1
|
Muench MO, Fomin ME, Gutierrez AG, López-Terrada D, Gilfanova R, Nosworthy C, Beyer AI, Ostolaza G, Kats D, Matlock KL, Cairo S, Keller C. CD203c is expressed by human fetal hepatoblasts and distinguishes subsets of hepatoblastoma. Front Oncol 2023; 13:927852. [PMID: 36845728 PMCID: PMC9947649 DOI: 10.3389/fonc.2023.927852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Background & Aims Hepatocytic cells found during prenatal development have unique features compared to their adult counterparts, and are believed to be the precursors of pediatric hepatoblastoma. The cell-surface phenotype of hepatoblasts and hepatoblastoma cell lines was evaluated to discover new markers of these cells and gain insight into the development of hepatocytic cells and the phenotypes and origins of hepatoblastoma. Methods Human midgestation livers and four pediatric hepatoblastoma cell lines were screened using flow cytometry. Expression of over 300 antigens was evaluated on hepatoblasts defined by their expression of CD326 (EpCAM) and CD14. Also analyzed were hematopoietic cells, expressing CD45, and liver sinusoidal-endothelial cells (LSECs), expressing CD14 but lacking CD45 expression. Select antigens were further examined by fluorescence immunomicroscopy of fetal liver sections. Antigen expression was also confirmed on cultured cells by both methods. Gene expression analysis by liver cells, 6 hepatoblastoma cell lines, and hepatoblastoma cells was performed. Immunohistochemistry was used to evaluate CD203c, CD326, and cytokeratin-19 expression on three hepatoblastoma tumors. Results Antibody screening identified many cell surface markers commonly or divergently expressed by hematopoietic cells, LSECs, and hepatoblasts. Thirteen novel markers expressed on fetal hepatoblasts were identified including ectonucleotide pyrophosphatase/phosphodiesterase family member 3 (ENPP-3/CD203c), which was found to be expressed by hepatoblasts with widespread expression in the parenchyma of the fetal liver. In culture CD203c+CD326++ cells resembled hepatocytic cells with coexpression of albumin and cytokeratin-19 confirming a hepatoblast phenotype. CD203c expression declined rapidly in culture whereas the loss of CD326 was not as pronounced. CD203c and CD326 were co-expressed on a subset of hepatoblastoma cell lines and hepatoblastomas with an embryonal pattern. Conclusions CD203c is expressed on hepatoblasts and may play a role in purinergic signaling in the developing liver. Hepatoblastoma cell lines were found to consist of two broad phenotypes consisting of a cholangiocyte-like phenotype that expressed CD203c and CD326 and a hepatocyte-like phenotype with diminished expression of these markers. CD203c was expressed by some hepatoblastoma tumors and may represent a marker of a less differentiated embryonal component.
Collapse
Affiliation(s)
- Marcus O. Muench
- Vitalant Research Institute, San Francisco, CA, United States,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States,*Correspondence: Marcus O. Muench,
| | - Marina E. Fomin
- Vitalant Research Institute, San Francisco, CA, United States
| | | | - Dolores López-Terrada
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States,Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, TX, United States
| | | | | | - Ashley I. Beyer
- Vitalant Research Institute, San Francisco, CA, United States
| | | | - Dina Kats
- Pediatric Cancer Biology, Children’s Cancer Therapy Development Institute, Beaverton, OR, United States
| | | | - Stefano Cairo
- Research and Development Unit, XenTech, Evry, France
| | - Charles Keller
- Pediatric Cancer Biology, Children’s Cancer Therapy Development Institute, Beaverton, OR, United States
| |
Collapse
|
2
|
Muench MO, Nosworthy C. Antibody screening data of human midgestation liver cells with a focus on hematopoietic, liver sinusoidal endothelial, and hepatoblast cell-populations. BMC Res Notes 2022; 15:358. [PMID: 36474299 PMCID: PMC9724407 DOI: 10.1186/s13104-022-06229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/23/2022] [Accepted: 10/14/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Cell-surface antigen screening was performed on human fetal liver cells using flow cytometry. The goal was to provide proteomic expression data on a number of human fetal liver cell populations that can inform studies on developmental hepatology and hematology. DATA DESCRIPTION A 21 weeks' gestation liver was depleted of erythrocytes prior to antibody staining. Screening was performed using phycoerythrin-labelled antibodies against 332 antigens. In addition to these antibodies, all samples were stained for CD14, CD45, CD235a, and CD326 (epithelial cell adhesion molecule - EpCAM). Subpopulations of fetal liver cells were identified using the co-stained antigens. Hematopoietic cells were identified by their expression of CD45 and CD235a; non-hematopoietic cells were further subdivided based on CD14 and CD326 expression. CD326++CD14low hepatoblasts and CD14++ liver sinusoidal endothelial cells were analyzed for the frequency and intensity of antigen expression. Analyzed flow cytometry data are presented for the expression of the antigens on hematopoietic cells and on non-hematopoietic cells in the context of CD14 and CD326 expression.
