1
|
Nie HY, Ge J, Liu KG, Yue Y, Li H, Lin HG, Yan HF, Zhang T, Sun HW, Yang JW, Zhou JL, Cui Y. The effects of microgravity on stem cells and the new insights it brings to tissue engineering and regenerative medicine. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:1-17. [PMID: 38670635 DOI: 10.1016/j.lssr.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/13/2023] [Accepted: 01/06/2024] [Indexed: 04/28/2024]
Abstract
Conventional two-dimensional (2D) cell culture techniques may undergo modifications in the future, as life scientists have widely acknowledged the ability of three-dimensional (3D) in vitro culture systems to accurately simulate in vivo biology. In recent years, researchers have discovered that microgravity devices can address many challenges associated with 3D cell culture. Stem cells, being pluripotent cells, are regarded as a promising resource for regenerative medicine. Recent studies have demonstrated that 3D culture in microgravity devices can effectively guide stem cells towards differentiation and facilitate the formation of functional tissue, thereby exhibiting advantages within the field of tissue engineering and regenerative medicine. Furthermore, We delineate the impact of microgravity on the biological behavior of various types of stem cells, while elucidating the underlying mechanisms governing these alterations. These findings offer exciting prospects for diverse applications.
Collapse
Affiliation(s)
- Hong-Yun Nie
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jun Ge
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Kai-Ge Liu
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Yuan Yue
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hao Li
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China.
| | - Hai-Guan Lin
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Feng Yan
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Tao Zhang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Hong-Wei Sun
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jian-Wu Yang
- Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China
| | - Jin-Lian Zhou
- Department of Pathology, Strategic Support Force Medical Center, Beijing 100101, China
| | - Yan Cui
- Department of General Surgery, The 306th Hospital of PLA-Peking University Teaching Hospital, Beijing 100101, China; Department of General Surgery, Strategic Support Force Medical Center, Beijing 100101, China.
| |
Collapse
|
2
|
Chen J, Nefzger CM, Rossello FJ, Sun YBY, Lim SM, Liu X, de Boer S, Knaupp AS, Li J, Davidson KC, Polo JM, Barberi T. Fine Tuning of Canonical Wnt Stimulation Enhances Differentiation of Pluripotent Stem Cells Independent of β-Catenin-Mediated T-Cell Factor Signaling. Stem Cells 2018; 36:822-833. [PMID: 29396901 DOI: 10.1002/stem.2794] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/20/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022]
Abstract
The canonical Wnt/β-catenin pathway is crucial for early embryonic patterning, tissue homeostasis, and regeneration. While canonical Wnt/β-catenin stimulation has been used extensively to modulate pluripotency and differentiation of pluripotent stem cells (PSCs), the mechanism of these two seemingly opposing roles has not been fully characterized and is currently largely attributed to activation of nuclear Wnt target genes. Here, we show that low levels of Wnt stimulation via ectopic expression of Wnt1 or administration of glycogen synthase kinase-3 inhibitor CHIR99021 significantly increases PSC differentiation into neurons, cardiomyocytes and early endodermal intermediates. Our data indicate that enhanced differentiation outcomes are not mediated through activation of traditional Wnt target genes but by β-catenin's secondary role as a binding partner of membrane bound cadherins ultimately leading to the activation of developmental genes. In summary, fine-tuning of Wnt signaling to subthreshold levels for detectable nuclear β-catenin function appears to act as a switch to enhance differentiation of PSCs into multiple lineages. Our observations highlight a mechanism by which Wnt/β-catenin signaling can achieve dosage dependent dual roles in regulating self-renewal and differentiation. Stem Cells 2018;36:822-833.
