1
|
Nilay Tutak F, Annaç E. The effect of mesenchymal stem cells lyophilisate femoral artery of rat anastomosis: A histopathological and histomorphometric study. Ann Med Surg (Lond) 2021; 70:102861. [PMID: 34691418 PMCID: PMC8519752 DOI: 10.1016/j.amsu.2021.102861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/11/2021] [Accepted: 09/11/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Mesenchymal Stem Cells (MSCs) are well known for their tissue regeneration enhancing effect and their contribution to immune regulation. However, their contribution to the healing process of femoral artery anastomosis, especially to endothelialization, has not been studied sufficiently in the clinic. This study was carried out to evaluate the effects of MSC-lyophilisate from the human umbilical cord on anastomosis experimental study in rats histopathologically. METHOD After intraperitoneal anesthesia was applied to the rats, the femoral artery was exposed with a 2 cm incision in the right femoral region. After the artery was cut in the experiment and sham groups, femoral artery end-to-end anastomosis was performed using the primary suture technique. MSC-lyophilisate was poured in powder form onto the anastomosed outer surface of the vessel in the treatment group and saline solution was poured to the sham group. No intervention was made to the control group. The data analysis was performed with IBM SPSS Statistics 25. RESULTS In the experiment group, flattening of the inner elastic lamina, morphological changes and vacuolization in the muscle fibers, inflammation in the adventitia and significant vascular wall thickening were observed in the femoral arteries of the rats after the intervention. According to the histopathological scoring results, tissue samples belonging to sham and experimental groups showed marked pathological findings such as endothelial damage, flattened areas where the folded structure in the inner elastic lamina disappeared, muscle fiber degeneration and inflammation in the adventitia. CONCLUSION Human umbilical cord-origin MSC-lyophilisate application holds an important place in femoral artery surgery. We evaluate that it will be meaningful to determine the MSC-lyophilisate dose for hemostasis without creating thrombus after anastomosis. MSC-lyophilisate will be used to provide hemostasis in areas with local bleeding in the future. In addition, it is recommended to make plans for an in-depth examination of possible problems and cases in future studies.
Collapse
Affiliation(s)
- Fatma Nilay Tutak
- Adiyaman University, School of Medicine, Department of Plastic, Reconstructive and Aesthetic Surgery, Turkey
| | - Ebru Annaç
- Adiyaman University, School of Medicine, Department of Histology and Embriyology, Adiyaman, Turkey
| |
Collapse
|
2
|
Tonazzini I, Masciullo C, Savi E, Sonato A, Romanato F, Cecchini M. Neuronal contact guidance and YAP signaling on ultra-small nanogratings. Sci Rep 2020; 10:3742. [PMID: 32111918 PMCID: PMC7048778 DOI: 10.1038/s41598-020-60745-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 02/03/2020] [Indexed: 01/09/2023] Open
Abstract
Contact interaction of neuronal cells with extracellular nanometric features can be exploited to investigate and modulate cellular responses. By exploiting nanogratings (NGs) with linewidth from 500 nm down to 100 nm, we here study neurite contact guidance along ultra-small directional topographies. The impact of NG lateral dimension on the neuronal morphotype, neurite alignment, focal adhesion (FA) development and YAP activation is investigated in nerve growth factor (NGF)-differentiating PC12 cells and in primary hippocampal neurons, by confocal and live-cell total internal reflection fluorescence (TIRF) microscopy, and at molecular level. We demonstrate that loss of neurite guidance occurs in NGs with periodicity below 400 nm and correlates with a loss of FA lateral constriction and spatial organization. We found that YAP intracellular localization is modulated by the presence of NGs, but it is not sensitive to their periodicity. Nocodazole, a drug that can increase cell contractility, is finally tested for rescuing neurite alignment showing mild ameliorative effects. Our results provide new indications for a rational design of biocompatible scaffolds for enhancing nerve-regeneration processes.