Collapse
Affiliation(s)
- Marcus O. Muench
- Vitalant Research Institute, 360 Spear Street, Suite 200, 94105 San Francisco, CA USA
- Department of Laboratory Medicine, University of California, 94141 San Francisco, CA USA
| | - Christopher Nosworthy
- Vitalant Research Institute, 360 Spear Street, Suite 200, 94105 San Francisco, CA USA
| |
Collapse
|
3
|
Abstract
Aim of the study CD326 has been used as a single marker to enrich for hepatic stem cell populations in the liver. However, bile duct epithelium is also positive for CD326, which impedes the selection of pure hepatic stem cell populations. Some markers have been proposed to be co-expressed by hepatic stem cells but these have not been systematically compared. Therefore, we determined the percentages and compared the characteristics of human liver cells expressing potential stem cell surface markers. Material and methods We analyzed CD326 expression in human liver tissues from fetal, neonatal, pediatric, and adult stages using immunohistochemistry. In flow cytometry, we quantified fetal liver cells for their co-expression of CD326 with CD56, CD117, CD44, CD90, CD49f, LGR5 and SSEA4. We analyzed the various fractions for their quantitative expression of genes typically associated with progenitors and hepatic lineages. Results 12.5% of cells were positive for CD326; of these, 63.5% co-expressed CD44. The lowest co-expression percentages were for SSEA4 (2.1%) and LGR5 (0.7%). Fractions revealed distinct gene expression patterns. Of all combinations, cells that co-expressed surface CD326 and SSEA4 demonstrated the highest gene expression for the proliferation marker MKi67 and hepatic markers DLK1, AFP and ALB, and were the only fraction negative for the biliary epithelial marker KRT19. Histology of adult and fetal liver showed cells positive for CD326 and SSEA4 but negative for CK19. Conclusions CD326-positive cells represent a heterogeneous population, which in combination with SSEA4 potentially distinguishes bile duct epithelium from hepatic stem cells. These findings can help to further classify human hepatic progenitor stages.
Collapse
|
4
|
Abstract
Sleep deprivation has been reported to be a contributing factor for the epidemic of obesity. However, it is still largely unknown how sleep deprivation contributes to obesity at the transcriptional level. Here, we identified the significantly changed genes and pathways that may contribute to the sleep deprivation-induced obesity by analyzing two online datasets, including mouse obesity database and mouse sleep deprivation database. 298 differentially expressed genes (DEGs) were identified in high fat diet mice as compared to normal diet mice, while 541 DEGs were identified in mice with sleep deprivation when compared with mice with normal sleep. There are 12 common DEGs, such as Saa3 and Plin4, in both comparisons. And six of common DEGs were validated in other Gene Expression Omnibus (GEO) dataset. GO and KEGG pathway analyses revealed 19 common altered pathways, and most of them were metabolic processes, including steroid metabolic process, small molecule metabolic process and cholesterol metabolic process. Notably, we found that Aldoc, Cyp2b10, Nsdhl, Pcsk9, Saa3, Plin4 and Acss2 were involved in most of those altered pathways. Taken together, our study suggests that Saa3, Plin4, Aldoc, Cyp2b10, Nsdhl, Pcsk9 and Acss2 might be involved in sleep deprivation-induced obesity by regulating metabolic processes.
