to demonstrate for the first time that it is possible, under physiological conditions, to control the dedifferentiation of DSCs and that the rerouting of cell fate could potentially be used to enhance their osteogenic therapeutic potential. Significantly, this study first validates the use of dedifferentiated DSCs as an alternative source for bone tissue engineering.
Collapse
Affiliation(s)
- Francesco Paduano
- Stem Cells and Medical Genetics Units, Biomedical Section, Tecnologica Research Institute and Marrelli Health, Crotone, Italy
| | - Elisabetta Aiello
- Stem Cells and Medical Genetics Units, Biomedical Section, Tecnologica Research Institute and Marrelli Health, Crotone, Italy
| | - Paul Roy Cooper
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Benedetta Marrelli
- Stem Cells and Medical Genetics Units, Biomedical Section, Tecnologica Research Institute and Marrelli Health, Crotone, Italy
| | - Irina Makeeva
- Department of Therapeutic Dentistry, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mohammad Islam
- Department of Oral Surgery and Medicine, The Dental School, University of Dundee, Dundee, United Kingdom
| | - Gianrico Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II," Naples, Italy
| | | | - Danila De Vito
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro," Bari, Italy
| | - Marco Tatullo
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro," Bari, Italy
| |
Collapse
|
22
|
Collagen type I promotes osteogenic differentiation of amniotic membrane-derived mesenchymal stromal cells in basal and induction media. Biosci Rep 2021; 40:227060. [PMID: 33245097 PMCID: PMC7736623 DOI: 10.1042/bsr20201325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
Collagen has been widely shown to promote osteogenesis of bone marrow mesenchymal stromal cells (BM-MSCs). Due to the invasive procedure of obtaining BM-MSCs, MSCs from other tissues have emerged as a promising alternative for regenerative therapy. MSCs originated from different sources, exhibiting different differentiation potentials. Therefore, the applicability of collagen type I (COL), combining with amniotic membrane (AM)-MSCs was examined through proliferation and differentiation assays together with the expression of surface markers and genes associated with stemness and differentiation under basal or induction conditions. No increase in cell growth was observed because AM-MSCs might be directed toward spontaneous osteogenesis. This was evidenced by the calcium deposition and elevated expression of osteogenic genes when AM-MSCs were cultured in collagen plate with basal media. Under the osteogenic condition, reciprocal expression of OCN and CEBPA suggested a shift toward adipogenesis. Surprisingly, adipogenic genes were not elevated upon adipogenic induction, although oil droplets deposition was observed. In conclusion, our findings demonstrated that collagen causes spontaneous osteogenesis in AM-MSCs. However, the presence of exogenous inductors could shift the direction of adipo-osteogenic gene regulatory network modulated by collagen.
Collapse
|
23
|
MicroRNA-424-5p enhances chemosensitivity of breast cancer cells to Taxol and regulates cell cycle, apoptosis, and proliferation. Mol Biol Rep 2021; 48:1345-1357. [PMID: 33555529 DOI: 10.1007/s11033-021-06193-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Combination therapy has been considered as a potential method to overcome the BC chemoresistance. MicroRNAs (miRs) have been suggested as a therapeutic factor in the combination therapy of BC. This project aimed at examining the possible activity and molecular function of miR-424-5p and Taxol combination in the human BC cell line. MDA-MB-231 cells were treated with miR-424-5p mimics and Taxol, in a combined manner or separately. We used the MTT test for assessing the cell proliferation. In addition, flow-cytometry was used for evaluating apoptosis and cell-cycle. Expression levels of underlying molecular factors of miR-424-5p were assessed using western-blotting and qRT-PCR. The obtained results demonstrated that miR-424-5p repressed BC cell proliferation and sensitized these cells to Taxol treatment through the induction of apoptosis. Further investigations showed that miR-424-5p might increase BC chemosensitivity through the regulation of apoptosis-related factors including P53, Caspase-3, Bcl-2, and Bax as well as the proliferation-related gene c-Myc. Moreover, miR-424-5p restoration in combination with Taxol treatment decreased the colony formation by regulating Oct-4 and led to G2 arrest via modulating Cdk-2 expression. Western-blotting demonstrated that miR-424-5p may perform its anti-chemoresistance role by regulating the PD-L1 expression and controlling PTEN/PI3K/AKT/mTOR. Overall, the upregulation of miR-424-5p was indicated to upregulate the sensitivity of BC cells to treatment with Taxol. MiR-424-5p might regulate the chemosensitivity of the BC cell line by modulating PD-L1 and controlling the PTEN/mTOR axis. Therefore, the combination of miR-424-5p with Taxol would represent a novel procedure to treat against BC.
Collapse
|
24
|
Han SH, Cha M, Jin YZ, Lee KM, Lee JH. BMP-2 and hMSC dual delivery onto 3D printed PLA-Biogel scaffold for critical-size bone defect regeneration in rabbit tibia. Biomed Mater 2020; 16:015019. [DOI: 10.1088/1748-605x/aba879] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Conditioned Medium from Canine Amniotic Membrane-Derived Mesenchymal Stem Cells Improved Dog Sperm Post-Thaw Quality-Related Parameters. Animals (Basel) 2020; 10:ani10101899. [PMID: 33081332 PMCID: PMC7603003 DOI: 10.3390/ani10101899] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Mesenchymal stem cells and their derivatives are used in clinical studies for their anti-apoptotic, anti-oxidant, immunomodulatory, and regenerative properties. Their use in reproductive medicine is increasing as they have been proved to be beneficial for infertility treatment. Mesenchymal stem cells can secrete factors that influence biological processes in target tissues or cells; these factors are either directly secreted by the cells or mediated through their derivatives. Although the amniotic membrane is easy to obtain and is a good source of stem cells, clinical trials using amniotic membrane-derived mesenchymal stem cells are still uncommon, especially in reproductive medicine or artificial reproductive technologies. The objective of the present study was to demonstrate the effects of conditioned medium prepared from amniotic membrane-derived stem cells on dog sperm cryopreservation. Our results showed that 10% of the conditioned medium enhanced the quality-related parameters of frozen–thawed sperm cells because of the presence of antioxidants and growth factors in the medium, which probably protected spermatozoa during the freeze–thaw process. These results suggest that conditioned media prepared from amniotic membrane-derived mesenchymal stem cells might have clinical applications in assisted reproductive technologies. Abstract This study investigated the effects of conditioned medium (CM) from canine amniotic membrane-derived MSCs (cAMSCs) on dog sperm cryopreservation. For this purpose, flow cytometry analysis was performed to characterize cAMSCs. The CM prepared from cAMSCs was subjected to proteomic analysis for the identification of proteins present in the medium. Sperm samples were treated with freezing medium supplemented with 0%, 5%, 10%, and 15% of the CM, and kinetic parameters were evaluated after 4–6 h of chilling at 4 °C to select the best concentration before proceeding to cryopreservation. Quality-related parameters of frozen–thawed sperm were investigated, including motility; kinetic parameters; viability; integrity of the plasma membrane, chromatin, and acrosome; and mitochondrial activity. The results showed that 10% of the CM significantly enhanced motility, viability, mitochondrial activity, and membrane integrity (p < 0.05); however, the analysis of chromatin and acrosome integrity showed no significant differences between the treatment and control groups. Therefore, we concluded that the addition of 10% CM derived from cAMSC in the freezing medium protected dog sperm during the cryopreservation process.
