1
|
Russo E, Corrao S, Di Gaudio F, Alberti G, Caprnda M, Kubatka P, Kruzliak P, Miceli V, Conaldi PG, Borlongan CV, La Rocca G. Facing the Challenges in the COVID-19 Pandemic Era: From Standard Treatments to the Umbilical Cord-Derived Mesenchymal Stromal Cells as a New Therapeutic Strategy. Cells 2023; 12:1664. [PMID: 37371134 DOI: 10.3390/cells12121664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which counts more than 650 million cases and more than 6.6 million of deaths worldwide, affects the respiratory system with typical symptoms such as fever, cough, sore throat, acute respiratory distress syndrome (ARDS), and fatigue. Other nonpulmonary manifestations are related with abnormal inflammatory response, the "cytokine storm", that could lead to a multiorgan disease and to death. Evolution of effective vaccines against SARS-CoV-2 provided multiple options to prevent the infection, but the treatment of the severe forms remains difficult to manage. The cytokine storm is usually counteracted with standard medical care and anti-inflammatory drugs, but researchers moved forward their studies on new strategies based on cell therapy approaches. The perinatal tissues, such as placental membranes, amniotic fluid, and umbilical cord derivatives, are enriched in mesenchymal stromal cells (MSCs) that exert a well-known anti-inflammatory role, immune response modulation, and tissue repair. In this review, we focused on umbilical-cord-derived MSCs (UC-MSCs) used in in vitro and in vivo studies in order to evaluate the weakening of the severe symptoms, and on recent clinical trials from different databases, supporting the favorable potential of UC-MSCs as therapeutic strategy.
Collapse
Affiliation(s)
- Eleonora Russo
- Section of Histology and Embryology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Simona Corrao
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per per i Trapianti e Terapie Ad Alta Specializzazione), 90127 Palermo, Italy
| | | | - Giusi Alberti
- Section of Histology and Embryology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University, University Hospital Bratislava, 81499 Bratislava, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03649 Martin, Slovakia
| | - Peter Kruzliak
- Research and Development Services, Pradlacka 18, 61300 Brno, Czech Republic
| | - Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per per i Trapianti e Terapie Ad Alta Specializzazione), 90127 Palermo, Italy
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per per i Trapianti e Terapie Ad Alta Specializzazione), 90127 Palermo, Italy
| | - Cesario Venturina Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Giampiero La Rocca
- Section of Histology and Embryology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
2
|
Ganekal P, Vastrad B, Vastrad C, Kotrashetti S. Identification of biomarkers, pathways, and potential therapeutic targets for heart failure using next-generation sequencing data and bioinformatics analysis. Ther Adv Cardiovasc Dis 2023; 17:17539447231168471. [PMID: 37092838 PMCID: PMC10134165 DOI: 10.1177/17539447231168471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Heart failure (HF) is the most common cardiovascular diseases and the leading cause of cardiovascular diseases related deaths. Increasing molecular targets have been discovered for HF prognosis and therapy. However, there is still an urgent need to identify novel biomarkers. Therefore, we evaluated biomarkers that might aid the diagnosis and treatment of HF. METHODS We searched next-generation sequencing (NGS) dataset (GSE161472) and identified differentially expressed genes (DEGs) by comparing 47 HF samples and 37 normal control samples using limma in R package. Gene ontology (GO) and pathway enrichment analyses of the DEGs were performed using the g: Profiler database. The protein-protein interaction (PPI) network was plotted with Human Integrated Protein-Protein Interaction rEference (HiPPIE) and visualized using Cytoscape. Module analysis of the PPI network was done using PEWCC1. Then, miRNA-hub gene regulatory network and TF-hub gene regulatory network were constructed by Cytoscape software. Finally, we performed receiver operating characteristic (ROC) curve analysis to predict the diagnostic effectiveness of the hub genes. RESULTS A total of 930 DEGs, 464 upregulated genes and 466 downregulated genes, were identified in HF. GO and REACTOME pathway enrichment results showed that DEGs mainly enriched in localization, small molecule metabolic process, SARS-CoV infections, and the citric acid tricarboxylic acid (TCA) cycle and respiratory electron transport. After combining the results of the PPI network miRNA-hub gene regulatory network and TF-hub gene regulatory network, 10 hub genes were selected, including heat shock protein 90 alpha family class A member 1 (HSP90AA1), arrestin beta 2 (ARRB2), myosin heavy chain 9 (MYH9), heat shock protein 90 alpha family class B member 1 (HSP90AB1), filamin A (FLNA), epidermal growth factor receptor (EGFR), phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), cullin 4A (CUL4A), YEATS domain containing 4 (YEATS4), and lysine acetyltransferase 2B (KAT2B). CONCLUSIONS This discovery-driven study might be useful to provide a novel insight into the diagnosis and treatment of HF. However, more experiments are needed in the future to investigate the functional roles of these genes in HF.