Collapse
Affiliation(s)
- YI WEI
- Nanjing Forest Police College, Nanjing 210023, P. R. China
| |
Collapse
|
5
|
Fomin ME, Beyer AI, Muench MO. Human fetal liver cultures support multiple cell lineages that can engraft immunodeficient mice. Open Biol 2018; 7:rsob.170108. [PMID: 29237808 PMCID: PMC5746544 DOI: 10.1098/rsob.170108] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/17/2017] [Indexed: 12/25/2022] Open
Abstract
During prenatal development the liver is composed of multiple cell types with unique properties compared to their adult counterparts. We aimed to establish multilineage cultures of human fetal liver cells that could maintain stem cell and progenitor populations found in the developing liver. An aim of this study was to test if maturation of fetal hepatocytes in short-term cultures supported by epidermal growth factor and oncostatin M can improve their ability to engraft immunodeficient mice. Fetal liver cultures supported a mixture of albumin+ cytokertin-19+ hepatoblasts, hepatocytes, cholangiocytes, CD14++CD32+ liver sinusoidal endothelial cells (LSECs) and CD34+CD133+ haematopoietic stem cells. Transplantation of cultured cells into uPA-NOG or TK-NOG mice yielded long-term engraftment of hepatocytes, abundant LSEC engraftment and multilineage haematopoiesis. Haematopoietic engraftment included reconstitution of B-, T- and NK-lymphocytes. Colonies of polarized human hepatocytes were observed surrounded by human LSECs in contact with human CD45+ blood cells in the liver sinusoids. Thus, fetal liver cultures support multiple cell lineages including LSECs and haematopoietic stem cells while also promoting the ability of fetal hepatocytes to engraft adult mouse livers. Fetal liver cultures and liver-humanized mice created from these cultures can provide useful model systems to study liver development, function and disease.
Collapse
Affiliation(s)
- Marina E Fomin
- Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, CA, USA
| | - Ashley I Beyer
- Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, CA, USA
| | - Marcus O Muench
- Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, CA, USA .,Liver Center and Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
6
|
Fomin ME, Beyer AI, Publicover J, Lu K, Bakkour S, Simmons G, Muench MO. Higher Serum Alanine Transaminase Levels in Male Urokinase-Type Plasminogen Activator-Transgenic Mice Are Associated With Improved Engraftment of Hepatocytes but not Liver Sinusoidal Endothelial Cells. CELL MEDICINE 2016; 9:117-125. [PMID: 28713641 DOI: 10.3727/215517916x693375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of sex on the degree of liver damage and human cell engraftment were investigated in immunodeficient urokinase-type plasminogen activator-transgenic (uPA-NOG) mice. Liver damage, measured by serum alanine transaminase (ALT) levels, was compared in male and female uPA-NOG mice of different ages. Male mice had significantly higher ALT levels than females with a median of 334 versus 158 U/L in transgenic homozygous mice, respectively. Mice were transplanted with human adult hepatocytes or fetal liver cells and analyzed for any correlation of engraftment of hepatocytes, liver sinusoidal endothelial cells (LSECs), and hematopoietic cells with the degree of liver damage. Hepatocyte engraftment was measured by human albumin levels in the mouse serum. Higher ALT levels correlated with higher hepatocyte engraftment, resulting in albumin levels in male mice that were 9.6 times higher than in females. LSEC and hematopoietic cell engraftment were measured by flow cytometric analysis of the mouse liver and bone marrow. LSEC and hematopoietic engraftment did not differ between male and female transplant recipients. Thus, the sex of uPA-NOG mice affects the degree of liver damage, which is reflected in the levels of human hepatocyte engraftment. However, the high levels of LSEC engraftment observed in uPA-NOG mice are not further improved among male mice, suggesting that a lower threshold of liver damage is sufficient to enhance endothelial cell engraftment. Previously described sex differences in human hematopoietic stem cell engraftment in immunodeficient mice were not observed in this model.