Collapse
|
26
|
Konala VBR, Bhonde R, Pal R. Secretome studies of mesenchymal stromal cells (MSCs) isolated from three tissue sources reveal subtle differences in potency. In Vitro Cell Dev Biol Anim 2020; 56:689-700. [PMID: 33006709 DOI: 10.1007/s11626-020-00501-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022]
Abstract
Human mesenchymal stromal cells (MSCs) are currently the leading candidate for cell-based therapeutics. While the use of MSCs in transplantation therapies is widely expanding, still, there is a lot of scope for better understanding of the mechanisms underlying their effects. We have generated MSCs from pre- and post-natal human tissue sources such as Wharton's jelly (WJ), stem cells from human exfoliated deciduous teeth (SHED), and bone marrow (BM). We then expanded, banked, and characterized them based on morphology, growth kinetics, senescence, immunophenotype, gene expression, and secretion of growth factors. Although the immunophenotype was very similar across MSCs from the three types of donor tissues, they showed minor variations in their growth kinetics. Further, a higher percentage of senescent cells were observed in BM-MSCs than in WJ-MSCs and SHED. Gene expression analysis showed the increased expression of INF-γ, PDGFA, VEGF, IL10, and SDF in SHED over WJ-MSC and BM-MSC. Comparative secretome profiling by ELISA demonstrated the presence of FGF-2, IL-10, PDGF, SDF-1, Ang-1, TGF-β3, HGF, INF-γ, VEGF, and IL-6 in cell culture supernatants. Based on our findings, WJ-MSC and SHED appear more potent than BM-MSC for managing inflammation, immunomodulation, angiogenesis, fibrosis, and scarring. Due to widespread application of MSCs in cell replacement therapy, these subtle differences need to be taken into consideration while designing stem cell-based clinical trials.
Collapse
Affiliation(s)
- Vijay Bhaskar Reddy Konala
- Department of Marine-Biotechnology, AMET University, Kanathur, Chennai, 600040, India
- Genes & Life Health Care Pvt. Ltd., Punjagutta, Hyderabad, 500082, India
| | - Ramesh Bhonde
- Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, 411018, India
| | - Rajarshi Pal
- Department of Marine-Biotechnology, AMET University, Kanathur, Chennai, 600040, India.
| |
Collapse
|
27
|
Li Z, Chen S, Ma K, He R, Xiong L, Hu Y, Deng X, Yang A, Ma X, Shao Z. Comparison of different methods for the isolation and purification of rat nucleus pulposus-derived mesenchymal stem cells. Connect Tissue Res 2020; 61:426-434. [PMID: 31203667 DOI: 10.1080/03008207.2019.1611793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Recently, nucleus pulposus-derived mesenchymal stem cells (NPMSCs) have been identified and have shown good prospects for the repair of degenerative intervertebral discs. However, there is no consensus about the methods for the isolation and purification of NPMSCs. Therefore, a reliable and efficient isolation and purification method is potentially needed. We aimed to compare different methods and to identify an optimal method for isolating and purifying NPMSCs. METHODS NPMSCs were isolated and purified using two common methods (a low-density culture (LD) method and a mesenchymal stem cell complete medium culture (MSC-CM) method) and two novel methods (a cloning cylinder (CC) method and a combination of the CC and MSC-CM methods (MSC-CM+CC)). The morphology, MSC-specific surface markers (CD44, CD73, CD90, CD105, CD34 and HLA-DR), multiple-lineage differentiation potential, colony formation ability, and stemness gene (Oct4, Nanog, and Sox2) expression were evaluated and compared. RESULTS NPMSCs isolated from nucleus pulposus (NP) tissues via the four methods met the criteria stated by the International Society of Cell Therapy (ISCT) for MSCs, including adherent growth ability, MSC-specific surface antigen expression, and multi-lineage differentiation potential. In particular, the MSC-CM+CC method yielded a relatively higher quality of NPMSCs in terms of cell surface markers, multiple-lineage differentiation potential, colony formation ability, and stemness gene expression. CONCLUSIONS Our results indicated that NPMSCs can be obtained via all four methods and that the MSC-CM+CC method is more reliable and efficient than the other three methods. The findings from this study provide an alternative option for isolating and purifying NPMSCs.
Collapse
Affiliation(s)
- Zhiliang Li
- Department of Orthopedics, Renmin Hospital of Wuhan University , Wuhan, China
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Kaige Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Ruijun He
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Liming Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Yiqiang Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Xiangyu Deng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Aoxue Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Xuan Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| |
Collapse
|
28
|
Tumor suppressive activity of miR-424-5p in breast cancer cells through targeting PD-L1 and modulating PTEN/PI3K/AKT/mTOR signaling pathway. Life Sci 2020; 259:118239. [PMID: 32784058 DOI: 10.1016/j.lfs.2020.118239] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
AIMS MicroRNAs (miRs) are key modulators of cellular processes such as proliferation, apoptosis, as well as anti-cancer immune responses. Here, we evaluated the role of miR-424-5p in breast cancer (BC) and investigated its effects on T cell-related immune response. MAIN METHODS BC tissues and cell lines were prepared and the expression of miR-424-5p and PD-L1, as well as the underlying molecular pathways, were assessed via qRT-PCR and western blotting. The MTT assay and flow cytometry were used to assess the effect of miR-424-5p on proliferation, apoptosis, autophagy, and cell cycle progression. The co-culture of T cells with MDA-MB-231 was performed for evaluating the role of miR-424-5p in rescuing T cell exhaustion. KEY FINDINGS The results indicated the down-regulation of miR-424-5p and up-regulation of PD-L1 expression in BC tissue specimens. MiR-424-5p transfection into PD-L1 overexpressing MDA-MB-231 cells decreased the expression of PD-L1. Also, miR-424-5p could reduce MDA-MB-231 cell viability through modulating apoptosis and autophagy pathways. Furthermore, miR-424-5p transfection leads to decreased colony formation and increased cell number at the G2/M phase. Western blot analysis illustrated that miR-424-5p could exert its anti-proliferative effect via modulating PTEN/PI3K/AKT/mTOR pathway. Moreover, it was demonstrated that suppression of PD-L1 by miR-424-5p could participate in regulating the expression of effector cytokines in T cells. SIGNIFICANCE MiR-424-5p could be considered as a potential tumor-suppressor miR in regulating BC cellular growth, apoptosis, and T cell-related immune response through targeting PD-L1, and its downstream mediators. Therefore, we recognized miR-424-5p as a promising candidate for miR restoration therapy in BC patients.
Collapse
|
29
|
Li K, Ning T, Wang H, Jiang Y, Zhang J, Ge Z. Nanosecond pulsed electric fields enhance mesenchymal stem cells differentiation via DNMT1-regulated OCT4/NANOG gene expression. Stem Cell Res Ther 2020; 11:308. [PMID: 32698858 PMCID: PMC7374836 DOI: 10.1186/s13287-020-01821-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/25/2020] [Accepted: 07/09/2020] [Indexed: 02/28/2023] Open
Abstract
Background Multiple strategies have been proposed to promote the differentiation potential of mesenchymal stem cells (MSCs), which is the fundamental property in tissue formation and regeneration. However, these strategies are relatively inefficient that limit the application. In this study, we reported a novel and efficient strategy, nanosecond pulsed electric fields (nsPEFs) stimulation, which can enhance the trilineage differentiation potential of MSCs, and further explained the mechanism behind. Methods We used histological staining to screen out the nsPEFs parameters that promoted the trilineage differentiation potential of MSCs, and further proved the effect of nsPEFs by detecting the functional genes. In order to explore the corresponding mechanism, we examined the expression of pluripotency genes and the methylation status of their promoters. Finally, we targeted the DNA methyltransferase which was affected by nsPEFs. Results The trilineage differentiation of bone marrow-derived MSCs was significantly enhanced in vitro by simply pre-treating with 5 pulses of nsPEFs stimulation (energy levels as 10 ns, 20 kV/cm; 100 ns, 10 kV/cm), due to that the nsPEFs demethylated the promoters of stem cell pluripotency genes OCT4 and NANOG through instantaneous downregulation of DNA methylation transferase 1 (DNMT1), thereby increasing the expression of OCT4 and NANOG for up to 3 days, and created a treatment window period of stem cells. Conclusions In summary, nsPEFs can enhance MSCs differentiation via the epigenetic regulation and could be a safe and effective strategy for future stem cell application.