Collapse
Affiliation(s)
- Joseph Chen
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Christian M Nefzger
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Fernando J Rossello
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Yu B Y Sun
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Sue Mei Lim
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Xiaodong Liu
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Suzan de Boer
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Anja S Knaupp
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Jinhua Li
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Kathryn C Davidson
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Jose M Polo
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Tiziano Barberi
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| |
Collapse
|
3
|
Augustin I, Dewi DL, Hundshammer J, Erdmann G, Kerr G, Boutros M. Autocrine Wnt regulates the survival and genomic stability of embryonic stem cells. Sci Signal 2017; 10:10/461/eaah6829. [PMID: 28074006 DOI: 10.1126/scisignal.aah6829] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Wnt signaling plays an important role in the self-renewal and differentiation of stem cells. The secretion of Wnt ligands requires Evi (also known as Wls). Genetically ablating Evi provides an experimental approach to studying the consequence of depleting all redundant Wnt proteins, and overexpressing Evi enables a nonspecific means of increasing Wnt signaling. We generated Evi-deficient and Evi-overexpressing mouse embryonic stem cells (ESCs) to analyze the role of autocrine Wnt production in self-renewal and differentiation. Self-renewal was reduced in Evi-deficient ESCs and increased in Evi-overexpressing ESCs in the absence of leukemia inhibitory factor, which supports the self-renewal of ESCs. The differentiation of ESCs into cardiomyocytes was enhanced when Evi was overexpressed and teratoma formation and growth of Evi-deficient ESCs in vivo were impaired, indicating that autocrine Wnt ligands were necessary for ESC differentiation and survival. ESCs lacking autocrine Wnt signaling had mitotic defects and showed genomic instability. Together, our study demonstrates that autocrine Wnt secretion is important for the survival, chromosomal stability, differentiation, and tumorigenic potential of ESCs.
Collapse
Affiliation(s)
- Iris Augustin
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany.
| | - Dyah L Dewi
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany
| | - Jennifer Hundshammer
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany
| | - Gerrit Erdmann
- NMI TT Naturwissenschaftliches und Medizinisches Institut Technologie Transfer GmbH Pharmaservices, Berlin 13353, Germany
| | - Grainne Kerr
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics, and Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany.
| |
Collapse
|
4
|
Immune cell recruitment in teratomas is impaired by increased Wnt secretion. Stem Cell Res 2016; 17:607-615. [PMID: 27838585 DOI: 10.1016/j.scr.2016.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 10/16/2016] [Accepted: 10/25/2016] [Indexed: 02/08/2023] Open
Abstract
Wnt signaling plays a central role in tumor initiation and tumor progression. Mutations in Wnt pathway components, such as the tumor suppressor APC, lead to malignant transformation. While previous studies focused on Wnt-related changes in cancer cells, the impact of aberrant Wnt signaling on the tumor microenvironment is only beginning to emerge. In order to investigate the role of increased Wnt secretion on tumor growth and the microenvironment, we generated a novel germ cell tumor model by overexpressing the Wnt secretion factor Evi/Wls in mouse embryonic stem cells. Evi-overexpressing teratoma were characterized by enhanced tumor growth in supporting a tumor-promoting role of Wnt secretion. Interestingly, enhanced Evi expression correlated with impaired immune cell recruitment. Specifically, T- and B-cell infiltration was reduced in Evi-overexpressing teratomas, which was independent of teratoma size and differentiation. Our study suggests that Wnt secretion impairs immunosurveillance. Since immune cell infiltration has been shown to have prognostic value, the levels of secreted Wnt activity might impact the efficiency of cancer immunotherapy.
Collapse
|
5
|
Blaber EA, Finkelstein H, Dvorochkin N, Sato KY, Yousuf R, Burns BP, Globus RK, Almeida EAC. Microgravity Reduces the Differentiation and Regenerative Potential of Embryonic Stem Cells. Stem Cells Dev 2015; 24:2605-21. [PMID: 26414276 PMCID: PMC4652210 DOI: 10.1089/scd.2015.0218] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mechanical unloading in microgravity is thought to induce tissue degeneration by various mechanisms, including inhibition of regenerative stem cell differentiation. To address this hypothesis, we investigated the effects of microgravity on early lineage commitment of mouse embryonic stem cells (mESCs) using the embryoid body (EB) model of tissue differentiation. We found that exposure to microgravity for 15 days inhibits mESC differentiation and expression of terminal germ layer lineage markers in EBs. Additionally, microgravity-unloaded EBs retained stem cell self-renewal markers, suggesting that mechanical loading at Earth's gravity is required for normal differentiation of mESCs. Finally, cells recovered from microgravity-unloaded EBs and then cultured at Earth's gravity showed greater stemness, differentiating more readily into contractile cardiomyocyte colonies. These results indicate that mechanical unloading of stem cells in microgravity inhibits their differentiation and preserves stemness, possibly providing a cellular mechanistic basis for the inhibition of tissue regeneration in space and in disuse conditions on earth.