Collapse
Affiliation(s)
- Ilaria Tonazzini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, 56127, Italy
| | - Cecilia Masciullo
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, 56127, Italy
| | - Eleonora Savi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, 56127, Italy
| | - Agnese Sonato
- CNR-IOM, Area Science Park, S.S. 14, km 163.5, Basovizza, TS, Italy
| | - Filippo Romanato
- CNR-IOM, Area Science Park, S.S. 14, km 163.5, Basovizza, TS, Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, 56127, Italy.
| |
Collapse
|
3
|
Lecithin-based deferoxamine nanoparticles accelerated cutaneous wound healing in diabetic rats. Eur J Pharmacol 2019; 858:172478. [PMID: 31228457 DOI: 10.1016/j.ejphar.2019.172478] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
Abstract
Nanoparticles have higher frequency of being exposed to cells or tissue, and are thus more likely to gain access into cytoplasm or nuclei to modulate molecular events due to significantly larger surface area to volume ratio. As a result, they present amplified response or even different physiochemical and biomedical properties from bigger particles. Deferoxamine accelerates wound healing in diabetic rats by increased neovascularization, reduced inflammation and improved maturation of wound. We investigated the wound healing potential of deferoxamine-nanoparticles in diabetic rats. Lecithin based nanoparticles of deferoxamine were prepared and characterized. The diabetic rats were divided into five Groups, of which Group I was treated with pluronic-gel f-127 (25%), Group II with deferoxamine 0.1% and Group III, IV and V were treated with deferoxamine-nanoparticles incorporated in pluronic-gel f-127 25% at 0.03% (0.01% deferoxamine), 0.1% (0.03% deferoxamine) and 0.3% (0.1% deferoxamine) w/v respectively. The wound closure was significantly accelerated in group V as compared to control groups. HIF-1α, VEGF, SDF-1α, TGF-β1, and IL-10 protein levels were significantly higher in group V. The collagen deposition and neovascularization was greater in deferoxamine-nanoparticle treated rats. In contrast, TNF-α level was lowest in group V. In summary, the deferoxamine-nanoparticle formulation we developed, when applied topically on diabetic wounds results in faster wound healing as compared to simple deferoxamine formulation. This formulation may prove to be an effective therapy for treatment of diabetic wounds.
Collapse
|
4
|
Greco G, Agostini M, Tonazzini I, Sallemi D, Barone S, Cecchini M. Surface-Acoustic-Wave (SAW)-Driven Device for Dynamic Cell Cultures. Anal Chem 2018; 90:7450-7457. [PMID: 29791795 DOI: 10.1021/acs.analchem.8b00972] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the last few decades, new types of cell cultures have been introduced to provide better cell survival and development, with micro- and nanoenvironmental physicochemical conditions aimed at mimicking those present in vivo. However, despite the efforts made, the systems available to date are often difficult to replicate and use. Here, an easy-to-use surface-acoustic-wave (SAW)-based platform is presented for realizing dynamic cell cultures that is compatible with standard optical microscopes, incubators, and cell-culture dishes. The SAW chip is coupled to a standard Petri dish via a polydimethylsiloxane (PDMS) disc and consists of a lithium niobate (LN) substrate on which gold interdigital transducers (IDTs) are patterned to generate the SAWs and induce acoustic streaming in the dish. SAW excitation is verified and characterized by laser Doppler vibrometry, and the fluid dynamics is studied by microparticle image velocimetry (μPIV). Heating is measured by an infrared (IR) thermal camera. We finally tested this device with the U-937 monocyte cell line for viability and proliferation and cell-morphological analysis. The data demonstrate that it is possible to induce significant fluid recirculation within the Petri dish while maintaining negligible heating. Remarkably, cell proliferation in this condition was enhanced by 36 ± 12% with respect to those of standard static cultures. Finally, we show that cell death does not increase and that cell morphology is not altered in the presence of SAWs. This device is the first demonstration that SAW-induced streaming can mechanically improve cell proliferation and further supports the great versatility and biocompatibility of the SAW technology for cell manipulation.