Collapse
Affiliation(s)
- Prashanth Ganekal
- Department of General Medicine, Basaveshwara Medical College, Chitradurga, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy, Gadag, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, #253, Bharthinagar, Dharwad 580001, India
| | | |
Collapse
|
3
|
Wharton's Jelly Mesenchymal Stromal Cells from Human Umbilical Cord: a Close-up on Immunomodulatory Molecules Featured In Situ and In Vitro. Stem Cell Rev Rep 2020; 15:900-918. [PMID: 31741193 DOI: 10.1007/s12015-019-09907-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Therapeutic options for end-stage organ failure are often limited to whole organ transplantation. The tolerance or rejection of the transplanted organ is driven by both early non-specific innate and specific adaptive responses. The use of mesenchymal stromal cells (MSCs) is considered a promising tool in regenerative medicine. Human umbilical cord (HUC) is an easily available source of MSCs, without relevant ethical issues. Moreover, Wharton's jelly-derived MSCs (WJ-MSCs), showed consistent immunomodulatory features that may be useful to promote immune tolerance in the host after transplantation. Few data are available on the phenotype of WJ-MSCs in situ. We investigated the expression of immune-related molecules, such as HLAs, IDO, CD276/B7-H3, and others, both in situ (HUC) and in in vitro-cultured WJ-MSCs. Morphological and biochemical techniques were used to define the expression of such molecules. In addition, we focused on the possible role of CD276/B7-H3 on T cells proliferation inhibition. We assessed CD276/B7-H3 expression by WJ-MSCs both in situ and alongside cell culture. WJ-MSCs were able to suppress T cell proliferation in mixed lymphocyte reaction (MLR). Moreover, we describe for the first time a specific role for CD276/B7-H3, since the immunomodulatory ability of WJ-MSCs was abolished upon anti-CD276/B7-H3 antibody addition to the MLR. These results further detail the immune regulation properties and tolerance induction exerted by human WJ-MSCs, in particular pointing to CD276/B7-H3 as one of the main involved factors. These data further suggest WJ-MSCs as potent tools to modulate local immune response in "support-type" regenerative medicine approaches.
Collapse
|
4
|
Expression profiles and potential functions of long non-coding RNA in stable angina pectoris patients from Uyghur population of China. Biosci Rep 2019; 39:BSR20190364. [PMID: 31413167 PMCID: PMC6722491 DOI: 10.1042/bsr20190364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 07/05/2019] [Accepted: 08/09/2019] [Indexed: 12/04/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nt that are involved in cardiovascular diseases (CVDs). To determine whether lncRNAs are involved in stable angina pectoris (SAP), we analysed the expression profile of lncRNAs and mRNAs on a genome-wide scale in SAP of Uyghur population. Five pairs of SAP patients and healthy controls were screened by an Agilent microarray (human lncRNA + mRNA Array V4.0). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to validate the lncRNA expression levels in 50 SAP and 50 controls. Data analyses were performed using R and Bioconductor. A total of 1871 up- and 231 down-regulated lncRNAs were identified to be differentially expressed in the peripheral blood mononuclear cells (PBMCs). Microarray analysis results identified the lncRNAs NR_037652.1, ENST00000607654.1, ENST00000589524.1 and uc004bhb.3, which were confirmed by qRT-PCR. Among screened lncRNAs, the annotation result of their co-expressed mRNAs showed that the most significantly related pathways were the NF-κB signalling pathway, apoptosis and the p53 signalling pathway, while the main significantly related diseases were the cholesterol, calcium and coronary disease. Our study indicated that clusters of lncRNAs were significantly differentially expressed between SAP patients and matched controls. These lncRNAs may play a significant role in SAP development and could serve as biomarkers and potential targets for the future treatment of SAP.