Collapse
Affiliation(s)
- Kejia Li
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Tong Ning
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Hao Wang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yangzi Jiang
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jue Zhang
- Institute of Biomechanics and Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Zigang Ge
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
30
|
Du J, Xu Y, Sasada S, Oo AKK, Hassan G, Mahmud H, Khayrani AC, Alam MJ, Kumon K, Uesaki R, Afify SM, Mansour HM, Nair N, Zahra MH, Seno A, Okada N, Chen L, Yan T, Seno M. Signaling Inhibitors Accelerate the Conversion of mouse iPS Cells into Cancer Stem Cells in the Tumor Microenvironment. Sci Rep 2020; 10:9955. [PMID: 32572057 PMCID: PMC7308356 DOI: 10.1038/s41598-020-66471-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/14/2020] [Indexed: 12/03/2022] Open
Abstract
Cancer stem cells (CSCs) are a class of cancer cells characterized by self-renewal, differentiation and tumorigenic potential. We previously established a model of CSCs by culturing mouse induced pluripotent stem cells (miPSCs) for four weeks in the presence of a conditioned medium (CM) of cancer cell lines, which functioned as the tumor microenvironment. Based on this methodology of developing CSCs from miPSCs, we assessed the risk of 110 non-mutagenic chemical compounds, most of which are known as inhibitors of cytoplasmic signaling pathways, as potential carcinogens. We treated miPSCs with each compound for one week in the presence of a CM of Lewis lung carcinoma (LLC) cells. However, one-week period was too short for the CM to convert miPSCs into CSCs. Consequently, PDO325901 (MEK inhibitor), CHIR99021 (GSK-3β inhibitor) and Dasatinib (Abl, Src and c-Kit inhibitor) were found to confer miPSCs with the CSC phenotype in one week. The tumor cells that survived exhibited stemness markers, spheroid formation and tumorigenesis in Balb/c nude mice. Hence, we concluded that the three signal inhibitors accelerated the conversion of miPSCs into CSCs. Similarly to our previous study, we found that the PI3K-Akt signaling pathway was upregulated in the CSCs. Herein, we focused on the expression of relative genes after the treatment with these three inhibitors. Our results demonstrated an increased expression of pik3ca, pik3cb, pik3r5 and pik3r1 genes indicating class IA PI3K as the responsible signaling pathway. Hence, AKT phosphorylation was found to be up-regulated in the obtained CSCs. Inhibition of Erk1/2, tyrosine kinase, and/or GSK-3β was implied to be involved in the enhancement of the PI3K-AKT signaling pathway in the undifferentiated cells, resulting in the sustained stemness, and subsequent conversion of miPSCs into CSCs in the tumor microenvironment.
Collapse
Affiliation(s)
- Juan Du
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yanning Xu
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.,Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, People's Republic of China
| | - Saki Sasada
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Aung Ko Ko Oo
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Ghmkin Hassan
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.,Department of Microbiology and Biochemistry, Faculty of Pharmacy, Damascus University, Damascus, 10769, Syria
| | - Hafizah Mahmud
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Apriliana Cahya Khayrani
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.,Division of Bioprocess Engineering, Department of Chemical Engineering, Faculty of Engineering, University of Indonesia, Depok, 16424, Indonesia
| | - Md Jahangir Alam
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Kazuki Kumon
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Ryo Uesaki
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Said M Afify
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.,Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Shebin El Kom-Menoufia, 32511, Shibin el Kom, Egypt
| | - Hager M Mansour
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Neha Nair
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Maram H Zahra
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Akimasa Seno
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.,Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.,Okayama University Research Laboratory of Stem Cell Engineering in Detroit, IBio, Wayne State University, Detroit, MI, 48202, USA
| | - Nobuhiro Okada
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Ling Chen
- Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, People's Republic of China
| | - Ting Yan
- Department of Pathology, Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Masaharu Seno
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan. .,Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan. .,Okayama University Research Laboratory of Stem Cell Engineering in Detroit, IBio, Wayne State University, Detroit, MI, 48202, USA. .,Laboratory of Natural Food & Medicine, Co., Ltd, Okayama University Incubator, Okayama, 700-8530, Japan.
| |
Collapse
|
31
|
Sangeetha KN, Vennila R, Secunda R, Sakthivel S, Pathak S, Jeswanth S, Surendran R. Functional variations between Mesenchymal Stem Cells of different tissue origins: A comparative gene expression profiling. Biotechnol Lett 2020; 42:1287-1304. [PMID: 32372268 DOI: 10.1007/s10529-020-02898-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 04/24/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Mesenchymal Stem Cells (MSCs), regardless of the tissue sources, are considered as excellent candidates for cellular therapy as they are immune-privileged cells containing a multitude of therapeutic functions that aid in tissue regeneration and repair. For the effective application of these cells in cell therapy, it is important to understand and characterize their biological functions. OBJECTIVES The present study attempts to characterize the variations in multipotent function such as cell surface antigen levels, proliferation, differentiation and stemness (pluripotency) potential of MSCs isolated from foetal [wharton's jelly (WJ), foetal and maternal side of placenta (PF and PM)] and adult tissue sources [bone marrow (BM) and adipose tissue (AT)] using gene expression by real time PCR (qRT-PCR). RESULTS Amongst the different tissue sources, PM, PF and AT-MSCs exhibited significant increase (p < 0.001, p < 0.001 and p < 0.01 respectively) in CD 73 expression and therefore could have a role in immunomodulation. WJ-MSCs exhibited superior proliferation potential based on growth curve, PCNA and Wnt gene expression. BM-MSCs were superior in exhibiting trilineage differentiation. Enhanced stemness potential (Oct 4 and Nanog) was observed for both BM and WJ-MSCs. In addition, BM and WJ-MSCs expressed high levels of CD 90 making them suitable in bone repair and regeneration. CONCLUSION Thus to conclude, out of the five different sources tested, BM an adult source and WJ-MSCs a foetal source were superior in exhibiting most of the biological functions indicating that these sources may be suitable candidates for cell repair and regeneration studies.
Collapse
Affiliation(s)
- K N Sangeetha
- Stem Cell Research Centre, Government Stanley Hospital, Chennai, Tamilnadu, 600001, India
| | | | - R Secunda
- Stem Cell Research Centre, Government Stanley Hospital, Chennai, Tamilnadu, 600001, India.
| | - S Sakthivel
- Stem Cell Research Centre, Government Stanley Hospital, Chennai, Tamilnadu, 600001, India
| | - Surajit Pathak
- Chettinad Academy of Research and Education, Chettinad Hospital & Research Institute, Chennai, Tamilnadu, India
| | - S Jeswanth
- Stem Cell Research Centre, Government Stanley Hospital, Chennai, Tamilnadu, 600001, India
| | - R Surendran
- Hepato-Pancreato-Biliary Centre for Surgery & Transplantation, MIOT International, Chennai, Tamilnadu, India
| |
Collapse
|
32
|
Ashja-Arvan M, Dehbashi M, Eslami A, Salehi H, Yoosefi M, Ganjalikhani-Hakemi M. Impact of IFN-β and LIF overexpression on human adipose-derived stem cells properties. J Cell Physiol 2020; 235:8736-8746. [PMID: 32324266 DOI: 10.1002/jcp.29717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/11/2020] [Accepted: 04/05/2020] [Indexed: 02/05/2023]
Abstract
Adipose-derived stem cells (ADSCs) are a subset of mesenchymal stem cells that their therapeutic effects in various diseases make them an interesting tool in cell therapy. In the current study, we aimed to overexpress interferon-β (IFN-β) and leukemia inhibitory factor (LIF) cytokines in human ADSCs to evaluate the impact of this overexpression on human ADSCs properties. Here, we designed a construct containing IFN-β and LIF and then, transduced human adipose-derived stem cells (hADSCs) by this construct via a lentiviral vector (PCDH-513B). We assessed the ability of long-term expression of the transgene in transduced cells by western blot analysis and enzyme-linked immunosorbent assay techniques on Days 15, 45, and 75 after transduction. For the evaluation of stem cell properties, flow cytometry and differentiation assays were performed. Finally, the MTT assay was done to assess the proliferation of transduced cells compares to controls. Our results showed high-efficiency transduction with highest expression rates on Day 75 after transduction which were 70 pg/ml for IFN-β and 77.9 pg/ml for LIF in comparison with 25.60 pg/ml and 27.63 pg/ml, respectively, in untransduced cells (p = .0001). Also, transduced cells expressed a high level of ADSCs surface markers and successfully differentiated into adipocytes, chondrocytes, neural cells, and osteocytes besides the preservation rate of proliferation near untreated cells (p = .88). All in all, we successfully constructed an hADSC population stably overexpressed IFN-β and LIF cytokines. Considering the IFN-β and LIF anti-inflammatory and neuroprotective effects as well as immune-regulatory properties of hADSCs, the obtained cells of this study could be subjected for further evaluations in experimental autoimmune encephalomyelitis mice model.