Collapse
Affiliation(s)
- Marina E Fomin
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Ashley I Beyer
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Jean Publicover
- †Department of Medicine, University of California, San Francisco, CA, USA
| | - Kai Lu
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Sonia Bakkour
- Blood Systems Research Institute, San Francisco, CA, USA
| | - Graham Simmons
- Blood Systems Research Institute, San Francisco, CA, USA.,‡Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Marcus O Muench
- Blood Systems Research Institute, San Francisco, CA, USA.,‡Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
7
|
Wei Y, Fang J, Cai S, Lv C, Zhang S, Hua J. Primordial germ cell-like cells derived from canine adipose mesenchymal stem cells. Cell Prolif 2016; 49:503-11. [PMID: 27374854 PMCID: PMC6496567 DOI: 10.1111/cpr.12271] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/30/2016] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Previous studies have shown that adipose mesenchymal stem cells (AMSCs) share the potency of typical bone marrow mesenchymal stem cells (MSCs); however, there is little information concerning characteristics of canine AMSCs (CAMSCs); it has not previously been made clear whether CAMSCs would be able to differentiate into other cell types. MATERIALS AND METHODS In this study, typical AMSC lines were established, and their characteristics including morphology, typical markers and differentiation potentiality were tested. RESULTS The cells exhibited typical MSC morphology and were positive for CD90, CD44 and CD166, considered to be MSCs surface markers. They were negative for CD34 and CD45. The CAMSCs also exhibited embryonic stem cell (ESC) markers, including Oct4 and Sox2, at passage 2. In an appropriate microenvironment, CAMSCs differentiated into EBs and were able to produce cells of the three germ layers. These results indicate that established cells were putative adipocyte-derived MSCs, which also displayed properties of ESCs. Moreover, when the CAMSCs were induced by bone morphogenetic protein 4 (BMP4), they differentiated into PGC-like cells (PGCLCs) and male germ-like cells, which were positive for PR domain-containing 1 (Prdm1), PR domain-containing 14 (Prdm14), doublesex and mab-3 related transcription factor (Dmrt1), as well as for promyelocytic leukaemia zinc finger (Plzf). Quantitative real-time PCR (qRT-PCR) and western blotting analysis verified higher expression levels of these markers. CONCLUSION This study provides an efficient approach to study germ cell development using CAMSCs.
Collapse
Affiliation(s)
- Yudong Wei
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYangling Shaanxi 712100China
| | - Jia Fang
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYangling Shaanxi 712100China
| | - Shufang Cai
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYangling Shaanxi 712100China
| | - Changrong Lv
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYangling Shaanxi 712100China
| | - Shiqiang Zhang
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYangling Shaanxi 712100China
| | - Jinlian Hua
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYangling Shaanxi 712100China
| |
Collapse
|
8
|
Zhang H, Siegel CT, Shuai L, Lai J, Zeng L, Zhang Y, Lai X, Bie P, Bai L. Repair of liver mediated by adult mouse liver neuro-glia antigen 2-positive progenitor cell transplantation in a mouse model of cirrhosis. Sci Rep 2016; 6:21783. [PMID: 26905303 PMCID: PMC4764864 DOI: 10.1038/srep21783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/01/2016] [Indexed: 02/07/2023] Open
Abstract
NG2-expressing cells are a population of periportal vascular stem/progenitors (MLpvNG2(+) cells) that were isolated from healthy adult mouse liver by using a "Percoll-Plate-Wait" procedure. We demonstrated that isolated cells are able to restore liver function after transplantation into a cirrhotic liver, and co-localized with the pericyte marker (immunohistochemistry: PDGFR-β) and CK19. Cells were positive for: stem cell (Sca-1, CD133, Dlk) and liver stem cell markers (EpCAM, CD14, CD24, CD49f); and negative for: hematopoietic (CD34, CD45) and endothelial markers (CD31, vWf, von Willebrand factor). Cells were transplanted (1 × 10(6) cells) in mice with diethylnitrosamine-induced cirrhosis at week 6. Cells showed increased hepatic associated gene expression of alpha-fetoprotein (AFP), Albumin (Alb), Glucose-6-phosphatase (G6Pc), SRY (sex determining region Y)-box 9 (Sox9), hepatic nuclear factors (HNF1a, HNF1β, HNF3β, HNF4α, HNF6, Epithelial cell adhesion molecule (EpCAM), Leucine-rich repeated-containing G-protein coupled receptor 5-positive (Lgr5) and Tyrosine aminotransferase (TAT). Cells showed decreased fibrogenesis, hepatic stellate cell infiltration, Kupffer cells and inflammatory cytokines. Liver function markers improved. In a cirrhotic liver environment, cells could differentiate into hepatic lineages. In addition, grafted MLpvNG2(+) cells could mobilize endogenous stem/progenitors to participate in liver repair. These results suggest that MLpvNG2(+) cells may be novel adult liver progenitors that participate in liver regeneration.