Collapse
|
5
|
Oldershaw R, Owens WA, Sutherland R, Linney M, Liddle R, Magana L, Lash GE, Gill JH, Richardson G, Meeson A. Human Cardiac-Mesenchymal Stem Cell-Like Cells, a Novel Cell Population with Therapeutic Potential. Stem Cells Dev 2019; 28:593-607. [PMID: 30803370 PMCID: PMC6486668 DOI: 10.1089/scd.2018.0170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cardiac stem/progenitors are being used in the clinic to treat patients with a range of cardiac pathologies. However, improvements in heart function following treatment have been reported to be variable, with some showing no response. This discrepancy in response remains unresolved. Mesenchymal stem cells (MSCs) have been highlighted as a regenerative tool as these cells display both immunomodulatory and proregenerative activities. The purpose of this study was to derive a cardiac MSC population to provide an alternative/support to current therapies. We derived human cardiac-mesenchymal stem cell-like cells (CMSCLC), so named as they share some MSC characteristics. However, CMSCLC lack the MSC trilineage differentiation capacity, being capable of only rare adipogenic differentiation and demonstrating low/no osteogenic or chondrogenic potential, a phenotype that may have advantages following transplantation. Furthermore, CMSCLC expressed low levels of p16, high levels of MHCI, and low levels of MHCII. A lack of senescent cells would also be advantageous for cells to be used therapeutically, as would the ability to modulate the immune response. Crucially, CMSCLC display a transcriptional profile that includes genes associated with cardioprotective/cardiobeneficial effects. CMSCLC are also secretory and multipotent, giving rise to cardiomyocytes and endothelial cells. Our findings support CMSCLC as a novel cell population suitable for use for transplantation.
Collapse
Affiliation(s)
- Rachel Oldershaw
- 1 Department of Musculoskeletal Biology, Faculty of Health and Life Sciences, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - W Andrew Owens
- 2 Institute of Genetic Medicine, Cardiovascular Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom.,3 Department of Cardiothoracic Surgery, South Tees Hospitals NHS Foundation Trust, Middlesbrough, United Kingdom
| | - Rachel Sutherland
- 2 Institute of Genetic Medicine, Cardiovascular Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Martin Linney
- 2 Institute of Genetic Medicine, Cardiovascular Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rachel Liddle
- 2 Institute of Genetic Medicine, Cardiovascular Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lissette Magana
- 2 Institute of Genetic Medicine, Cardiovascular Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gendie E Lash
- 4 Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Jason H Gill
- 5 The Faculty of Medical Sciences, School of Pharmacy, Northern Institute for Cancer Research (NICR), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gavin Richardson
- 2 Institute of Genetic Medicine, Cardiovascular Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Annette Meeson
- 2 Institute of Genetic Medicine, Cardiovascular Research Centre, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Wharton’s Jelly Mesenchymal Stromal Cells as a Feeder Layer for the Ex Vivo Expansion of Hematopoietic Stem and Progenitor Cells: a Review. Stem Cell Rev Rep 2016; 13:35-49. [DOI: 10.1007/s12015-016-9702-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Sabry D, Noh O, Samir M. Comparative Evaluation for Potential Differentiation of Endothelial Progenitor Cells and Mesenchymal Stem Cells into Endothelial-Like Cells. Int J Stem Cells 2016; 9:44-52. [PMID: 27426085 PMCID: PMC4961103 DOI: 10.15283/ijsc.2016.9.1.44] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2016] [Indexed: 11/09/2022] Open
Abstract
Understanding the mechanisms of vascular remodeling could lead to more effective treatments for ischemic conditions. We aimed to compare between the abilities of both human Wharton jelly derived mesenchymal stem cells (hMSCs) and human cord blood endothelial progenitor cells (hEPCs) and CD34+ to induce angiogenesis in vitro. hMSCs, hEPCs, and CD34+ were isolated from human umbilical cord blood using microbead (MiniMacs). The cells characterization was assessed by flow cytometry following culture and real-time PCR for vascular endothelial growth factor receptor 2 (VEGFR2) and von Willebrand factor (vWF) to prove stem cells differentiation. The study revealed successful isolation of hEPCs, CD34+, and hMSCs. The hMSCs were identified by gaining CD29+ and CD44+ using FACS analysis. The hEPCs were identified by having CD133+, CD34+, and KDR. The potential ability of hEPCs and CD34+ to differentiate into endothelial-like cells was more than hMSCs. This finding was assessed morphologically in culture and by higher significant VEGFR2 and vWF genes expression (p<0.05) in differentiated hEPCs and CD34+ compared to differentiated hMSCs. hEPCs and CD34+ differentiation into endothelial-like cells were much better than that of hMSCs.