Collapse
Affiliation(s)
- Mehnoosh Ashja-Arvan
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Moein Dehbashi
- Division of Genetics, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Asma Eslami
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdiyeh Yoosefi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
33
|
Zhou S, Fu Y, Zhang XB, Pei M. Liver Kinase B1 Fine-Tunes Lineage Commitment of Human Fetal Synovium-Derived Stem Cells. J Orthop Res 2020; 38:258-268. [PMID: 31429977 PMCID: PMC7294510 DOI: 10.1002/jor.24449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/25/2019] [Indexed: 02/04/2023]
Abstract
Liver kinase B1 (LKB1), a serine/threonine protein, is a key regulator in stem cell function and energy metabolism. Herein, we describe the role of LKB1 in modulating the differentiation of synovium-derived stem cells (SDSCs) toward chondrogenic, adipogenic, and osteogenic lineages. Human fetal SDSCs were transduced with CRISPR associated protein 9 (Cas9)-single-guide RNA vectors to knockout or lentiviral vectors to overexpress the LKB1 gene. Analyses including ICE (Inference of CRISPR Edits) data from Sanger sequencing and quantitative polymerase chain reaction (qPCR) as well as Western blot demonstrated successful knockout (KO) or overexpression (OE) of LKB1 in human fetal SDSCs without any detectable side effects in morphology, proliferation rate, and cell cycle. LKB1 KO increased CD146 expression; interestingly, LKB1 OE increased SSEA4 level. The qPCR data showed that LKB1 KO upregulated the levels of SOX2 and NANOG while LKB1 OE lowered the expression of POU5F1 and KLF4. Furthermore, LKB1 KO enhanced, and LKB1 OE inhibited, chondrogenic and adipogenic differentiation potential. However, perhaps due to the inherent inability to achieve osteogenesis, LKB1 did not obviously affect osteogenic differentiation. These data demonstrate that LKB1 plays a significant role in determining human SDSCs' adipogenic and chondrogenic differentiation, which might provide an approach for fine-tuning the direction of stem cell differentiation in tissue engineering and regeneration. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:258-268, 2020.
Collapse
Affiliation(s)
- Sheng Zhou
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, 26506, USA,Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yawen Fu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Tianjin, China,Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Tianjin, China,Department of Medicine, Loma Linda University, Loma Linda, CA, USA,Co-corresponding author: Xiao-Bing Zhang, PhD. Division of Regenerative Medicine MC1528B, Department of Medicine, Loma Linda University, 11234 Anderson Street, Loma Linda, CA 92350, USA. Phone: 909-651-5886. Fax: 909-558-0428.
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, 26506, USA,WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA,Corresponding author: Ming Pei MD, PhD, Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196, USA, Telephone: 304-293-1072; Fax: 304-293-7070;
| |
Collapse
|
34
|
Muñoz MF, Argüelles S, Marotta F, Barbagallo M, Cano M, Ayala A. Effect of Age and Lipoperoxidation in Rat and Human Adipose Tissue-Derived Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6473279. [PMID: 33425211 PMCID: PMC7775166 DOI: 10.1155/2020/6473279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/08/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
A wide range of clinical applications in regenerative medicine were opened decades ago with the discovery of adult stem cells. Highly promising adult stem cells are mesenchymal stem/stromal cells derived from adipose tissue (ADSCs), primarily because of their abundance and accessibility. These cells have multipotent properties and have been used extensively to carry out autologous transplants. However, the biology of these cells is not entirely understood. Among other factors, the regeneration capacity of these cells will depend on both their capacity of proliferation/differentiation and the robustness of the biochemical pathways that allow them to survive under adverse conditions like those found in damaged tissues. The transcription factors, such as Nanog and Sox2, have been described as playing an important role in stem cell proliferation and differentiation. Also, the so-called longevity pathways, in which AMPK and SIRT1 proteins play a crucial role, are essential for cell homeostasis under stressful situations. These pathways act by inhibiting the translation through downregulation of elongation factor-2 (eEF2). In order to deepen knowledge of mesenchymal stem cell biology and which factors are determinant in the final therapeutic output, we evaluate in the present study the levels of all of these proteins in the ADSCs from humans and rats and how these levels are affected by aging and the oxidative environment. Due to the effect of aging and oxidative stress, our results suggest that before performing a cell therapy with ADSCs, several aspects reported in this study such as oxidative stress status and proliferation and differentiation capacity should be assessed on these cells. This would allow us to know the robustness of the transplanted cells and to predict the therapeutic result, especially in elder patients, where probably ADSCs do not carry out their biological functions in an optimal way.
Collapse
Affiliation(s)
- Mario F. Muñoz
- 1Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Sandro Argüelles
- 2Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Francesco Marotta
- 3ReGenera R&D International for Aging Intervention & Vitality Therapeutics, San Babila Clinic, Milan, Italy
| | - Mario Barbagallo
- 4Department of Geriatrics and Internal Medicine, University of Palermo, Italy
| | - Mercedes Cano
- 2Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Spain
| | - Antonio Ayala
- 1Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Spain
| |
Collapse
|
35
|
Influence of the Type of Delivery, Use of Oxytocin, and Maternal Age on POU5F1 Gene Expression in Stem Cells Derived from Wharton's Jelly within the Umbilical Cord. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1027106. [PMID: 31915501 PMCID: PMC6931016 DOI: 10.1155/2019/1027106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/25/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022]
Abstract
The paper presents an evaluation of the POU5F1 gene expression in mesenchymal stem cells derived from Wharton's jelly within the umbilical cord, collected from 36 patients during labor. The study is the first one to show that the expression of POU5F1 in mesenchymal stem cells has been dependent on maternal age, birth order, route of delivery, and use of oxytocin. Our research proves that the POU5F1 gene expression in mesenchymal stem cells decreases with each subsequent pregnancy and delivery. Wharton's jelly stem cells obtained from younger women and during their first delivery, as well as patients treated with oxytocin, show higher POU5F1 gene expression when compared with the subsequent deliveries. This leads to a conclusion that they are characterized by a lower level of differentiation, which in turn results in their greater plasticity and greater proliferative potential. Probably, they are also clinically more useful.
