1
|
Wu Z, Su Y, Li J, Liu X, Liu Y, Zhao L, Li L, Zhang L. Induced pluripotent stem cell-derived mesenchymal stem cells: whether they can become new stars of cell therapy. Stem Cell Res Ther 2024; 15:367. [PMID: 39415276 PMCID: PMC11484330 DOI: 10.1186/s13287-024-03968-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/29/2024] [Indexed: 10/18/2024] Open
Abstract
Stem cell therapy constitutes a pivotal subject in contemporary discourse, with donor stem cells having been employed in research and clinical treatments for several decades. Primary cell transplantation encompasses diverse stem cell types, including ectomesenchymal stem cells, hematopoietic stem cells, and various stem cell derivatives such as vesicles and extracellular vesicles. Nevertheless, the emergence of cell engineering techniques has heralded a new epoch in stem cell therapy, markedly broadening their therapeutic potential. Induced pluripotent stem cells (iPSCs) epitomize a significant milestone in modern medical biology. This groundbreaking discovery offers significant potential in disciplines such as biology, pathophysiology, and cellular regenerative medicine. As a result, iPSCs derived differentiated cells have become a pioneering avenue for cell therapy research. Induced mesenchymal stem cells (iMSCs), derived from iPSCs, represent a novel frontier in MSCs related research. Empirical evidence suggests that iMSCs demonstrate enhanced proliferative capacities compared to natural MSCs, with diminished age-related variability and heterogeneity. Numerous clinical trials have highlighted the prospective superiority of iMSCs. This article synthesizes current basic research and clinical trials pertaining to iMSCs, aiming to provide a reference point for future research endeavors.
Collapse
Affiliation(s)
- Zewen Wu
- Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, 030032, China
| | - Yazhen Su
- Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Jingxuan Li
- Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Xinling Liu
- Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Yang Liu
- Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Li Zhao
- Shanxi Medical University, Taiyuan, 030000, China
| | - Linxin Li
- Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Liyun Zhang
- Shanxi Bethune Hospital, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China.
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, 030032, China.
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, 030032, China.
| |
Collapse
|
2
|
Winston T, Song Y, Shi H, Yang J, Alsudais M, Kontaridis MI, Wu Y, Gaborski TR, Meng Q, Cooney RN, Ma Z. Lineage-Specific Mesenchymal Stromal Cells Derived from Human iPSCs Showed Distinct Patterns in Transcriptomic Profile and Extracellular Vesicle Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308975. [PMID: 38757640 PMCID: PMC11267277 DOI: 10.1002/advs.202308975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Over the past decades, mesenchymal stromal cells (MSCs) have been extensively investigated as a potential therapeutic cell source for the treatment of various disorders. Differentiation of MSCs from human induced pluripotent stem cells (iMSCs) has provided a scalable approach for the biomanufacturing of MSCs and related biological products. Although iMSCs shared typical MSC markers and functions as primary MSCs (pMSCs), there is a lack of lineage specificity in many iMSC differentiation protocols. Here, a stepwise hiPSC-to-iMSC differentiation method is employed via intermediate cell stages of neural crest and cytotrophoblast to generate lineage-specific MSCs with varying differentiation efficiencies and gene expression. Through a comprehensive comparison between early developmental cell types (hiPSCs, neural crest, and cytotrophoblast), two lineage-specific iMSCs, and six source-specific pMSCs, are able to not only distinguish the transcriptomic differences between MSCs and early developmental cells, but also determine the transcriptomic similarities of iMSC subtypes to postnatal or perinatal pMSCs. Additionally, it is demonstrated that different iMSC subtypes and priming conditions affected EV production, exosomal protein expression, and cytokine cargo.