Collapse
Affiliation(s)
- Elizabeth A Blaber
- 1 Space Biosciences Division, NASA Ames Research Center , Moffett Field, California.,2 School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney, Australia
| | - Hayley Finkelstein
- 1 Space Biosciences Division, NASA Ames Research Center , Moffett Field, California
| | - Natalya Dvorochkin
- 1 Space Biosciences Division, NASA Ames Research Center , Moffett Field, California
| | - Kevin Y Sato
- 3 FILMSS Wyle, Space Biology, NASA Ames Research Center , Moffett Field, California
| | - Rukhsana Yousuf
- 1 Space Biosciences Division, NASA Ames Research Center , Moffett Field, California
| | - Brendan P Burns
- 2 School of Biotechnology and Biomolecular Sciences, University of New South Wales , Sydney, Australia .,4 Australian Centre for Astrobiology, University of New South Wales , Sydney, Australia
| | - Ruth K Globus
- 1 Space Biosciences Division, NASA Ames Research Center , Moffett Field, California
| | - Eduardo A C Almeida
- 1 Space Biosciences Division, NASA Ames Research Center , Moffett Field, California
| |
Collapse
|
6
|
Dawson K, Aflaki M, Nattel S. Role of the Wnt-Frizzled system in cardiac pathophysiology: a rapidly developing, poorly understood area with enormous potential. J Physiol 2012. [PMID: 23207593 DOI: 10.1113/jphysiol.2012.235382] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract The Wnt-Frizzled (Fzd) G-protein-coupled receptor system, involving 19 distinct Wnt ligands and 10 Fzd receptors, plays key roles in the development and functioning of many organ systems. There is increasing evidence that Wnt-Fzd signalling is important in regulating cardiac function. Wnt-Fzd signalling primarily involves a canonical pathway, with dishevelled-1-dependent nuclear translocation of β-catenin that derepresses Wnt-sensitive gene transcription, but can also include non-canonical pathways via phospholipase-C/Ca(2+) mobilization and dishevelled-protein activation of small GTPases. Wnt-Fzd effects vary with specific ligand/receptor interactions and associated downstream pathways. This paper reviews the biochemistry and physiology of the Wnt-Fzd complex, and presents current knowledge of Wnt signalling in cardiac remodelling processes such as hypertrophy and fibrosis, as well as disease states such as myocardial infarction (MI), heart failure and arrhythmias. Wnt signalling is activated during hypertrophy; inhibiting Wnt signalling by activating glycogen synthase kinase attenuates the hypertrophic response. Wnt signalling has complex and time-dependent actions post-MI, so that either beneficial or harmful effects might result from Wnt-directed interventions. Stem cell biology, a promising area for therapeutic intervention, is highly regulated by Wnt signalling. The Wnt system regulates fibroblast function, and is prominently altered in arrhythmogenic ventricular cardiomyopathy, a familial disease involving excess deposition of fibroadipose tissue. Wnt signalling controls connexin43 expression, thereby contributing to the regulation of cardiac electrical stability and arrhythmia generation. Although much has been learned about Wnt-Fzd signalling in hypertrophy and infarction, its role is poorly understood for a broad range of other heart disorders. Much more needs to be learned for its contributions to be fully appreciated, and to permit more effective exploitation of its enormous potential in therapeutic development.
Collapse
Affiliation(s)
- Kristin Dawson
- S. Nattel: 5000 Belanger St. E, Montreal, Quebec, Canada H1T 1C8.