Collapse
|
36
|
Ostrakhovitch EA, Akakura S, Sanokawa-Akakura R, Tabibzadeh S. 3-Mercaptopyruvate sulfurtransferase disruption in dermal fibroblasts facilitates adipogenic trans-differentiation. Exp Cell Res 2019; 385:111683. [DOI: 10.1016/j.yexcr.2019.111683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 10/13/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022]
|
37
|
Shahid MA, Kim WH, Kweon OK. Cryopreservation of heat-shocked canine adipose-derived mesenchymal stromal cells with 10% dimethyl sulfoxide and 40% serum results in better viability, proliferation, anti-oxidation, and in-vitro differentiation. Cryobiology 2019; 92:92-102. [PMID: 31785238 DOI: 10.1016/j.cryobiol.2019.11.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/17/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022]
Abstract
Cryopreserved canine adipose-derived mesenchymal stromal cells (Ad-MSCs) can be used instantly in dogs for clinical uses. However, cryopreservation results in a reduction of the cellular viability, proliferation, and anti-oxidation of post-thawed Ad-MSCs. Therefore, there is a need for in-vitro procedure to improve post-thawed Ad-MSCs' viability, proliferation, anti-oxidation, and differentiation capacity. In this study, fresh-Ad-MSCs were activated with heat shock, hypoxia (5% O2), or hypoxia (5% O2) + heat shock treatments. The results showed that compared to the other treatments, heat shock significantly improved the proliferation rate, anti-oxidation, heat shock proteins and growth factors expressions of canine-fresh-Ad-MSCs. Consequently, fresh-Ad-MSCs were heat-shocked and then cryopreserved with different combinations of dimethyl sulfoxide (Me2SO) and fetal bovine serum (FBS) to determine the combination that could effectively preserve the cellular viability, proliferation, anti-oxidation and differentiation capacity of Ad-MSCs after cryopreservation. We found that C-HST-Ad-MSCs cryopreserved with 10% Me2SO + 40% FBS presented significantly (p < 0.05) improved cellular viability, proliferation rate, anti-oxidant capacity, and differentiation potential as compared to C-HST-Ad-MSCs cryopreserved with 1% Me2SO + 10% FBS or 1% Me2SO alone or control. We concluded, heat shock treatment is much better to enhance the characteristics of fresh-Ad-MSCs than other treatments, moreover, C-HST-Ad-MSCs in 10% Me2SO + 40% FBS showed better results compared to other cryopreserved groups. However, future work is required to optimize the expression of heat shock proteins, which would further improve the characteristics of fresh- and cryopreserved-HST-Ad-MSCs and reduce the dependency on Me2SO and FBS.
Collapse
Affiliation(s)
- Muhammad Afan Shahid
- Research Institute for Veterinary Science and College of Veterinary Medicine Building 85, Room 623, Seoul National University, Gwanak-gu, Gwanak-ro 1, Seoul, 08826, South Korea.
| | - Wan Hee Kim
- Research Institute for Veterinary Science and College of Veterinary Medicine Building 85, Room 623, Seoul National University, Gwanak-gu, Gwanak-ro 1, Seoul, 08826, South Korea.
| | - Oh-Kyeong Kweon
- Research Institute for Veterinary Science and College of Veterinary Medicine Building 85, Room 623, Seoul National University, Gwanak-gu, Gwanak-ro 1, Seoul, 08826, South Korea.
| |
Collapse
|
38
|
PTPN21 Overexpression Promotes Osteogenic and Adipogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells but Inhibits the Immunosuppressive Function. Stem Cells Int 2019; 2019:4686132. [PMID: 31885609 PMCID: PMC6907062 DOI: 10.1155/2019/4686132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/05/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) act as key regulators in various cellular processes such as proliferation, differentiation, and migration. Our previous research demonstrated that non-receptor-typed PTP21 (PTPN21), a member of the PTP family, played a critical role in the proliferation, cell cycle, and chemosensitivity of acute lymphoblastic leukemia cells. However, the role of PTPN21 in the bone marrow microenvironment has not yet been elucidated. In the study, we explored the effects of PTPN21 on human bone marrow-derived mesenchymal stem cells (BM-MSCs) via lentiviral-mediated overexpression and knock-down of PTPN21 in vitro. Overexpressing PTPN21 in BM-MSCs inhibited the proliferation through arresting cell cycle at the G0 phase but rendered them a higher osteogenic and adipogenic differentiation potential. In addition, overexpressing PTPN21 in BM-MSCs increased their senescence levels through upregulation of P21 and P53 and dramatically changed the levels of crosstalk with their typical target cells including immunocytes, tumor cells, and vascular endothelial cells. BM-MSCs overexpressing PTPN21 had an impaired immunosuppressive function and an increased capacity of recruiting tumor cells and vascular endothelial cells in a chemotaxis transwell coculture system. Collectively, our data suggested that PTPN21 acted as a pleiotropic factor in modulating the function of human BM-MSCs.
Collapse
|
39
|
Bak MJ, Furmanski P, Shan NL, Lee HJ, Bao C, Lin Y, Shih WJ, Yang CS, Suh N. Tocopherols inhibit estrogen-induced cancer stemness and OCT4 signaling in breast cancer. Carcinogenesis 2019; 39:1045-1055. [PMID: 29846560 DOI: 10.1093/carcin/bgy071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/02/2018] [Accepted: 05/22/2018] [Indexed: 12/22/2022] Open
Abstract
Estrogen plays an important role in breast cancer development. While the mechanism of the estrogen effects is not fully elucidated, one possible route is by increasing the stem cell-like properties in the tumors. Tocopherols are known to reduce breast cancer development and progression. The aim of the present study is to investigate the effects of tocopherols on the regulation of breast cancer stemness mediated by estrogen. To determine the effects of tocopherols on estrogen-influenced breast cancer stem cells, the MCF-7 tumorsphere culture system, which enriches for mammary progenitor cells and putative breast cancer stem cells, was utilized. Treatment with estrogen resulted in an increase in the CD44+/CD24- subpopulation and aldehyde dehydrogenase activity in tumorspheres as well as the number and size of tumorspheres. Tocopherols inhibited the estrogen-induced expansion of the breast cancer stem population. Tocopherols decreased the levels of stem cell markers, including octamer-binding transcription factor 4 (OCT4), CD44 and SOX-2, as well as estrogen-related markers, such as trefoil factor (TFF)/pS2, cathepsin D, progesterone receptor and SERPINA1, in estrogen-stimulated tumorspheres. Overexpression of OCT4 increased CD44 and sex-determining region Y-box-2 levels and significantly increased cell invasion and expression of the invasion markers, matrix metalloproteinases, tissue inhibitors of metalloproteinase and urokinase plasminogen activator, and tocopherols inhibited these OCT4-mediated effects. These results suggest a potential inhibitory mechanism of tocopherols in estrogen-induced stemness and cell invasion in breast cancer.
Collapse
Affiliation(s)
- Min Ji Bak
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Philip Furmanski
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Naing Lin Shan
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Hong Jin Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Cheng Bao
- Department of Food Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Yong Lin
- Department of Biostatistics, Rutgers School of Public Health, Rutgers University, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Weichung Joe Shih
- Department of Biostatistics, Rutgers School of Public Health, Rutgers University, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
40
|
Lee J, Kim OH, Lee SC, Kim KH, Shin JS, Hong HE, Choi HJ, Kim SJ. Enhanced Therapeutic Potential of the Secretome Released from Adipose-Derived Stem Cells by PGC-1α-Driven Upregulation of Mitochondrial Proliferation. Int J Mol Sci 2019; 20:ijms20225589. [PMID: 31717375 PMCID: PMC6888642 DOI: 10.3390/ijms20225589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Peroxisome proliferator activated receptor λ coactivator 1α (PGC-1α) is a potent regulator of mitochondrial biogenesis and energy metabolism. In this study, we investigated the therapeutic potential of the secretome released from the adipose-derived stem cells (ASCs) transfected with PGC-1α (PGC-secretome). We first generated PGC-1α-overexpressing ASCs by transfecting ASCs with the plasmids harboring the gene encoding PGC-1α. Secretory materials released from PGC-1α-overexpressing ASCs were collected and their therapeutic potential was determined using in vitro (thioacetamide (TAA)-treated AML12 cells) and in vivo (70% partial hepatectomized mice) models of liver injury. In the TAA-treated AML12 cells, the PGC-secretome significantly increased cell viability, promoted expression of proliferation-related markers, such as PCNA and p-STAT, and significantly reduced the levels of reactive oxygen species (ROS). In the mice, PGC-secretome injections significantly increased liver tissue expression of proliferation-related markers more than normal secretome injections did (p < 0.05). We demonstrated that the PGC-secretome does not only have higher antioxidant and anti-inflammatory properties, but also has the potential of significantly enhancing liver regeneration in both in vivo and in vitro models of liver injury. Thus, reinforcing the mitochondrial antioxidant potential by transfecting ASCs with PGC-1α could be one of the effective strategies to enhance the therapeutic potential of ASCs.