Collapse
Affiliation(s)
- Dina Sabry
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Olfat Noh
- Obstetrics and Gynecology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mai Samir
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Human Umbilical Cord Mesenchymal Stromal Cell Transplantation in Myocardial Ischemia (HUC-HEART Trial). A Study Protocol of a Phase 1/2, Controlled and Randomized Trial in Combination with Coronary Artery Bypass Grafting. Stem Cell Rev Rep 2016; 11:752-60. [PMID: 26123356 DOI: 10.1007/s12015-015-9601-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mesenchymal stem cells (MSCs), which may be obtained from the bone marrow, have been studied for more than a decade in the setting of coronary artery disease (CAD). Adipose tissue-derived MSCs have recently come into focus and are being tested in a series of clinical trials. MSC-like cells have also been derived from a variety of sources, including umbilical cord stroma, or HUC-MSCs. The HUC-HEART trail (ClinicalTrials.gov Identifier: NCT02323477) is a phase 1/2, controlled, multicenter, randomized clinical study of the intramyocardial delivery of allogeneic HUC-MSCs in patients with chronic ischemic cardiomyopathy. A total of 79 patients (ages 30-80) with left ventricle ejection fractions ranging between 25 and 45% will be randomized in a 2:1:1 pattern in order to receive an intramyocardial injection of either HUC-MSCs or autologous bone marrow-derived mononuclear cells (BM-MNCs) in combination with coronary arterial bypass grafting (CABG) surgery. The control group of patients will receive no cells and undergo CABG alone. Human HUC-MSCs will be isolated, propagated and banked in accordance with a cGMP protocol, whereas the autologous BM-MNCs will be isolated via aspiration from the iliac crest and subsequently process in a closed-circuit cell purification system shortly before cell transplantation. The cell injections will be implemented in 10 peri-infarct areas. Baseline and post-transplantation outcome measures will be primarily utilized to test both the safety and the efficacy of the administered cells for up to 12 months.
Collapse
|
9
|
Corrao S, Anzalone R, Lo Iacono M, Corsello T, Di Stefano A, D'Anna SE, Balbi B, Carone M, Sala A, Corona D, Timperio AM, Zolla L, Farina F, de Macario EC, Macario AJL, Cappello F, La Rocca G. Hsp10 nuclear localization and changes in lung cells response to cigarette smoke suggest novel roles for this chaperonin. Open Biol 2015; 4:rsob.140125. [PMID: 25355063 PMCID: PMC4221893 DOI: 10.1098/rsob.140125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Heat-shock protein (Hsp)10 is the co-chaperone for Hsp60 inside mitochondria, but it also resides outside the organelle. Variations in its levels and intracellular distribution have been documented in pathological conditions, e.g. cancer and chronic obstructive pulmonary disease (COPD). Here, we show that Hsp10 in COPD undergoes changes at the molecular and subcellular levels in bronchial cells from human specimens and derived cell lines, intact or subjected to stress induced by cigarette smoke extract (CSE). Noteworthy findings are: (i) Hsp10 occurred in nuclei of epithelial and lamina propria cells of bronchial mucosa from non-smokers and smokers; (ii) human bronchial epithelial (16HBE) and lung fibroblast (HFL-1) cells, in vitro, showed Hsp10 in the nucleus, before and after CSE exposure; (iii) CSE stimulation did not increase the levels of Hsp10 but did elicit qualitative changes as indicated by molecular weight and isoelectric point shifts; and (iv) Hsp10 nuclear levels increased after CSE stimulation in HFL-1, indicating cytosol to nucleus migration, and although Hsp10 did not bind DNA, it bound a DNA-associated protein.