Collapse
Affiliation(s)
- Tackla Winston
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
| | - Yuanhui Song
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
| | - Huaiyu Shi
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
| | - Junhui Yang
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
| | - Munther Alsudais
- Departments of Biomedical and Chemical EngineeringRochester Institute of TechnologyOne Lomb Memorial DriveRochesterNY14623USA
| | - Maria I. Kontaridis
- Department of Biomedical Research and Translational MedicineMasonic Medical Research Institute2150 Bleecker StreetUticaNY13501USA
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical CenterHarvard Medical School330 Brookline AveBostonMA02215USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBuilding C, 240 Longwood AveBostonMA02115USA
| | - Yaoying Wu
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
- Department of Microbiology & ImmunologySUNY Upstate Medical University766 Irving AvenueSyracuseNY13210USA
| | - Thomas R. Gaborski
- Departments of Biomedical and Chemical EngineeringRochester Institute of TechnologyOne Lomb Memorial DriveRochesterNY14623USA
| | - Qinghe Meng
- Department of SurgeryState University of New York Upstate Medical University750 East Adams StreetSyracuseNY13210USA
- Sepsis Interdisciplinary Research CenterState University of New York Upstate Medical University766 Irving AvenueSyracuseNY13210USA
| | - Robert N. Cooney
- Department of SurgeryState University of New York Upstate Medical University750 East Adams StreetSyracuseNY13210USA
- Sepsis Interdisciplinary Research CenterState University of New York Upstate Medical University766 Irving AvenueSyracuseNY13210USA
| | - Zhen Ma
- Department of Biomedical & Chemical EngineeringSyracuse University329 Link HallSyracuseNY13244USA
- BioInspired Institute for Materials and Living SystemsSyracuse University318 Bowne HallSyracuseNY13244USA
- Department of BiologySyracuse University107 College PlSyracuseNY13210USA
| |
Collapse
|
3
|
Suzdaltseva Y, Kiselev SL. Mesodermal Derivatives of Pluripotent Stem Cells Route to Scarless Healing. Int J Mol Sci 2023; 24:11945. [PMID: 37569321 PMCID: PMC10418846 DOI: 10.3390/ijms241511945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Scar formation during normal tissue regeneration in adults may result in noticeable cosmetic and functional defects and have a significant impact on the quality of life. In contrast, fetal tissues in the mid-gestation period are known to be capable of complete regeneration with the restitution of the initial architecture, organization, and functional activity. Successful treatments that are targeted to minimize scarring can be realized by understanding the cellular and molecular mechanisms of fetal wound regeneration. However, such experiments are limited by the inaccessibility of fetal material for comparable studies. For this reason, the molecular mechanisms of fetal regeneration remain unknown. Mesenchymal stromal cells (MSCs) are central to tissue repair because the molecules they secrete are involved in the regulation of inflammation, angiogenesis, and remodeling of the extracellular matrix. The mesodermal differentiation of human pluripotent stem cells (hPSCs) recapitulates the sequential steps of embryogenesis in vitro and provides the opportunity to generate the isogenic cell models of MSCs corresponding to different stages of human development. Further investigation of the functional activity of cells from stromal differon in a pro-inflammatory microenvironment will procure the molecular tools to better understand the fundamental mechanisms of fetal tissue regeneration. Herein, we review recent advances in the generation of clonal precursors of primitive mesoderm cells and MSCs from hPSCs and discuss critical factors that determine the functional activity of MSCs-like cells in a pro-inflammatory microenvironment in order to identify therapeutic targets for minimizing scarring.
Collapse
Affiliation(s)
- Yulia Suzdaltseva
- Department of Epigenetics, Vavilov Institute of General Genetics of the Russian Academy of Sciences, 119333 Moscow, Russia;
| | | |
Collapse
|
4
|
Pluripotent-derived Mesenchymal Stem/stromal Cells: an Overview of the Derivation Protocol Efficacies and the Differences Among the Derived Cells. Stem Cell Rev Rep 2021; 18:94-125. [PMID: 34545529 DOI: 10.1007/s12015-021-10258-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) are remarkable tools for regenerative medicine. Therapeutic approaches using these cells can promote increased activity and viability in several cell types through diverse mechanisms such as paracrine and immunomodulatory activities, contributing substantially to tissue regeneration and functional recovery. However, biological samples of human MSCs, usually obtained from adult tissues, often exhibit variable behavior during in vitro culture, especially with respect to cell population heterogeneity, replicative senescence, and consequent loss of functionality. Accordingly, it is necessary to establish standard protocols to generate high-quality, stable cell cultures, for example, by using pluripotent stem cells (PSCs) in derivation protocols of MSC-like cells since PSCs maintain their characteristics consistently during culture. However, the available protocols seem to generate distinct populations of PSC-derivedMSCs (PSC-MSCs) with peculiar attributes, which do not always resemble bona fide primary MSCs. The present review addresses the developmental basis behind some of these derivation protocols, exposing the differences among them and discussing the functional properties of PSC-MSCs, shedding light on elements that may help determine standard characterizations and criteria to evaluate and define these cells.
Collapse
|
5
|
Kidwai F, Mui BWH, Arora D, Iqbal K, Hockaday M, de Castro Diaz LF, Cherman N, Martin D, Myneni VD, Ahmad M, Futrega K, Ali S, Merling RK, Kaufman DS, Lee J, Robey PG. Lineage-specific differentiation of osteogenic progenitors from pluripotent stem cells reveals the FGF1-RUNX2 association in neural crest-derived osteoprogenitors. Stem Cells 2020; 38:1107-1123. [PMID: 32442326 PMCID: PMC7484058 DOI: 10.1002/stem.3206] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/01/2020] [Indexed: 12/16/2022]
Abstract
Human pluripotent stem cells (hPSCs) can provide a platform to model bone organogenesis and disease. To reflect the developmental process of the human skeleton, hPSC differentiation methods should include osteogenic progenitors (OPs) arising from three distinct embryonic lineages: the paraxial mesoderm, lateral plate mesoderm, and neural crest. Although OP differentiation protocols have been developed, the lineage from which they are derived, as well as characterization of their genetic and molecular differences, has not been well reported. Therefore, to generate lineage-specific OPs from human embryonic stem cells and human induced pluripotent stem cells, we employed stepwise differentiation of paraxial mesoderm-like cells, lateral plate mesoderm-like cells, and neural crest-like cells toward their respective OP subpopulation. Successful differentiation, confirmed through gene expression and in vivo assays, permitted the identification of transcriptomic signatures of all three cell populations. We also report, for the first time, high FGF1 levels in neural crest-derived OPs-a notable finding given the critical role of fibroblast growth factors (FGFs) in osteogenesis and mineral homeostasis. Our results indicate that FGF1 influences RUNX2 levels, with concomitant changes in ERK1/2 signaling. Overall, our study further validates hPSCs' power to model bone development and disease and reveals new, potentially important pathways influencing these processes.