Collapse
Affiliation(s)
- Jaeim Lee
- Department of Surgery, Uijeongbu St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 11765, Korea; (J.L.); (K.-H.K.)
| | - Ok-Hee Kim
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 06591, Korea; (O.-H.K.); (J.S.S.); (H.-E.H.); (H.J.C.)
- Catholic Central Laboratory of Surgery, College of Medicine, the Catholic University of Korea, Seoul 06591, Korea
| | - Sang Chul Lee
- Department of Surgery, Daejeon St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 34943, Korea;
| | - Kee-Hwan Kim
- Department of Surgery, Uijeongbu St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 11765, Korea; (J.L.); (K.-H.K.)
- Catholic Central Laboratory of Surgery, College of Medicine, the Catholic University of Korea, Seoul 06591, Korea
| | - Jin Sun Shin
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 06591, Korea; (O.-H.K.); (J.S.S.); (H.-E.H.); (H.J.C.)
- Catholic Central Laboratory of Surgery, College of Medicine, the Catholic University of Korea, Seoul 06591, Korea
| | - Ha-Eun Hong
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 06591, Korea; (O.-H.K.); (J.S.S.); (H.-E.H.); (H.J.C.)
- Catholic Central Laboratory of Surgery, College of Medicine, the Catholic University of Korea, Seoul 06591, Korea
| | - Ho Joong Choi
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 06591, Korea; (O.-H.K.); (J.S.S.); (H.-E.H.); (H.J.C.)
| | - Say-June Kim
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Seoul 06591, Korea; (O.-H.K.); (J.S.S.); (H.-E.H.); (H.J.C.)
- Catholic Central Laboratory of Surgery, College of Medicine, the Catholic University of Korea, Seoul 06591, Korea
- Correspondence: ; Fax: +822-535-0070
| |
Collapse
|
41
|
In a Rat Model of Acute Liver Failure, Icaritin Improved the Therapeutic Effect of Mesenchymal Stem Cells by Activation of the Hepatocyte Growth Factor/c-Met Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4253846. [PMID: 31915446 PMCID: PMC6935441 DOI: 10.1155/2019/4253846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/11/2019] [Accepted: 07/01/2019] [Indexed: 01/09/2023]
Abstract
Acute liver failure (ALF) is a serious life-threatening condition. Mesenchymal stem cells (MSCs) may be an effective treatment for this condition and a good alternative to liver transplantation. Icaritin (ICT) is an active ingredient of the genus Epimedium, a traditional Chinese medicine, with the potential to enhance the proliferation of MSCs. The purpose of this study was to explore whether ICT increased the therapeutic effects of MSCs and explore its underlying mechanisms. For in vivo experiments, a rat ALF model was established by intraperitoneal injection of D(+)-galactosamine/ lipopolysaccharide. MSCs cocultured with ICT were used to treat ALF rats and the protective effects assessed as survival rate, levels of serum AST and ALT, and histological changes in liver tissue. For in vitro experiments, MSCs were treated in serum-free culture for 72 h to simulate the disruption of intrahepatic microcirculation. MSCs apoptosis was examined to determine whether ICT rescued impaired MSCs. The role of the hepatocyte growth factor (HGF)/c-Met pathway in MSCs was assessed by constructing genetically modified MSCs overexpressing c-Met and by using the c-Met receptor inhibitor (crizotinib). The results showed that MSCs increased the survival rate of ALF rats and reduced liver damage. MSCs cocultured with ICT exerted a greater therapeutic effect than MSCs alone. Further, the HGF/c-Met pathway played a key role in the antiapoptotic activity of MSCs, which was associated with the optimized efficacy of ICT. In conclusion, this study demonstrated that ICT enhances the therapeutic effect of MSCs in a model of ALF, improving the antiapoptotic potential of MSCs by upregulation of the HGF/c-Met pathway. The combination of stem cell therapy with traditional herbal extracts may improve MSC-based clinical applications.
Collapse
|
42
|
Jeon R, Park S, Lee SL, Rho GJ. Subpopulations of miniature pig mesenchymal stromal cells with different differentiation potentials differ in the expression of octamer-binding transcription factor 4 and sex determining region Y-box 2. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:515-524. [PMID: 32054231 PMCID: PMC7054621 DOI: 10.5713/ajas.19.0416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/03/2019] [Indexed: 11/28/2022]
Abstract
Objective Human mesenchymal stromal cells (MSCs) exhibit variable differentiation potential and can be divided accordingly into distinct subpopulations whose ratios vary with donor age. However, it is unknown whether the same is true in pigs. This study investigated MSC subpopulations in miniature pig and compared their characteristics in young (2 to 3 months) and adult (27 to 35 months) pigs. Methods Osteogenic, chondrogenic, and adipogenic capacity of isolated MSCs was evaluated by von Kossa, Alcian blue, and oil red O staining, respectively. Cell surface antigen expression was determined by flow cytometry. Proliferative capacity was assessed with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Expression of marker genes was detected by quantitative real-time polymerase chain reaction. Results Porcine MSCs comprised cells with trilineage and bilineage differentiation potential (tMSCs and bMSCs, respectively) and non-differentiating stromal cells (NDSCs). The tMSC and bMSC fractions were smaller in adult than in young pigs (63.0% vs 71.2% and 11.6% vs 24.0%, respectively, p<0.05); NDSCs showed the opposite trend (25.4% vs 4.8%; p<0.05). Subpopulations showed no differences in morphology, cell surface antigen expression, or proliferative capacity, but octamer-binding transcription factor 4 (OCT4) expression was higher in tMSCs than in bMSCs and NDSCs (p<0.05), whereas sex determining region Y-box 2 (SOX2) expression was higher in tMSCs and bMSCs than in NDSCs (p<0.05). Aging had no effect on these trends. Conclusion Porcine MSCs comprise distinct subpopulations that differ in their differentiation potential and OCT4 and SOX2 expression. Aging does not affect the characteristics of each subpopulation but alters their ratios.
Collapse
Affiliation(s)
- Ryounghoon Jeon
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Sungjo Park
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
43
|
Bao C, Chen J, Kim JT, Qiu S, Cho JS, Lee HJ. Amentoflavone inhibits tumorsphere formation by regulating the Hedgehog/Gli1 signaling pathway in SUM159 breast cancer stem cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
44
|
Kumar A, Sharma R, Dattachoudhury S, Sharma A, Anand T, Bhattacharyya J, Bhattacharjee K, Jaganathan BG. OCT4A transcript level correlates with proliferation potential of human mesenchymal stem cells. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Park J, Jun EK, Son D, Hong W, Jang J, Yun W, Yoon BS, Song G, Kim IY, You S. Overexpression of Nanog in amniotic fluid-derived mesenchymal stem cells accelerates dermal papilla cell activity and promotes hair follicle regeneration. Exp Mol Med 2019; 51:1-15. [PMID: 31273189 PMCID: PMC6802618 DOI: 10.1038/s12276-019-0266-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/12/2019] [Accepted: 03/06/2019] [Indexed: 12/17/2022] Open
Abstract
Alopecia, one of the most common chronic diseases, can seriously affect a patient's psychosocial life. Dermal papilla (DP) cells serve as essential signaling centers in the regulation of hair growth and regeneration and are associated with crosstalk between autocrine/paracrine factors and the surrounding environment. We previously demonstrated that amniotic fluid-derived mesenchymal stem cell-conditioned medium (AF-MSC-CM) accelerates hair regeneration and growth. The present study describes the effects of overexpression of a reprogramming factor, Nanog, on MSC properties, the paracrine effects on DP cells, and in vivo hair regrowth. First, we examined the in vitro proliferation and lifespan of AF-MSCs overexpressing reprogramming factors, including Oct4, Nanog, and Lin28, alone or in combination. Among these factors, Nanog was identified as a key factor in maintaining the self-renewal capability of AF-MSCs by delaying cellular senescence, increasing the endogenous expression of Oct4 and Sox2, and preserving stemness. Next, we evaluated the paracrine effects of AF-MSCs overexpressing Nanog (AF-N-MSCs) by monitoring secretory molecules related to hair regeneration and growth (IGF, PDGF, bFGF, and Wnt7a) and proliferation of DP cells. In vivo studies revealed that CM derived from AF-N-MSCs (AF-N-CM) accelerated the telogen-to-anagen transition in hair follicles (HFs) and increased HF density. The expression of DP and HF stem cell markers and genes related to hair induction were higher in AF-N-CM than in CM from AF-MSCs (AF-CM). This study suggests that the secretome from autologous MSCs overexpressing Nanog could be an excellent candidate as a powerful anagen inducer and hair growth stimulator for the treatment of alopecia.