Collapse
Affiliation(s)
- Simona Corrao
- Istituto Euro-Mediterraneo di Scienza e Tecnologia (IEMEST), Palermo, Italy Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, Università degli Studi di Palermo, Palermo, Italy
| | - Rita Anzalone
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, Università degli Studi di Palermo, Palermo, Italy
| | - Melania Lo Iacono
- Istituto Euro-Mediterraneo di Scienza e Tecnologia (IEMEST), Palermo, Italy Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, Università degli Studi di Palermo, Palermo, Italy
| | - Tiziana Corsello
- Istituto Euro-Mediterraneo di Scienza e Tecnologia (IEMEST), Palermo, Italy Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, Università degli Studi di Palermo, Palermo, Italy
| | - Antonino Di Stefano
- Laboratorio di Citoimmunopatologia dell'apparato cardio-respiratorio, Fondazione 'S. Maugeri' IRCCS, Istituto di Veruno, Veruno (NO), Italy
| | | | - Bruno Balbi
- Divisione di Pneumologia, Fondazione 'S. Maugeri' IRCCS, Istituto di Veruno, Veruno (NO), Italy
| | - Mauro Carone
- Fondazione 'S. Maugeri' IRCCS, Istituto Scientifico di Cassano delle Murge, Cassano delle Murge (BA), Italy
| | - Anna Sala
- Dipartimento STEBICEF, Istituto Telethon Dulbecco c/o Universita' degli Studi di Palermo, Sezione di Biologia Cellulare, Palermo, Italy
| | - Davide Corona
- Dipartimento STEBICEF, Istituto Telethon Dulbecco c/o Universita' degli Studi di Palermo, Sezione di Biologia Cellulare, Palermo, Italy
| | | | - Lello Zolla
- Department of Biology and Ecology "La Tuscia" University, Viterbo, Italy
| | - Felicia Farina
- Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, Università degli Studi di Palermo, Palermo, Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, Baltimore, MD, USA IMET, Columbus Center, Baltimore, MD, USA
| | - Alberto J L Macario
- Istituto Euro-Mediterraneo di Scienza e Tecnologia (IEMEST), Palermo, Italy Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, Baltimore, MD, USA IMET, Columbus Center, Baltimore, MD, USA
| | - Francesco Cappello
- Istituto Euro-Mediterraneo di Scienza e Tecnologia (IEMEST), Palermo, Italy Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, Università degli Studi di Palermo, Palermo, Italy
| | - Giampiero La Rocca
- Istituto Euro-Mediterraneo di Scienza e Tecnologia (IEMEST), Palermo, Italy Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
10
|
Suter-Dick L, Alves PM, Blaauboer BJ, Bremm KD, Brito C, Coecke S, Flick B, Fowler P, Hescheler J, Ingelman-Sundberg M, Jennings P, Kelm JM, Manou I, Mistry P, Moretto A, Roth A, Stedman D, van de Water B, Beilmann M. Stem cell-derived systems in toxicology assessment. Stem Cells Dev 2015; 24:1284-96. [PMID: 25675366 DOI: 10.1089/scd.2014.0540] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Industrial sectors perform toxicological assessments of their potential products to ensure human safety and to fulfill regulatory requirements. These assessments often involve animal testing, but ethical, cost, and time concerns, together with a ban on it in specific sectors, make appropriate in vitro systems indispensable in toxicology. In this study, we summarize the outcome of an EPAA (European Partnership of Alternatives to Animal Testing)-organized workshop on the use of stem cell-derived (SCD) systems in toxicology, with a focus on industrial applications. SCD systems, in particular, induced pluripotent stem cell-derived, provide physiological cell culture systems of easy access and amenable to a variety of assays. They also present the opportunity to apply the vast repository of existing nonclinical data for the understanding of in vitro to in vivo translation. SCD systems from several toxicologically relevant tissues exist; they generally recapitulate many aspects of physiology and respond to toxicological and pharmacological interventions. However, focused research is necessary to accelerate implementation of SCD systems in an industrial setting and subsequent use of such systems by regulatory