Collapse
Affiliation(s)
- Fahad Kidwai
- Department of Health and Human ServicesCraniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaMarylandUSA
| | - Byron W. H. Mui
- Department of Health and Human ServicesCraniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaMarylandUSA
| | - Deepika Arora
- Department of Health and Human ServicesCraniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaMarylandUSA
- Biosystems and Biomaterials DivisionNational Institute of Standards and TechnologyGaithersburgMarylandUSA
| | - Kulsum Iqbal
- Department of Health and Human ServicesDental Consult Services, National Institute of Health Dental ClinicBethesdaMarylandUSA
| | - Madison Hockaday
- Department of Health and Human ServicesCraniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaMarylandUSA
| | - Luis Fernandez de Castro Diaz
- Department of Health and Human ServicesSkeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaMarylandUSA
| | - Natasha Cherman
- Department of Health and Human ServicesCraniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaMarylandUSA
| | - Daniel Martin
- Department of Health and Human ServicesGenomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaMarylandUSA
| | - Vamsee D. Myneni
- Department of Health and Human ServicesCraniofacial and Skeletal Diseases Branch/Adult Stem Cell Section, National Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaMarylandUSA
| | - Moaz Ahmad
- Department of Health and Human ServicesMolecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaMarylandUSA
| | - Katarzyna Futrega
- Department of Health and Human ServicesCraniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaMarylandUSA
| | - Sania Ali
- Biology of Global Health, Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Randall K. Merling
- Department of Health and Human ServicesCraniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaMarylandUSA
| | - Dan S. Kaufman
- Department of MedicineUniversity of CaliforniaLa JollaCaliforniaUSA
| | - Janice Lee
- Department of Health and Human ServicesCraniofacial Anomalies and Regeneration Section, National Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaMarylandUSA
| | - Pamela G. Robey
- Department of Health and Human ServicesCraniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
6
|
Floy ME, Mateyka TD, Foreman KL, Palecek SP. Human pluripotent stem cell-derived cardiac stromal cells and their applications in regenerative medicine. Stem Cell Res 2020; 45:101831. [PMID: 32446219 PMCID: PMC7931507 DOI: 10.1016/j.scr.2020.101831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/16/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Coronary heart disease is one of the leading causes of death in the United States. Recent advances in stem cell biology have led to the development and engineering of human pluripotent stem cell (hPSC)-derived cardiac cells and tissues for application in cellular therapy and cardiotoxicity studies. Initial studies in this area have largely focused on improving differentiation efficiency and maturation states of cardiomyocytes. However, other cell types in the heart, including endothelial and stromal cells, play crucial roles in cardiac development, injury response, and cardiomyocyte function. This review discusses recent advances in differentiation of hPSCs to cardiac stromal cells, identification and classification of cardiac stromal cell types, and application of hPSC-derived cardiac stromal cells and tissues containing these cells in regenerative and drug development applications.
Collapse
Affiliation(s)
- Martha E Floy
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Taylor D Mateyka
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Koji L Foreman
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
7
|
Koh I, Yong I, Kim B, Choi D, Hong J, Han YM, Kim P. Tris(2-carboxyethyl)phosphine-Mediated Nanometric Extracellular Matrix-Coating Method of Mesenchymal Stem Cells. ACS Biomater Sci Eng 2020; 6:813-821. [DOI: 10.1021/acsbiomaterials.9b01480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- IlKyoo Koh
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Insung Yong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Bumsoo Kim
- Department of Biological Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daheui Choi
- Department of Chemical & Biomolecular Engineering, Yonsei University, Seodaemun-gu, Seoul 038722, Republic of Korea
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, Yonsei University, Seodaemun-gu, Seoul 038722, Republic of Korea
| | - Yong-Mahn Han
- Department of Biological Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Pilnam Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
8
|
Zhao Y, Sun Q, Wang S, Huo B. Spreading Shape and Area Regulate the Osteogenesis of Mesenchymal Stem Cells. Tissue Eng Regen Med 2019; 16:573-583. [PMID: 31824820 DOI: 10.1007/s13770-019-00213-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 01/08/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) have strong self-renewal ability and multiple differentiation potential. Some studies confirmed that spreading shape and area of single MSCs influence cell differentiation, but few studies focused on the effect of the circularity of cell shape on the osteogenic differentiation of MSCs with a confined area during osteogenic process. Methods In the present study, MSCs were seeded on a micropatterned island with a spreading area lower than that of a freely spreading area. The patterns had circularities of 1.0 or 0.4, respectively, and areas of 314, 628, or 1256 μm2. After the cells were grown on a micropatterned surface for 1 or 3 days, cell apoptosis and F-actin were stained and analyzed. In addition, the expression of β-catenin and three osteogenic differentiation markers were immunofluorescently stained and analyzed, respectively. Results Of these MSCs, the ones with star-like shapes and large areas promoted the expression of osteogenic differentiation markers and the survival of cells. The expression of F-actin and its cytosolic distribution or orientation also correlated with the spreading shape and area. When actin polymerization was inhibited by cytochalasin D, the shape-regulated differentiation and apoptosis of MSCs with the confined spreading area were abolished. Conclusion This study demonstrated that a spreading shape of low circularity and a larger spreading area are beneficial to the survival and osteogenic differentiation of individual MSCs, which may be regulated through the cytosolic expression and distribution of F-actin.