Collapse
Affiliation(s)
- Gina Greco
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore , Piazza San Silvestro 12 , 56127 Pisa , Italy
| | - Matteo Agostini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore , Piazza San Silvestro 12 , 56127 Pisa , Italy.,Center for Nanotechnology Innovation@NEST , Istituto Italiano di Tecnologia , Piazza San Silvestro 12 , 56127 Pisa , Italy
| | - Ilaria Tonazzini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore , Piazza San Silvestro 12 , 56127 Pisa , Italy
| | - Damiano Sallemi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore , Piazza San Silvestro 12 , 56127 Pisa , Italy
| | - Stefano Barone
- Centro Procreazione Assistita-Ospedale Versilia-USL Toscana Nordovest , 55043 Viareggio , Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore , Piazza San Silvestro 12 , 56127 Pisa , Italy
| |
Collapse
|
5
|
Dell'Anna R, Masciullo C, Iacob E, Barozzi M, Giubertoni D, Böttger R, Cecchini M, Pepponi G. Multiscale structured germanium nanoripples as templates for bioactive surfaces. RSC Adv 2017. [DOI: 10.1039/c6ra28531g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel two-step transfer process, that produces by nanoimprinting lithography biocompatible polymeric nanowired ripples, starting from germanium surfaces nanopatterned by irradiating gold ions.
Collapse
Affiliation(s)
- Rossana Dell'Anna
- Fondazione Bruno Kessler
- Centre for Materials and Microsystems
- Micro Nano Facility
- 38123 Trento
- Italy
| | - Cecilia Masciullo
- NEST
- Scuola Normale Superiore and Istituto Nanoscienze-CNR
- 56127 Pisa
- Italy
| | - Erica Iacob
- Fondazione Bruno Kessler
- Centre for Materials and Microsystems
- Micro Nano Facility
- 38123 Trento
- Italy
| | - Mario Barozzi
- Fondazione Bruno Kessler
- Centre for Materials and Microsystems
- Micro Nano Facility
- 38123 Trento
- Italy
| | - Damiano Giubertoni
- Fondazione Bruno Kessler
- Centre for Materials and Microsystems
- Micro Nano Facility
- 38123 Trento
- Italy
| | - Roman Böttger
- Helmholtz-Zentrum Dresden-Rossendorf
- Institute of Ion Beam Physics and Materials Research
- 01328 Dresden
- Germany
| | - Marco Cecchini
- NEST
- Scuola Normale Superiore and Istituto Nanoscienze-CNR
- 56127 Pisa
- Italy
| | - Giancarlo Pepponi
- Fondazione Bruno Kessler
- Centre for Materials and Microsystems
- Micro Nano Facility
- 38123 Trento
- Italy
| |
Collapse
|
6
|
Tonazzini I, Meucci S, Van Woerden GM, Elgersma Y, Cecchini M. Impaired Neurite Contact Guidance in Ubiquitin Ligase E3a (Ube3a)-Deficient Hippocampal Neurons on Nanostructured Substrates. Adv Healthc Mater 2016; 5:850-62. [PMID: 26845073 DOI: 10.1002/adhm.201500815] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/09/2015] [Indexed: 12/21/2022]
Abstract
Recent discoveries indicate that during neuronal development the signaling processes that regulate extracellular sensing (e.g., adhesion, cytoskeletal dynamics) are important targets for ubiquitination-dependent regulation, in particular through E3 ubiquitin ligases. Among these, Ubiquitin E3a ligase (UBE3A) has a key role in brain functioning, but its function and how its deficiency results in the neurodevelopmental disorder Angelman syndrome is still unclear. Here, the role of UBE3A is investigated in neurite contact guidance during neuronal development, in vitro. The microtopography sensing of wild-type and Ube3a-deficient hippocampal neurons is studied by exploiting gratings with different topographical characteristics, with the aim to compare their capabilities to read and follow physical directional stimuli. It is shown that neuronal contact guidance is defective in Ube3a-deficient neurons, and this behavior is linked to an impaired activation of the focal adhesion signaling pathway. Taken together, the results suggest that the neuronal contact sensing machinery might be affected in Angelman syndrome.