| | | | | |
Collapse
|
7
|
Rai M, Walthall JM, Hu J, Hatzopoulos AK. Continuous antagonism by Dkk1 counter activates canonical Wnt signaling and promotes cardiomyocyte differentiation of embryonic stem cells. Stem Cells Dev 2011; 21:54-66. [PMID: 21861760 DOI: 10.1089/scd.2011.0326] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Embryonic stem (ES) cells give rise to mesodermal progenitors that differentiate to hematopoietic and cardiovascular cells. The wnt signaling pathway plays multiple roles in cardiovascular development through a network of intracellular effectors. To monitor global changes in wnt signaling during ES cell differentiation, we generated independent ES cell lines carrying the luciferase gene under promoters that uniquely respond to specific wnt pathway branches. Our results show that successive, mutually exclusive waves of noncanonical and canonical wnt signaling precede mesoderm differentiation. Blocking the initial noncanonical JNK/AP-1 signaling with SP60125 aborts cardiovascular differentiation and promotes hematopoiesis, whereas interference with the subsequent peak of canonical wnt signaling using Dkk1 has the opposite effect. Dkk1 blockade triggers counter mechanisms that lead to delayed and extended activation of canonical wnt signaling and mesoderm differentiation that appear to favor the cardiomyocytic lineage at the expense of hematopoietic cells. The cardiomyocytic yield can be further enhanced by overexpression of Wnt11 leading to approximately 95-fold enrichment in contracting cells. Our results suggest that the initial noncanonical wnt signaling is necessary for subsequent activation of canonical signaling and that the latter operates under a regulatory loop which responds to suppression with hyperactivation of compensatory mechanisms. This model provides new insights on wnt signaling during ES cell differentiation and points to a method to induce cardiomyocytic differentiation without precise timing of wnt signaling manipulation. Taking into account the heterogeneity of pluripotent cells, these findings might present an advantage to enhance the cardiogenic potential of stem cells.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Cell Differentiation
- Cell Line
- Embryonic Stem Cells/drug effects
- Embryonic Stem Cells/metabolism
- Embryonic Stem Cells/physiology
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Intercellular Signaling Peptides and Proteins/pharmacology
- Luciferases, Firefly/biosynthesis
- Luciferases, Firefly/genetics
- Mice
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Promoter Regions, Genetic
- Real-Time Polymerase Chain Reaction
- Transcriptional Activation
- Wnt Proteins/genetics
- Wnt Proteins/metabolism
- Wnt Signaling Pathway
Collapse
Affiliation(s)
- Meena Rai
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232-6300, USA
| | | | | | | |
Collapse
|
8
|
Xi J, Khalil M, Shishechian N, Hannes T, Pfannkuche K, Liang H, Fatima A, Haustein M, Suhr F, Bloch W, Reppel M, Sarić T, Wernig M, Jänisch R, Brockmeier K, Hescheler J, Pillekamp F. Comparison of contractile behavior of native murine ventricular tissue and cardiomyocytes derived from embryonic or induced pluripotent stem cells. FASEB J 2010; 24:2739-51. [PMID: 20371616 DOI: 10.1096/fj.09-145177] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cardiomyocytes generated from embryonic stem cells (ESCs) and induced pluripotent stem (iPS) cells are suggested for repopulation of destroyed myocardium. Because contractile properties are crucial for functional regeneration, we compared cardiomyocytes differentiated from ES cells (ESC-CMs) and iPS cells (iPS-CMs). Native myocardium served as control. Murine ESCs or iPS cells were differentiated 11 d in vitro and cocultured 5-7 d with irreversibly injured myocardial tissue slices. Vital embryonic ventricular tissue slices of similar age served for comparison. Force-frequency relationship (FFR), effects of Ca(2+), Ni(2+), nifedipine, ryanodine, beta-adrenergic, and muscarinic modulation were studied during loaded contractions. FFR was negative for ESC-CMs and iPS-CMs. FFR was positive for embryonic tissue and turned negative after treatment with ryanodine. In all groups, force of contraction and relaxation time increased with the concentration of Ca(2+) and decreased with nifedipine. Force was reduced by Ni(2+). Isoproterenol (1 microM) increased the force most pronounced in embryonic tissue (207+/-31%, n=7; ESC-CMs: 123+/-5%, n=4; iPS-CMs: 120+/-4%, n=8). EC(50) values were similar. Contractile properties of iPS-CMs and ESC-CMs were similar, but they were significantly different from ventricular tissue of comparable age. The results indicate immaturity of the sarcoplasmic reticulum and the beta-adrenergic response of iPS-CMs and ESC-CMs.
Collapse
Affiliation(s)
- Jiaoya Xi
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|