Collapse
Affiliation(s)
- Yang Zhao
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081 People's Republic of China
| | - Qing Sun
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081 People's Republic of China
| | - Shurong Wang
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081 People's Republic of China
| | - Bo Huo
- Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing, 100081 People's Republic of China
| |
Collapse
|
9
|
MSX2 Initiates and Accelerates Mesenchymal Stem/Stromal Cell Specification of hPSCs by Regulating TWIST1 and PRAME. Stem Cell Reports 2018; 11:497-513. [PMID: 30033084 PMCID: PMC6092836 DOI: 10.1016/j.stemcr.2018.06.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023] Open
Abstract
The gap in knowledge of the molecular mechanisms underlying differentiation of human pluripotent stem cells (hPSCs) into the mesenchymal cell lineages hinders the application of hPSCs for cell-based therapy. In this study, we identified a critical role of muscle segment homeobox 2 (MSX2) in initiating and accelerating the molecular program that leads to mesenchymal stem/stromal cell (MSC) differentiation from hPSCs. Genetic deletion of MSX2 impairs hPSC differentiation into MSCs. When aided with a cocktail of soluble molecules, MSX2 ectopic expression induces hPSCs to form nearly homogeneous and fully functional MSCs. Mechanistically, MSX2 induces hPSCs to form neural crest cells, an intermediate cell stage preceding MSCs, and further differentiation by regulating TWIST1 and PRAME. Furthermore, we found that MSX2 is also required for hPSC differentiation into MSCs through mesendoderm and trophoblast. Our findings provide novel mechanistic insights into lineage specification of hPSCs to MSCs and effective strategies for applications of stem cells for regenerative medicine.
Collapse
|
10
|
Fliefel R, Ehrenfeld M, Otto S. Induced pluripotent stem cells (iPSCs) as a new source of bone in reconstructive surgery: A systematic review and meta-analysis of preclinical studies. J Tissue Eng Regen Med 2018; 12:1780-1797. [DOI: 10.1002/term.2697] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 04/16/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Riham Fliefel
- Experimental Surgery and Regenerative Medicine (ExperiMed), Faculty of Medicine; Ludwig Maximilian University of Munich; Munich Germany
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine; Ludwig Maximilian University of Munich; Munich Germany
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry; Alexandria University; Alexandria Egypt
| | - Michael Ehrenfeld
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine; Ludwig Maximilian University of Munich; Munich Germany
| | - Sven Otto
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine; Ludwig Maximilian University of Munich; Munich Germany
| |
Collapse
|
11
|
The development of induced pluripotent stem cell-derived mesenchymal stem/stromal cells from normal human and RDEB epidermal keratinocytes. J Dermatol Sci 2018; 91:301-310. [PMID: 29933899 DOI: 10.1016/j.jdermsci.2018.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/17/2018] [Accepted: 06/12/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Epidermolysis bullosa (EB) is a group of hereditary disorders caused by mutations in the genes encoding structural molecules of the dermal-epidermal junction (DEJ). Cell-based therapies such as allogeneic mesenchymal stem/stromal cell (MSC) transplantation have recently been explored for severe EB types, such as recessive dystrophic EB (RDEB). However, hurdles exist in current MSC-based therapies, such as limited proliferation from a single cell source and limited cell survival due to potential allogenic rejection. OBJECTIVES We aimed to develop MSCs from keratinocyte-derived induced pluripotent stem cells (iPSCs). METHODS Keratinocyte-derived iPSCs (KC-iPSCs) of a healthy human and an RDEB patient were cultured with activin A, 6-bromoindirubin-3'-oxime and bone morphogenetic protein 4 to induce mesodermal lineage formation. These induced cells were subjected to immunohistochemical analysis, flow cytometric analysis and RNA microarray analysis in vitro, and were injected subcutaneously and intravenously to wounded immunodeficient mice to assess their wound-healing efficacy. RESULTS After their induction, KC-iPSC-induced cells were found to be compatible with MSCs. Furthermore, with the subcutaneous and intravenous injection of the KC-iPSC-induced cells into wounded immunodeficient mice, human type VII collagen was detected at the DEJ of epithelized areas. CONCLUSIONS We successfully established iPSC-derived MSCs from keratinocytes (KC-iPSC-MSCs) of a normal human and an RDEB patient. KC-iPSC-MSCs may have potential in therapies for RDEB.