Collapse
Affiliation(s)
- I. Tonazzini
- NEST; Istituto Nanoscienze-CNR and Scuola Normale Superiore; Piazza San Silvestro 12 56127 Pisa Italy
- Fondazione Umberto Veronesi; Piazza Velasca 5 20122 Milano Italy
| | - S. Meucci
- NEST; Istituto Nanoscienze-CNR and Scuola Normale Superiore; Piazza San Silvestro 12 56127 Pisa Italy
| | - G. M. Van Woerden
- Department of Neuroscience; ENCORE Expertise Center for Neurodevelopmental Disorders; Erasmus MC, Wytemaweg 80 3000 CA Rotterdam The Netherlands
| | - Y. Elgersma
- Department of Neuroscience; ENCORE Expertise Center for Neurodevelopmental Disorders; Erasmus MC, Wytemaweg 80 3000 CA Rotterdam The Netherlands
| | - M. Cecchini
- NEST; Istituto Nanoscienze-CNR and Scuola Normale Superiore; Piazza San Silvestro 12 56127 Pisa Italy
| |
Collapse
|
7
|
Tonazzini I, Jacchetti E, Meucci S, Beltram F, Cecchini M. Schwann Cell Contact Guidance versus Boundary -Interaction in Functional Wound Healing along Nano and Microstructured Membranes. Adv Healthc Mater 2015; 4:1849-60. [PMID: 26097140 DOI: 10.1002/adhm.201500268] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/27/2015] [Indexed: 01/09/2023]
Abstract
Peripheral nerve transection is often encountered after trauma and can lead to long-term/permanent loss of sensor/motor functionality. Here, the effect of pure contact interaction of nano/microgrooved substrates on Schwann cells (SCs) is studied in view of their possible use for nerve-repair applications. Elastomeric gratings (GRs; i.e., alternating lines of ridges and grooves) are developed with different lateral periods (1-20 μm) and depths (0.3-2.5 μm), leading to two distinct cell-material interaction regimes: contact guidance (grating period < cell body diameter) and boundary guidance (grating period ≥ cell body diameter). Here, it is shown that boundary guidance leads to the best single-cell polarization, actin organization, and single-cell directional migration. Remarkably, contact guidance is instead more effective in driving collective SC migration and improves functional wound healing. It is also demonstrated that this behavior is linked to the properties of the SC monolayers on different GRs. SCs on large-period GRs are characterized by N-Cadherin downregulation and enhanced single-cell scattering into the wound with respect to SCs on small-period GRs, indicating a less compact monolayer characterized by looser cell-cell junctions in the boundary guidance regime. The present results provide information on the impact of specific sub-micrometer topographical elements on SC functional response, which can be exploited for nerve-regeneration applications.
Collapse
Affiliation(s)
- Ilaria Tonazzini
- NEST, Scuola Normale Superiore; Piazza San Silvestro 12 Pisa 56127 Italy
- NEST, Istituto Nanoscienze-CNR; Piazza San Silvestro 12 Pisa 56127 Italy
- Fondazione Umberto Veronesi; Piazza Velasca 5 Milano 20122 Italy
| | - Emanuela Jacchetti
- NEST, Scuola Normale Superiore; Piazza San Silvestro 12 Pisa 56127 Italy
- NEST, Istituto Nanoscienze-CNR; Piazza San Silvestro 12 Pisa 56127 Italy
| | - Sandro Meucci
- NEST, Scuola Normale Superiore; Piazza San Silvestro 12 Pisa 56127 Italy
- NEST, Istituto Nanoscienze-CNR; Piazza San Silvestro 12 Pisa 56127 Italy
| | - Fabio Beltram
- NEST, Scuola Normale Superiore; Piazza San Silvestro 12 Pisa 56127 Italy
- NEST, Istituto Nanoscienze-CNR; Piazza San Silvestro 12 Pisa 56127 Italy
| | - Marco Cecchini
- NEST, Scuola Normale Superiore; Piazza San Silvestro 12 Pisa 56127 Italy
- NEST, Istituto Nanoscienze-CNR; Piazza San Silvestro 12 Pisa 56127 Italy
| |
Collapse
|
8
|
Nassiri SM, Rahbarghazi R. Interactions of Mesenchymal Stem Cells with Endothelial Cells. Stem Cells Dev 2014; 23:319-32. [DOI: 10.1089/scd.2013.0419] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Seyed Mahdi Nassiri
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Rahbarghazi