Collapse
Affiliation(s)
- Hongyu Zhang
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Christopher T. Siegel
- Department of Surgery, Division of Hepatobiliary and Abdominal Organ Transplantation, Case Western Reserve University Hospital, Cleveland OH 44106, USA
| | - Ling Shuai
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Jiejuan Lai
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Linli Zeng
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Yujun Zhang
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Xiangdong Lai
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Ping Bie
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| | - Lianhua Bai
- Hepatobiliary Institute, Southwestern Hospital, No. 30 Gaotanyan, ShapingBa Distract, Chongqing 400038, China
| |
Collapse
|
9
|
Tsuruya K, Chikada H, Ida K, Anzai K, Kagawa T, Inagaki Y, Mine T, Kamiya A. A Paracrine Mechanism Accelerating Expansion of Human Induced Pluripotent Stem Cell-Derived Hepatic Progenitor-Like Cells. Stem Cells Dev 2015; 24:1691-702. [PMID: 25808356 DOI: 10.1089/scd.2014.0479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hepatic stem/progenitor cells in liver development have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In this study, we focused on the cell surface molecules of human induced pluripotent stem (iPS) cell-derived hepatic progenitor-like cells (HPCs) and analyzed how these molecules modulate expansion of these cells. Human iPS cells were differentiated into immature hepatic lineage cells by cytokines. In addition to hepatic progenitor markers (CD13 and CD133), the cells were coimmunostained for various cell surface markers (116 types). The cells were analyzed by flow cytometry and in vitro colony formation culture with feeder cells. Twenty types of cell surface molecules were highly expressed in CD13(+)CD133(+) cells derived from human iPS cells. Of these molecules, CD221 (insulin-like growth factor receptor), which was expressed in CD13(+)CD133(+) cells, was quickly downregulated after in vitro expansion. The proliferative ability was suppressed by a neutralizing antibody and specific inhibitor of CD221. Overexpression of CD221 increased colony-forming ability. We also found that inhibition of CD340 (erbB2) and CD266 (fibroblast growth factor-inducible 14) signals suppressed proliferation. In addition, both insulin-like growth factor (a ligand of CD221) and tumor necrosis factor-like weak inducer of apoptosis (a ligand of CD266) were provided by feeder cells in our culture system. This study revealed the expression profiles of cell surface molecules in human iPS cell-derived HPCs and that the paracrine interactions between HPCs and other cells through specific receptors are important for proliferation.