Collapse
|
12
|
Abstract
Large bone defects remain a tremendous clinical challenge. There is growing evidence in support of treatment strategies that direct defect repair through an endochondral route, involving a cartilage intermediate. While culture-expanded stem/progenitor cells are being evaluated for this purpose, these cells would compete with endogenous repair cells for limited oxygen and nutrients within ischaemic defects. Alternatively, it may be possible to employ extracellular vesicles (EVs) secreted by culture-expanded cells for overcoming key bottlenecks to endochondral repair, such as defect vascularization, chondrogenesis, and osseous remodelling. While mesenchymal stromal/stem cells are a promising source of therapeutic EVs, other donor cells should also be considered. The efficacy of an EV-based therapeutic will likely depend on the design of companion scaffolds for controlled delivery to specific target cells. Ultimately, the knowledge gained from studies of EVs could one day inform the long-term development of synthetic, engineered nanovesicles. In the meantime, EVs harnessed from in vitro cell culture have near-term promise for use in bone regenerative medicine. This narrative review presents a rationale for using EVs to improve the repair of large bone defects, highlights promising cell sources and likely therapeutic targets for directing repair through an endochondral pathway, and discusses current barriers to clinical translation. Cite this article: E. Ferreira, R. M. Porter. Harnessing extracellular vesicles to direct endochondral repair of large bone defects. Bone Joint Res 2018;7:263-273. DOI: 10.1302/2046-3758.74.BJR-2018-0006.
Collapse
Affiliation(s)
- E. Ferreira
- Departments of Internal Medicine and Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - R. M. Porter
- Departments of Internal Medicine and Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
13
|
Shafa M, Yang F, Fellner T, Rao MS, Baghbaderani BA. Human-Induced Pluripotent Stem Cells Manufactured Using a Current Good Manufacturing Practice-Compliant Process Differentiate Into Clinically Relevant Cells From Three Germ Layers. Front Med (Lausanne) 2018; 5:69. [PMID: 29600249 PMCID: PMC5862873 DOI: 10.3389/fmed.2018.00069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/28/2018] [Indexed: 01/07/2023] Open
Abstract
The discovery of reprogramming and generation of human-induced pluripotent stem cells (iPSCs) has revolutionized the field of regenerative medicine and opened new opportunities in cell replacement therapies. While generation of iPSCs represents a significant breakthrough, the clinical relevance of iPSCs for cell-based therapies requires generation of high-quality specialized cells through robust and reproducible directed differentiation protocols. We have recently reported manufacturing of human iPSC master cell banks (MCB) under current good manufacturing practices (cGMPs). Here, we describe the clinical potential of human iPSCs generated using this cGMP-compliant process by differentiating them into the cells from all three embryonic germ layers including ectoderm, endoderm, and mesoderm. Most importantly, we have shown that our iPSC manufacturing process and cell culture system is not biased toward a specific lineage. Following controlled induction into a specific differentiation lineage, specialized cells with morphological and cellular characteristics of neural stem cells, definitive endoderm, and cardiomyocytes were developed. We believe that these cGMP-compliant iPSCs have the potential to make various clinically relevant products suitable for cell therapy applications.
Collapse
Affiliation(s)
- Mehdi Shafa
- Lonza Walkersville, Inc., Walkersville, MD, United States
| | - Fan Yang
- Lonza Walkersville, Inc., Walkersville, MD, United States
| | - Thomas Fellner
- Lonza Walkersville, Inc., Walkersville, MD, United States
| | - Mahendra S Rao
- NxCell Inc, Novato, CA, United States.,Q Therapeutics, Salt Lake City, UT, United States
| | | |
Collapse
|
14
|
Srinivasan A, Chang SY, Zhang S, Toh WS, Toh YC. Substrate stiffness modulates the multipotency of human neural crest derived ectomesenchymal stem cells via CD44 mediated PDGFR signaling. Biomaterials 2018; 167:153-167. [PMID: 29571051 DOI: 10.1016/j.biomaterials.2018.03.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/26/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) have been isolated from various mesodermal and ectodermal tissues. While the phenotypic and functional heterogeneity of MSCs stemming from their developmental origins has been acknowledged, the genetic and environmental factors underpinning these differences are not well-understood. Here, we investigated whether substrate stiffness mediated mechanical cues can directly modulate the development of ectodermal MSCs (eMSCs) from a precursor human neural crest stem cell (NCSC) population. We showed that NCSC-derived eMSCs were transcriptionally and functionally distinct from mesodermal bone marrow MSCs. eMSCs derived on lower substrate stiffness specifically increased their expression of the MSC marker, CD44 in a Rho-ROCK signaling dependent manner, which resulted in a concomitant increase in the eMSCs' adipogenic and chondrogenic differentiation potential. This mechanically-induced effect can only be maintained for short-term upon switching back to a stiff substrate but can be sustained for longer-term when the eMSCs were exclusively maintained on soft substrates. We also discovered that CD44 expression modulated eMSC self-renewal and multipotency via the downregulation of downstream platelet-derived growth factor receptor beta (PDGFRβ) signaling. This is the first instance demonstrating that substrate stiffness not only influences the differentiation trajectories of MSCs but also their derivation from upstream progenitors, such as NCSCs.