Collapse
Affiliation(s)
- Junghyun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Eun Kyoung Jun
- Institute of Regenerative Medicine, STEMLAB, Inc., Seoul, 02841, Republic of Korea
| | - Daryeon Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Wonjun Hong
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jihoon Jang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Wonjin Yun
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Byung Sun Yoon
- Institute of Regenerative Medicine, STEMLAB, Inc., Seoul, 02841, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea.
| | - In Yong Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea. .,Department of Neurosurgery, College of Medicine, Korea University, Seoul, 02841, South Korea.
| | - Seungkwon You
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea. .,Institute of Animal Molecular Biotechnology, Korea University, Seoul, 136-701, South Korea.
| |
Collapse
|
46
|
Malvicini R, Santa-Cruz D, Pacienza N, Yannarelli G. OCT4 Silencing Triggers Its Epigenetic Repression and Impairs the Osteogenic and Adipogenic Differentiation of Mesenchymal Stromal Cells. Int J Mol Sci 2019; 20:ijms20133268. [PMID: 31277213 PMCID: PMC6651015 DOI: 10.3390/ijms20133268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/21/2019] [Accepted: 06/11/2019] [Indexed: 12/25/2022] Open
Abstract
Mechanisms mediating mesenchymal stromal/stem cells’ (MSCs) multipotency are unclear. Although the expression of the pluripotency factor OCT4 has been detected in MSCs, whether it has a functional role in adult stem cells is still controversial. We hypothesized that a physiological expression level of OCT4 is important to regulate MSCs’ multipotency and trigger differentiation in response to environmental signals. Here, we specifically suppressed OCT4 in MSCs by using siRNA technology before directed differentiation. OCT4 expression levels were reduced by 82% in siOCT4-MSCs, compared with controls. Interestingly, siOCT4-MSCs also presented a hypermethylated OCT4 promoter. OCT4 silencing significantly impaired the ability of MSCs to differentiate into osteoblasts. Histologic and macroscopic analysis showed a lower degree of mineralization in siOCT4-MSCs than in controls. Moreover, OCT4 silencing prevented the up-regulation of osteoblast lineage-associated genes during differentiation. Similarly, OCT4 silencing resulted in decreased MSC differentiation potential towards the adipogenic lineage. The accumulation of lipids was reduced 3.0-fold in siOCT4-MSCs, compared with controls. The up-regulation of genes engaged in the early stages of adipogenesis was also suppressed in siOCT4-MSCs. Our findings provide evidence of a functional role for OCT4 in MSCs and indicate that a basal expression of this transcription factor is essential for their multipotent capacity.
Collapse
Affiliation(s)
- Ricardo Malvicini
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, Buenos Aires 1078, Argentina
| | - Diego Santa-Cruz
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, Buenos Aires 1078, Argentina
| | - Natalia Pacienza
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, Buenos Aires 1078, Argentina
| | - Gustavo Yannarelli
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro-CONICET, Solís 453, Buenos Aires 1078, Argentina.
| |
Collapse
|
47
|
Guo X, Tang Y, Zhang P, Li S, Chen Y, Qian B, Shen H, Zhao N. Effect of ectopic high expression of transcription factor OCT4 on the "stemness" characteristics of human bone marrow-derived mesenchymal stromal cells. Stem Cell Res Ther 2019; 10:160. [PMID: 31159871 PMCID: PMC6547465 DOI: 10.1186/s13287-019-1263-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/30/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To investigate the effect of ectopic high expression of OCT4 on the stemness characteristics of bone marrow-derived mesenchymal stromal cells (BM-MSCs). METHODS BM-MSCs were collected from three de novo acute lymphoblastic leukemia (ALL) and three aplastic anemia patients (AA), which were cultivated by the whole bone marrow adherent method. Surface markers of BM-MSCs were analyzed by flow cytometry (FCM); meanwhile, growth characteristics were observed with a phase contrast microscope, and population doubling time (PDT) was calculated. The optimal generation cells (P4) were used for the subsequent experiments. Recombinant plasmid pcDNA3.1-OCT4 was constructed and transferred into ALL MSCs by liposome transfection. The cells with stable and high expression of OCT4 were selected by G418 resistance screening and subcloning, of which the expression of OCT4 was verified by FCM, cellular immunofluorescence assay (CIFA), and RT-PCR. The expression of stemness-related transcription factors (TFs) (NANOG, SOX2) and the embryonic stem cell (ESC)-related surface markers (SSEA4, TRA-1-60, and TRA-1-81) were analyzed by FCM, RT-PCR, and CIFA. Embryonic body (EB) formation was performed with the above cells, and triembryonic differentiation marker genes were evaluated by RT-PCR. RESULTS The primary passage of AA MSCs grew more slowly and had longer PDT (16 days on average) than ALL MSCs (10 days on average). AA MSCs presented the same typical morphology and similar expression levels of specific mesenchymal markers as ALL MSCs, whereas the latter had a much better proliferative capacity in P4 cells (P < 0.05). Besides, the expression levels of surface markers in ALL MSCs were slightly higher than that in AA MSCs in P4, P7, and P10 cells (P < 0.05). Cell lines with stable and high expression of OCT4 were successfully established from ALL MSCs, which were confirmed by CIFA, FCM, and RT-PCR. Compared with untransfected parental MSCs, the mean expression levels of TFs in OCT4 overexpression MSCs were increased from 0.63 ± 0.37% to 39.39 ± 1.85% (NANOG) and from 14.34 ± 2.44% to 91.45 ± 4.56% (SOX2). The average expression levels of ESC surface markers were increased from 3.33 ± 2.35%, 1.59 ± 1.29%, and 1.46 ± 0.86% to 84.98 ± 9.2%, 57.28 ± 6.72%, and 75.88 ± 7.35% respectively for SSEA-4, TRA-1-60, and TRA-1-81, which were confirmed by CIFA analysis. Moreover, the OCT4 overexpression MSCs could form EBs ex vivo and express ectoderm (TUBB3, WNT1), mesoderm (Brachyury, TBX20), and endoderm (SPARC) genes. CONCLUSION Ectopic high expression of transcription factor OCT4 in BM-MSCs may drive them to grow as ESC-like cells with "stemness" characteristics. Single OCT4 transfection can upregulate the expression of other stemness-related transcription factors such as NANOG and SOX2.