Collapse
Affiliation(s)
- Kota Tsuruya
- 1 Laboratory of Stem Cell Therapy, Institute of Innovative Science and Technology, Tokai University , Isehara, Japan .,2 Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Tokai University , Isehara, Japan
| | - Hiromi Chikada
- 1 Laboratory of Stem Cell Therapy, Institute of Innovative Science and Technology, Tokai University , Isehara, Japan
| | - Kinuyo Ida
- 1 Laboratory of Stem Cell Therapy, Institute of Innovative Science and Technology, Tokai University , Isehara, Japan
| | - Kazuya Anzai
- 1 Laboratory of Stem Cell Therapy, Institute of Innovative Science and Technology, Tokai University , Isehara, Japan .,2 Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Tokai University , Isehara, Japan
| | - Tatehiro Kagawa
- 2 Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Tokai University , Isehara, Japan
| | - Yutaka Inagaki
- 3 Department of Regenerative Medicine, School of Medicine and Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University , Isehara, Japan
| | - Tetsuya Mine
- 2 Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Tokai University , Isehara, Japan
| | - Akihide Kamiya
- 1 Laboratory of Stem Cell Therapy, Institute of Innovative Science and Technology, Tokai University , Isehara, Japan
| |
Collapse
|
10
|
Muench MO, Beyer AI, Fomin ME, Thakker R, Mulvaney US, Nakamura M, Suemizu H, Bárcena A. The adult livers of immunodeficient mice support human hematopoiesis: evidence for a hepatic mast cell population that develops early in human ontogeny. PLoS One 2014; 9:e97312. [PMID: 24819392 PMCID: PMC4018295 DOI: 10.1371/journal.pone.0097312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 04/18/2014] [Indexed: 11/19/2022] Open
Abstract
The liver plays a vital role in hematopoiesis during mammalian prenatal development but its hematopoietic output declines during the perinatal period. Nonetheless, hepatic hematopoiesis is believed to persist into adulthood. We sought to model human adult-liver hematopoiesis by transplantation of fetal and neonatal hematopoietic stem cells (HSCs) into adult immunodeficient mice. Livers were found to be engrafted with human cells consisting primarily of monocytes and B-cells with lesser contributions by erythrocytes, T-cells, NK-cells and mast-cells. A resident population of CD117(++)CD203c(+) mast cells was also documented in human midgestation liver, indicating that these cells comprise part of the liver's resident immune cell repertoire throughout human ontogeny. The murine liver was shown to support human multilineage hematopoiesis up to 321 days after transplant. Evidence of murine hepatic hematopoiesis was also found in common mouse strains as old as 2 years. Human HSC engraftment of the murine liver was demonstrated by detection of high proliferative-potential colony-forming cells in clonal cultures, observation of CD38-CD34(++) and CD133(+)CD34(++) cells by flow cytometry, and hematopoietic reconstitution of secondary transplant recipients of chimeric liver cells. Additionally, chimeric mice with both hematopoietic and endothelial reconstitution were generated by intrasplenic injection of immunodeficient mice with liver specific expression of the urokinase-type plasminogen activator (uPA) transgene. In conclusion, the murine liver is shown to be a hematopoietic organ throughout adult life that can also support human hematopoiesis in severely immunodeficient strains. Further humanization of the murine liver can be achieved in mice harboring an uPA transgene, which support engraftment of non-hematopoietic cells types. Thus, offering a model system to study the interaction of diverse human liver cell types that regulate hematopoiesis and immune function in the liver.
Collapse
Affiliation(s)
- Marcus O. Muench
- Blood Systems Research Institute, San Francisco, California, United States of America
- Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
- Liver Center, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| | - Ashley I. Beyer
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Marina E. Fomin
- Blood Systems Research Institute, San Francisco, California, United States of America
- Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Rahul Thakker
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Usha S. Mulvaney
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Masato Nakamura
- Biomedical Research Department, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Hiroshi Suemizu
- Biomedical Research Department, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Alicia Bárcena
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Obstetrics, Gynecology and Reproductive Sciences, Institute for Regeneration Medicine, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
11
|