Collapse
Affiliation(s)
- Akshaya Srinivasan
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-10, Singapore 117583
| | - Shu-Yung Chang
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-10, Singapore 117583
| | - Shipin Zhang
- Faculty of Dentistry, National University of Singapore, 11 Lower Kent Ridge Road, Singapore 119083
| | - Wei Seong Toh
- NUS Tissue Engineering Program (NUSTEP), National University of Singapore, DSO (Kent Ridge), 27 Medical Drive, #04-01, Singapore 117510; Faculty of Dentistry, National University of Singapore, 11 Lower Kent Ridge Road, Singapore 119083
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, #04-10, Singapore 117583; Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Centre for Life Sciences, 28 Medical Drive, #05-COR, Singapore 117456; NUS Tissue Engineering Program (NUSTEP), National University of Singapore, DSO (Kent Ridge), 27 Medical Drive, #04-01, Singapore 117510; Biomedical Institute for Global Health, Research and Technology (BIGHEART), MD6, 14 Medical Drive, #14-01, Singapore 117599.
| |
Collapse
|
15
|
Impaired Osteogenesis of Disease-Specific Induced Pluripotent Stem Cells Derived from a CFC Syndrome Patient. Int J Mol Sci 2017; 18:ijms18122591. [PMID: 29194391 PMCID: PMC5751194 DOI: 10.3390/ijms18122591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022] Open
Abstract
Cardiofaciocutaneous (CFC) syndrome is a rare genetic disorder caused by mutations in the extracellular signal-regulated kinase (ERK) signaling. However, little is known about how aberrant ERK signaling is associated with the defective bone development manifested in most CFC syndrome patients. In this study, induced pluripotent stem cells (iPSCs) were generated from dermal fibroblasts of a CFC syndrome patient having rapidly accelerated fibrosarcoma kinase B (BRAF) gain-of-function mutation. CFC-iPSCs were differentiated into mesenchymal stem cells (CFC-MSCs) and further induced to osteoblasts in vitro. The osteogenic defects of CFC-MSCs were revealed by alkaline phosphatase activity assay, mineralization assay, quantitative real-time polymerase chain reaction (qRT-PCR), and western blotting. Osteogenesis of CFC-MSCs was attenuated compared to wild-type (WT)-MSCs. In addition to activated ERK signaling, increased p-SMAD2 and decreased p-SMAD1 were observed in CFC-MSCs during osteogenesis. The defective osteogenesis of CFC-MSCs was rescued by inhibition of ERK signaling and SMAD2 signaling or activation of SMAD1 signaling. Importantly, activation of ERK signaling and SMAD2 signaling or inhibition of SMAD1 signaling recapitulated the impaired osteogenesis in WT-MSCs. Our findings indicate that SMAD2 signaling and SMAD1 signaling as well as ERK signaling are responsible for defective early bone development in CFC syndrome, providing a novel insight on the pathological mechanism and therapeutic targets.
Collapse
|
16
|
Characterization of Mesenchymal Stem Cell-Like Cells Derived From Human iPSCs via Neural Crest Development and Their Application for Osteochondral Repair. Stem Cells Int 2017; 2017:1960965. [PMID: 28607560 PMCID: PMC5451770 DOI: 10.1155/2017/1960965] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/03/2017] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) derived from induced pluripotent stem cells (iPSCs) are a promising cell source for the repair of skeletal disorders. Recently, neural crest cells (NCCs) were reported to be effective for inducing mesenchymal progenitors, which have potential to differentiate into osteochondral lineages. Our aim was to investigate the feasibility of MSC-like cells originated from iPSCs via NCCs for osteochondral repair. Initially, MSC-like cells derived from iPSC-NCCs (iNCCs) were generated and characterized in vitro. These iNCC-derived MSC-like cells (iNCMSCs) exhibited a homogenous population and potential for osteochondral differentiation. No upregulation of pluripotent markers was detected during culture. Second, we implanted iNCMSC-derived tissue-engineered constructs into rat osteochondral defects without any preinduction for specific differentiation lineages. The implanted cells remained alive at the implanted site, whereas they failed to repair the defects, with only scarce development of osteochondral tissue in vivo. With regard to tumorigenesis, the implanted cells gradually disappeared and no malignant cells were detected throughout the 2-month follow-up. While this study did not show that iNCMSCs have efficacy for repair of osteochondral defects when implanted under undifferentiated conditions, iNCMSCs exhibited good chondrogenic potential in vitro under appropriate conditions. With further optimization, iNCMSCs may be a new source for tissue engineering of cartilage.