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Hashish NM, Badway HS, Abdelmoty HI, Mowafy A, Youssef MAFM. Does flushing the endometrial cavity with follicular fluid after oocyte retrieval affect pregnancy rates in subfertile women undergoing intracytoplasmic sperm injection? A randomized controlled trial. Eur J Obstet Gynecol Reprod Biol 2014; 176:153-7. [PMID: 24630572 DOI: 10.1016/j.ejogrb.2014.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/26/2013] [Accepted: 02/02/2014] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Follicular fluid of mature oocytes is rich in growth factors and cytokines that may exert paracrine and autocrine effects on implantation. The aim of this study was to investigate if flushing the endometrial cavity with follicular fluid after oocyte retrieval improved pregnancy rates in subfertile women undergoing intracytoplasmic sperm injection (ICSI). STUDY DESIGN One hundred subfertile women undergoing ICSI between April 2012 and September 2012 at the centre for reproductive medicine, Cairo University, Egypt were enrolled in this open label, parallel randomized controlled study. Patients were randomized into two groups at the start of treatment using a computer-generated programme and sealed opaque envelopes: the follicular fluid group (n=50) and the control group (n=50). Inclusion criteria were: age 20-38 years; basal follicle-stimulating hormone <10mIU/ml; body mass index <35kg/m(2); and ostradiol >1000pg/ml and <4000pg/ml on the day of human chorionic gonadotrophin administration. Exclusion criteria were: evidence of endometriosis; uterine myoma; hydrosalpinges; endocrinological disorders; history of implantation failure in previous in-vitro fertilization/ICSI cycles; and severe male factor infertility. RESULTS Clinical pregnancy and implantation rates were higher in the follicular fluid group compared with the control group [354% (17/48) vs 319% (15/47); p=0718] and (18.6% vs 11.3%; p=0.153), respectively. However, the difference was not statistically significant. CONCLUSION Flushing the endometrial cavity with follicular fluid after oocyte retrieval neither improved nor adversely affected clinical pregnancy and implantation rates in subfertile women undergoing ICSI.
Collapse
Affiliation(s)
- N M Hashish
- Department of Obstetrics and Gynaecology, Assisted Reproduction Unit, Faculty of Medicine, Cairo University, Egypt
| | - H S Badway
- Department of Obstetrics and Gynaecology, Assisted Reproduction Unit, Faculty of Medicine, Cairo University, Egypt
| | - H I Abdelmoty
- Department of Obstetrics and Gynaecology, Assisted Reproduction Unit, Faculty of Medicine, Cairo University, Egypt
| | - A Mowafy
- Department of Obstetrics and Gynaecology, Assisted Reproduction Unit, Faculty of Medicine, Cairo University, Egypt
| | - M A F M Youssef
- Department of Obstetrics and Gynaecology, Assisted Reproduction Unit, Faculty of Medicine, Cairo University, Egypt; Egyptian International Fertility IVF-ET Centre, Cairo, Egypt.
| |
Collapse
|
10
|
Romano SL, Lionetti V. From cell phenotype to epigenetic mechanisms: new insights into regenerating myocardium. Can J Physiol Pharmacol 2013; 91:579-85. [DOI: 10.1139/cjpp-2012-0392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The self-regenerating property of the adult myocardium is not a new discovery. Even though we could not confirm that the adult myocardium is a post-mitotic tissue, we should consider that its plasticity is extremely low. Studies are still in progress to decipher the mechanisms underlying the abovementioned potential fetal features of the adult heart. The modest results of several clinical trials based on the transplantation of millions of autologous stem cells into the dysfunctional heart have confirmed that the cross-talk of different signals, such as the microenvironment, promotes the regeneration of adult myocardium. Recent scientific evidence has revealed that cellular cross-talk does not depend on the action of a single cell phenotype. It is conceivable that the limited turnover of cardiomyocytes is ensured by the interplay of adult cardiac cells in response to environmental changes. The epigenetic state of a cell serves as a dynamic interface between the environment and phenotype. The epigenetic modulation of the adult cardiac cells by natural active compounds encourages further studies to improve myocardial plasticity. In this review, we will highlight the most relevant studies demonstrating the epigenetic modulation of myocardial regeneration without the use of stem cell transplantation.