Fomin ME, Zhou Y, Beyer AI, Publicover J, Baron JL, Muench MO. Production of factor VIII by human liver sinusoidal endothelial cells transplanted in immunodeficient uPA mice. PLoS One 2013; 8:e77255. [PMID: 24167566 PMCID: PMC3805584 DOI: 10.1371/journal.pone.0077255] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 09/02/2013] [Indexed: 12/23/2022] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) form a semi-permeable barrier between parenchymal hepatocytes and the blood. LSECs participate in liver metabolism, clearance of pathological agents, immunological responses, architectural maintenance of the liver and synthesis of growth factors and cytokines. LSECs also play an important role in coagulation through the synthesis of Factor VIII (FVIII). Herein, we phenotypically define human LSECs isolated from fetal liver using flow cytometry and immunofluorescence microscopy. Isolated LSECs were cultured and shown to express endothelial markers and markers specific for the LSEC lineage. LSECs were also shown to engraft the liver when human fetal liver cells were transplanted into immunodeficient mice with liver specific expression of the urokinase-type plasminogen activator (uPA) transgene (uPA-NOG mice). Engrafted cells expressed human Factor VIII at levels approaching those found in human plasma. We also demonstrate engraftment of adult LSECs, as well as hepatocytes, transplanted into uPA-NOG mice. We propose that overexpression of uPA provides beneficial conditions for LSEC engraftment due to elevated expression of the angiogenic cytokine, vascular endothelial growth factor. This work provides a detailed characterization of human midgestation LSECs, thereby providing the means for their purification and culture based on their expression of CD14 and CD32 as well as a lack of CD45 expression. The uPA-NOG mouse is shown to be a permissive host for human LSECs and adult hepatocytes, but not fetal hepatoblasts. Thus, these mice provide a useful model system to study these cell types in vivo. Demonstration of human FVIII production by transplanted LSECs encourages further pursuit of LSEC transplantation as a cellular therapy for the treatment of hemophilia A.
Collapse
Affiliation(s)
- Marina E. Fomin
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Yanchen Zhou
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Ashley I. Beyer
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Jean Publicover
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Liver Center, University of California San Francisco, San Francisco, California, United States of America
| | - Jody L. Baron
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Liver Center, University of California San Francisco, San Francisco, California, United States of America
| | - Marcus O. Muench
- Blood Systems Research Institute, San Francisco, California, United States of America
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
- Liver Center, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Filoviruses utilize glycosaminoglycans for their attachment to target cells. J Virol 2013; 87:3295-304. [PMID: 23302881 DOI: 10.1128/jvi.01621-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Filoviruses are the cause of severe hemorrhagic fever in human and nonhuman primates. The envelope glycoprotein (GP), responsible for both receptor binding and fusion of the virus envelope with the host cell membrane, has been demonstrated to interact with multiple molecules in order to enhance entry into host cells. Here we have demonstrated that filoviruses utilize glycosaminoglycans, and more specifically heparan sulfate proteoglycans, for their attachment to host cells. This interaction is mediated by GP and does not require the presence of the mucin domain. Both the degree of sulfation and the structure of the carbohydrate backbone play a role in the interaction with filovirus GPs. This new step of filovirus interaction with host cells can potentially be a new target for antiviral strategies. As such, we were able to inhibit filovirus GP-mediated infection using carrageenan, a broad-spectrum microbicide that mimics heparin, and also using the antiviral dendrimeric peptide SB105-A10, which interacts with heparan sulfate, antagonizing the binding of the virus to cells.
Collapse
|
13
|
Human liver cells expressing albumin and mesenchymal characteristics give rise to insulin-producing cells. J Transplant 2011; 2011:252387. [PMID: 21876779 PMCID: PMC3163017 DOI: 10.1155/2011/252387] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/05/2011] [Indexed: 01/28/2023] Open
Abstract
Activation of the pancreatic lineage in the liver has been suggested as a potential autologous cell replacement therapy for diabetic patients. Transcription factors-induced liver-to-pancreas reprogramming has been demonstrated in numerous species both in vivo and in vitro. However, human-derived liver cells capable of acquiring the alternate pancreatic repertoire have never been characterized. It is yet unknown whether hepatic-like stem cells or rather adult liver cells give rise to insulin-producing cells. Using an in vitro experimental system, we demonstrate that proliferating adherent human liver cells acquire mesenchymal-like characteristics and a considerable level of cellular plasticity. However, using a lineage-tracing approach, we demonstrate that insulin-producing cells are primarily generated in cells enriched for adult hepatic markers that coexpress both albumin and mesenchymal markers. Taken together, our data suggest that adult human hepatic tissue retains a substantial level of developmental plasticity, which could be exploited in regenerative medicine approaches.
Collapse
|