Collapse
|
17
|
Kim D, Choi J, Han KM, Lee BH, Choi JH, Yoo HW, Han YM. Impaired osteogenesis in Menkes disease-derived induced pluripotent stem cells. Stem Cell Res Ther 2015; 6:160. [PMID: 26347346 PMCID: PMC4562349 DOI: 10.1186/s13287-015-0147-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/30/2015] [Accepted: 08/05/2015] [Indexed: 01/06/2023] Open
Abstract
Introduction Bone abnormalities, one of the primary manifestations of Menkes disease (MD), include a weakened bone matrix and low mineral density. However, the molecular and cellular mechanisms underlying these bone defects are poorly understood. Methods We present in vitro modeling for impaired osteogenesis in MD using human induced pluripotent stem cells (iPSCs) with a mutated ATP7A gene. MD-iPSC lines were generated from two patients harboring different mutations. Results The MD-iPSCs showed a remarkable retardation in CD105 expression with morphological anomalies during development to mesenchymal stem cells (MSCs) compared with wild-type (WT)-iPSCs. Interestingly, although prolonged culture enhanced CD105 expression, mature MD-MSCs presented with low alkaline phosphatase activity, reduced calcium deposition in the extracellular matrix, and downregulated osteoblast-specific genes during osteoblast differentiation in vitro. Knockdown of ATP7A also impaired osteogenesis in WT-MSCs. Lysyl oxidase activity was also decreased in MD-MSCs during osteoblast differentiation. Conclusions Our findings indicate that ATP7A dysfunction contributes to retardation in MSC development and impairs osteogenesis in MD. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0147-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dongkyu Kim
- Department of Biological Science, Korea Advanced Institute of Science Technology (KAIST), Daejeon, 305-701, Republic of Korea.
| | - Jieun Choi
- Department of Biological Science, Korea Advanced Institute of Science Technology (KAIST), Daejeon, 305-701, Republic of Korea.
| | - Kyu-Min Han
- Department of Biological Science, Korea Advanced Institute of Science Technology (KAIST), Daejeon, 305-701, Republic of Korea.
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Jin-Ho Choi
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Han-Wook Yoo
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Yong-Mahn Han
- Department of Biological Science, Korea Advanced Institute of Science Technology (KAIST), Daejeon, 305-701, Republic of Korea.
| |
Collapse
|
18
|
Yu W, Niu W, Wang S, Chen X, Sun BO, Wang F, Sun Y. Co-culture with endometrial stromal cells enhances the differentiation of human embryonic stem cells into endometrium-like cells. Exp Ther Med 2015; 10:43-50. [PMID: 26170910 DOI: 10.3892/etm.2015.2490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/08/2015] [Indexed: 11/06/2022] Open
Abstract
In vitro differentiation of human embryonic stem cells (hESCs) into endometrium-like cells may provide a useful tool for clinical treatment. The aim of the present study was to investigate the differentiation potential of hESCs into endometrium-like cells using three methods, which included induction by feeder cells, co-culture with endometrial stromal cells and induction with embryoid bodies. Following differentiation, the majority of cells positively expressed cytokeratin and epithelial cell adhesion molecule (EPCAM). Factors associated with endometrium cell function, namely the estrogen and progesterone receptors (ER and PR), were also detected. At day 21 following the induction of differentiation, the expression levels of cytokeratin, EPCAM, ER and PR were significantly increased in the co-culture method group, as compared with the other two methods. Furthermore, these cells became decidualized in response to progesterone and prolactin. In addition, the number of cytokeratin-positive or EPCAM-positive cells significantly increased following the induction of differentiation using the co-culture method, as compared with the other two methods. The mRNA expression levels of Wnt members that are associated with endometrial development were subsequently examined, and Wnt5a was found to be significantly upregulated in the differentiated cells induced by feeder cells and co-culture with endometrial stromal cells; however, Wnt4 and Wnt7a expression levels were unaffected. Additionally, the mRNA expression levels of Wnt5a in the differentiated cells co-cultured with endometrial stromal cells were higher when compared with those induced by feeder cells. In conclusion, the present findings indicated that the co-culture system is the optimal protocol for the induction of hESC differentiation into endometrium-like cells, and Wnt5a signaling may be involved in this process.
Collapse
Affiliation(s)
- Wenzhu Yu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wenbin Niu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shuna Wang
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xuemei Chen
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - B O Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Fang Wang
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yingpu Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
19
|
Mobarra N, Soleimani M, Kouhkan F, Hesari Z, Lahmy R, Mossahebi-Mohammadi M, Arefian E, Jaafarpour Z, Nasiri H, Pakzad R, Tavakoli R, Pasalar P. Efficient Differentiation of Human Induced Pluripotent Stem Cell (hiPSC) Derived Hepatocyte-Like Cells on hMSCs Feeder. Int J Hematol Oncol Stem Cell Res 2014; 8:20-9. [PMID: 25774264 PMCID: PMC4345294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 06/03/2014] [Indexed: 10/30/2022] Open
Abstract
BACKGROUND The use of stem cells is considered as an appropriate source in cell therapy and tissue engineering. Differentiation of human induced Pluripotent Stem Cells (hiPSCs) to Hepatocyte-like Cells (HLCs) on mouse embryonic fibroblasts (MEFs) feeders is confronted with several problems that hinder the clinical applications of these differentiated cells for the treatment of liver injuries. Safe appropriate cells for stem cell-based therapies could create new hopes for liver diseases. This work focused on the determination of a capacity/efficiency for the differentiation of the hiPSCs into Hepatocyte-like Cells on a novel human adult bone marrow mesenchymal stem cells (hMSCs) feeder. MATERIALS AND METHODS Undifferentiated human iPSCs were cultured on mitotically inactivated human adult bone marrow mesenchymal stem cells. A three-step differentiation process has been performed in presence of activin A which added for 3 days to induce a definitive endoderm formation. In the second step, medium was exchanged for six days. Subsequently, cells were treated with oncostatin M plus dexamethasone for 9 days to generate hepatic cells. Endodermic and liver-specific genes were assessed via quantitative reverse transcription-polymerase chain reaction and RT-PCR, moreover, immunocytochemical staining for liver proteins including albumin and alpha-fetoprotein. In addition, functional tests for glycogen storage, oil red examination, urea production and alpha-fetoprotein synthesis, as well as, cells differentiated with a hepatocyte-like morphology was also performed. RESULTS Our results show that inactivated human adult bone marrow mesenchymal stem cell feeders could support the efficient differentiation of hiPSCs into HLCs. This process induced differentiation of iPSCs into definitive endocrine cells that expressed sox17, foxa2 and expression of the specific genes profiles in hepatic-like cells. In addition, immunocytochemical analysis confirmed albumin and alpha-fetoprotein protein expression, as well as, the hiPSCs-derived Hepatocyte-like Cells on human feeder exhibited a typical morphology. CONCLUSIONS we suggested a successful and efficient culture for differentiation and maturation of hepatocytes on an alternative human feeders; this is an important step to generate safe and functional hepatocytes that is vital for regenerative medicine and transplantation on the cell-based therapies.