Collapse
Affiliation(s)
- Simone Lorenzo Romano
- Laboratory of Medical Science, Institute of Life Sciences, Via G. Moruzzi, 1, Scuola Superiore Sant’Anna, 56124 Pisa, Italy
- Cardiac and Thoracic Department, Azienda Ospedaliero – Universitaria Pisana, Pisa, Italy
| | - Vincenzo Lionetti
- Laboratory of Medical Science, Institute of Life Sciences, Via G. Moruzzi, 1, Scuola Superiore Sant’Anna, 56124 Pisa, Italy
- Fondazione CNR – Regione Toscana “G. Monasterio”, Pisa, Italy
- Institute of Clinical Physiology, CNR, Pisa, Italy
| |
Collapse
|
11
|
Tonazzini I, Meucci S, Faraci P, Beltram F, Cecchini M. Neuronal differentiation on anisotropic substrates and the influence of nanotopographical noise on neurite contact guidance. Biomaterials 2013; 34:6027-36. [DOI: 10.1016/j.biomaterials.2013.04.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/21/2013] [Indexed: 10/26/2022]
|
12
|
Lionetti V, Ventura C. Regenerative medicine approach to repair the failing heart. Vascul Pharmacol 2013; 58:159-63. [PMID: 23337493 DOI: 10.1016/j.vph.2013.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/08/2013] [Accepted: 01/13/2013] [Indexed: 10/27/2022]
Abstract
Heart failure is a serious and very common clinical condition in which the heart is about to stop working. Currently, heart failure has no cure. Over the last decade, cardiac cell therapy has been widely studied as a revolutionary approach to promote the non-pharmacological replacement of the lost myocardium. Despite the initial enormous expectations, recent clinical trials have shown modest results without therapeutic effectiveness following cardiac stem cell transplantation. Since the adult heart is not a post-mitotic organ, recent disappointing findings have motivated researchers to pursue alternative therapeutic approaches. New scientific developments on myocardial regeneration derived from studies in animal models have led to the discovery of new naturally occurring molecules that increase the resistance of resident cardiac cells to the ischemic microenvironment and/or promote the self-renewing property of adult myocardium without the transplantation of additional stem cells. Recent evidences have shown that the direct intramyocardial injection of selected chemical compounds in adult beating heart may halt myocardial remodeling and increase cardiac performance in an epigenetic manner. The aim of the present review is to discuss succinctly some important aspects of the new frontiers of regenerative therapy to repair the failing heart.
Collapse
Affiliation(s)
- Vincenzo Lionetti
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | |
Collapse
|
13
|
Vittorio O, Jacchetti E, Pacini S, Cecchini M. Endothelial differentiation of mesenchymal stromal cells: when traditional biology meets mechanotransduction. Integr Biol (Camb) 2013; 5:291-9. [DOI: 10.1039/c2ib20152f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
A cell state splitter and differentiation wave working-model for embryonic stem cell development and somatic cell epigenetic reprogramming. Biosystems 2012; 109:390-6. [DOI: 10.1016/j.biosystems.2012.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 12/11/2022]
|
15
|
Abstract
Nanotechnology is a rapidly emerging technology dealing with so-called nanomaterials which at least in one dimension have size smaller than 100 nm. One of the most potentially promising applications of nanotechnology is in the area of tissue engineering, including biofabrication of 3D human tissues and organs. This paper focused on demonstrating how nanomaterials with nanolevel size can contribute to development of 3D human tissues and organs which have macrolevel organization. Specific nanomaterials such as nanofibers and nanoparticles are discussed in the context of their application for biofabricating 3D human tissues and organs. Several examples of novel tissue and organ biofabrication technologies based on using novel nanomaterials are presented and their recent limitations are analyzed. A robotic device for fabrication of compliant composite electrospun vascular graft is described. The concept of self-assembling magnetic tissue spheroids as an intermediate structure between nano- and macrolevel organization and building blocks for biofabrication of complex 3D human tissues and organs is introduced. The design of in vivo robotic bioprinter based on this concept and magnetic levitation of tissue spheroids labeled with magnetic nanoparticles is presented. The challenges and future prospects of applying nanomaterials and nanotechnological strategies in organ biofabrication are outlined.
Collapse
|