Collapse
Affiliation(s)
- Xiaoping Guo
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, People's Republic of China
| | - Yongmin Tang
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, People's Republic of China.
| | - Ping Zhang
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, People's Republic of China
| | - Sisi Li
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, People's Republic of China
| | - Yuanyuan Chen
- Division of Hematology-Oncology, Children's Hospital of Zhejiang University School of Medicine, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, People's Republic of China
| | - Baiqin Qian
- Division of Hematology-Oncology, Zhejiang Key Laboratory for Neonatal Diseases, Children's Hospital of Zhejiang University School of Medicine, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, People's Republic of China
| | - Hongqiang Shen
- Division of Hematology-Oncology, Zhejiang Key Laboratory for Neonatal Diseases, Children's Hospital of Zhejiang University School of Medicine, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, People's Republic of China
| | - Ning Zhao
- Division of Hematology-Oncology, Zhejiang Key Laboratory for Neonatal Diseases, Children's Hospital of Zhejiang University School of Medicine, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, People's Republic of China
| |
Collapse
|
48
|
Bian Y, Du Y, Wang R, Chen N, Du X, Wang Y, Yuan H. A comparative study of HAMSCs/HBMSCs transwell and mixed coculture systems. IUBMB Life 2019; 71:1048-1055. [PMID: 31112365 DOI: 10.1002/iub.2074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/16/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
Abstract
Our previous studies indicated that a coculture system containing human amnion-derived mesenchymal stem cells (HAMSCs) and human bone marrow mesenchymal stem cells (HBMSCs) has the potential of application for bone regeneration. However, there is currently no enough comparative investigation between HAMSCs/HBMSCs transwell and mixed coculture systems. This study aimed to assess the phenotype and mechanisms regulated by indirect and direct coculture systems, respectively. Two in vitro models were employed with HAMSCs and HBMSCs at a ratio of 3:1, and then were analyzed by a series of processes, including flow cytometry, alkaline phosphatase (ALP) substrate assays, Alizarin red S staining, quantitative reverse transcription polymerase chain reaction (RT-qPCR), and Western blot analysis. We found that cell proliferation, ALP activity, mineralized matrix formation, and osteoblast-related mRNA expression were accelerated in transwell coculture system compared with mixed coculture system. Conditioned medium from transwell coculture system achieved an elevated level of vascular endothelial growth factor and induced more vascular structures in human umbilical vein endothelial cells than those of mixed coculture system. Moreover, we observed that transwell coculture system, promoted osteogenesis and angiogenesis by maintaining stemness through extracellular regulated protein kinases 1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) signaling pathway. U0126, a selective inhibitor of ERK1/2 MAPK signaling, significantly suppressed maintaining of the stemness-based effects on transwell coculture system. Taken together, our results compared the merits of two different models and clarified the role of HAMSCs/HBMSCs transwell coculture system in the development of bone tissue engineering. © 2019 IUBMB Life, 2019.
Collapse
Affiliation(s)
- Yifeng Bian
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yifei Du
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ruixia Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Dental Implant, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ning Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xin Du
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Yuli Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Hua Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
49
|
Chen CA, Chen YL, Huang JS, Huang GTJ, Chuang SF. Effects of Restorative Materials on Dental Pulp Stem Cell Properties. J Endod 2019; 45:420-426. [PMID: 30819529 DOI: 10.1016/j.joen.2018.10.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/21/2018] [Accepted: 10/08/2018] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Dental pulp stem cells (DPSCs) are multipotent progenitors for biotechnological practices, but the influences of existing restorations on their viability and differentiation are not well-known. This study was aimed to investigate in vivo and in vitro responses of DPSCs to restorative materials. METHODS Class I cavities were prepared on molars scheduled to be extracted and then restored with a resin-based composite (RBC), a glass ionomer cement, or zinc oxide eugenol. Intact teeth were used as controls. Twelve molars in each group were extracted on day 7 or day 30 after restorations to assess the early or intermediate pulp responses and were then cut in half. One half was processed for histopathological analysis, and the other was used to isolate DPSCs for a colony-forming unit assay and real-time polymerase chain reaction for NANOG, OCT4, and CD44 expression. RESULTS All restored teeth showed pulp damage at various levels, whereas mild to moderate inflammation persisted in the RBC group until day 30. The existence of DPSCs in the pulp cores of all groups was revealed based on CD44 immunoreactivity. Glass ionomer cement and zinc oxide eugenol did not affect the relative percentages of DPSCs in either early or intermediate stages, whereas RBCs reduced the percentage. The colony-forming units in all restoration groups were comparable with those in the control. Nevertheless, the restorations significantly enhanced OCT4 expression, especially in RBC/day 30. CONCLUSIONS Dental restorations cause mild pulp damage but do not affect DPSC viability. RBC decreases DPSC densities but might increase the stemness of surviving DPSCs through an inflammation-stimulation process.
Collapse
Affiliation(s)
- Chao-An Chen
- Department of Endodontics, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Yuh-Ling Chen
- Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jehn-Shyun Huang
- Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Stomatology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - George T-J Huang
- Department of Bioscience Research, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Shu-Fen Chuang
- Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Stomatology, National Cheng Kung University Hospital, Tainan, Taiwan.
| |
Collapse
|
50
|
Lu Y, Qu H, Qi D, Xu W, Liu S, Jin X, Song P, Guo Y, Jia Y, Wang X, Li H, Li Y, Quan C. OCT4 maintains self-renewal and reverses senescence in human hair follicle mesenchymal stem cells through the downregulation of p21 by DNA methyltransferases. Stem Cell Res Ther 2019; 10:28. [PMID: 30646941 PMCID: PMC6334457 DOI: 10.1186/s13287-018-1120-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Self-renewal is dependent on an intrinsic gene regulatory network centered on OCT4 and on an atypical cell cycle G1/S transition, which is also regulated by OCT4. p21, a gene negatively associated with self-renewal and a senescence marker, is a member of the universal cyclin-dependent kinase inhibitors (CDKIs) and plays critical roles in the regulation of the G1/S transition. The expression of p21 can be regulated by OCT4-targeted DNA methyltransferases (DNMTs), which play distinct roles in gene regulation and maintaining pluripotency properties. The aim of this study was to determine the role of OCT4 in the regulation of self-renewal and senescence in human hair follicle mesenchymal stem cells (hHFMSCs) and to characterize the molecular mechanisms involved. METHODS A lentiviral vector was used to ectopically express OCT4. The influences of OCT4 on the self-renewal and senescence of hHFMSCs were investigated. Next-generation sequencing (NGS) was performed to identify the downstream genes of OCT4 in this process. Methylation-specific PCR (MSP) analysis was performed to measure the methylation level of the p21 promoter region. p21 was overexpressed in hHFMSCsOCT4 to test its downstream effect on OCT4. The regulatory effect of OCT4 on DNMTs was examined by ChIP assay. 5-aza-dC/zebularine was used to inhibit the expression of DNMTs, and then self-renewal properties and senescence in hHFMSCs were detected. RESULTS The overexpression of OCT4 promoted proliferation, cell cycle progression, and osteogenic differentiation capacity of hHFMSCs. The cell senescence of hHFMSCs was markedly suppressed due to the ectopic expression of OCT4. Through NGS, we identified 2466 differentially expressed genes (DEGs) between hHFMSCsOCT4 and hHFMSCsEGFP, including p21, which was downregulated. The overexpression of p21 abrogated the proliferation and osteogenic differentiation capacity of hHFMSCsOCT4 and promoted cell senescence. OCT4 enhanced the transcription of DNMT genes, leading to an elevation in the methylation of the p21 promoter. The inhibition of DNMTs reversed the OCT4-induced p21 reduction, depleted the self-renewal of hHFMSCsOCT4, and triggered cell senescence. CONCLUSIONS OCT4 maintains the self-renewal ability of hHFMSCs and reverses senescence by suppressing the expression of p21 through the upregulation of DNMTs.
Collapse
Affiliation(s)
- Yan Lu
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Huinan Qu
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Da Qi
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Wenhong Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Shutong Liu
- Cell Processing Section, Department of Transfusion, Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiangshu Jin
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Peiye Song
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Yantong Guo
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Yiyang Jia
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Xinqi Wang
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Hairi Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, 92093-0651, USA
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, China.
| |
Collapse
|