Collapse
Affiliation(s)
- Naser Mobarra
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,Students’Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Kouhkan
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, Iran
| | - Zahra Hesari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Lahmy
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Ehsan Arefian
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, Iran,Microbial Biotechnology Laboratory, Department of Microbiology, School of Biology, College of Science, Tehran University, Tehran, Iran
| | - Zahra Jaafarpour
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hajar Nasiri
- Hematology-Oncology and Stem cell Transplantation Research Center, Shariati Hospital, Tehran university of Medical Science, Tehran,Iran
| | - Reza Pakzad
- Departments of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Rezvan Tavakoli
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, Iran
| | - Parvin Pasalar
- Metabolic disorder Research center, Endocrinology and Metabolism, Molecular sciences institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
de Peppo GM, Marolt D. Modulating the biochemical and biophysical culture environment to enhance osteogenic differentiation and maturation of human pluripotent stem cell-derived mesenchymal progenitors. Stem Cell Res Ther 2014; 4:106. [PMID: 24004835 PMCID: PMC3854688 DOI: 10.1186/scrt317] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Advances in the fields of stem cell biology, biomaterials, and tissue engineering over the last decades have brought the possibility of constructing tissue substitutes with a broad range of applications in regenerative medicine, disease modeling, and drug discovery. Different types of human stem cells have been used, each presenting a unique set of advantages and limitations with regard to the desired research goals. Whereas adult stem cells are at the frontier of research for tissue and organ regeneration, pluripotent stem cells represent a more challenging cell source for clinical translation. However, with their unlimited growth and wide differentiation potential, pluripotent stem cells represent an unprecedented resource for the construction of advanced human tissue models for biological studies and drug discovery. At the heart of these applications lies the challenge to reproducibly expand, differentiate, and organize stem cells into mature, stable tissue structures. In this review, we focus on the derivation of mesenchymal tissue progenitors from human pluripotent stem cells and the control of their osteogenic differentiation and maturation by modulation of the biophysical culture environment. Similarly to enhancing bone development, the described principles can be applied to the construction of other mesenchymal tissues for basic and applicative studies.
Collapse
|
21
|
Ohgushi H. Osteogenically differentiated mesenchymal stem cells and ceramics for bone tissue engineering. Expert Opin Biol Ther 2013; 14:197-208. [PMID: 24308323 DOI: 10.1517/14712598.2014.866086] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION In the human body, cells having self-renewal and multi-differentiation capabilities reside in many tissues and are called adult stem cells. In bone marrow tissue, two types of stem cells are well known: hematopoietic stem cells and mesenchymal stem cells (MSCs). Though the number of MSCs in bone marrow tissue is very low, it can be increased by in vitro culture of the marrow, and culture-expanded MSCs are available for various tissue regeneration. AREAS COVERED The culture-expanded MSCs can further differentiate into osteogenic cells such as bone forming osteoblasts by culturing the MSCs in an osteogenic medium. This paper discusses osteogenically differentiated MSCs derived from the bone marrow of patients. Importantly, the differentiation can be achieved on ceramic surfaces which demonstrate mineralized bone matrix formation as well as appearance of osteogenic cells. The cell/matrix/ceramic constructs could show immediate in vivo bone formation and are available for bone reconstruction surgery. EXPERT OPINION Currently, MSCs are clinically available for the regeneration of various tissues due to their high proliferation/differentiation capabilities. However, the capabilities are still limited and thus technologies to improve or recover the inherent capabilities of MSCs are needed.
Collapse
Affiliation(s)
- Hajime Ohgushi
- Department Head, Ookuma Hospital, Department of Orthopedics , 2-17-13 Kuise-honmachi, Amagasaki City, Hyogo 660-0814 , Japan +81-6-6481-1667 ; +81-6-6481-4234
| |
Collapse
|