authorities. Research is required into the phenotypic characterization of the systems, since methods and protocols for generating terminally differentiated SCD cells are still lacking. Organotypical 3D culture systems in bioreactors and microscale tissue engineering technologies should be fostered, as they promote and maintain differentiation and support coculture systems. They need further development and validation for their successful implementation in toxicity testing in industry. Analytical measures also need to be implemented to enable compound exposure and metabolism measurements for in vitro to in vivo extrapolation. The future of SCD toxicological tests will combine advanced cell culture technologies and biokinetic measurements to support regulatory and research applications. However, scientific and technical hurdles must be overcome before SCD in vitro methods undergo appropriate validation and become accepted in the regulatory arena.
Collapse
Affiliation(s)
- Laura Suter-Dick
- 1University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland
| | - Paula M Alves
- 2iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,3Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Bas J Blaauboer
- 4Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Klaus-Dieter Bremm
- 5Bayer Pharma AG, Global Drug Discovery-Global Early Development, Wuppertal, Germany
| | - Catarina Brito
- 2iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,3Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sandra Coecke
- 6European Commission Joint Research Centre, Institute for Health and Consumer Protection, EURL ECVAM, Ispra, Italy
| | - Burkhard Flick
- 7BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | | | - Jürgen Hescheler
- 9Institut for Neurophysiology, University of Cologne, Cologne, Germany
| | | | - Paul Jennings
- 11Division of Physiology, Department of Physiology and Medical Physics, Innsbruck Medical University, Innsbruck, Austria
| | | | - Irene Manou
- 13European Partnership for Alternative Approaches to Animal Testing (EPAA), B-Brussels, Belgium
| | - Pratibha Mistry
- 14Syngenta Ltd., Product Safety, Jealott's Hill International Research Station, Berkshire, United Kingdom
| | - Angelo Moretto
- 15Dipartimento di Scienze Biochimiche e Cliniche, Università degli Studi di Milano, Milano, Italy.,16Centro Internazionale per gli Antiparassitari e la Prevenzione Sanitaria, Luigi Sacco Hospital, Milano, Italy
| | - Adrian Roth
- 17F. Hoffmann-La Roche Ltd., Innovation Center Basel, Pharmaceutical Sciences, Basel, Switzerland
| | - Donald Stedman
- 18Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - Bob van de Water
- 19Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | | |
Collapse
|
11
|
Chick stem cells: current progress and future prospects. Stem Cell Res 2013; 11:1378-92. [PMID: 24103496 PMCID: PMC3989061 DOI: 10.1016/j.scr.2013.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 09/06/2013] [Accepted: 09/13/2013] [Indexed: 12/15/2022] Open
Abstract
Chick embryonic stem cells (cESCs) can be derived from cells obtained from stage X embryos (blastoderm stage); these have the ability to contribute to all somatic lineages in chimaeras, but not to the germ line. However, lines of stem cells that are able to contribute to the germ line can be established from chick primordial germ cells (cPGCs) and embryonic germ cells (cEGCs). This review provides information on avian stem cells, emphasizing different sources of cells and current methods for derivation and culture of pluripotent cells from chick embryos. We also review technologies for isolation and derivation of chicken germ cells and the production of transgenic birds. Chick embryonic stem cells (cESCs) can be derived from a variety of sources. cESCs can contribute to all somatic cell types but not to the germ line. germ cells can be isolated from early embryos, embryonic blood and gonads. germ cells can establish self-renewing lines and contribute to the germline.
Collapse
|
12
|
Yang HT, Chao KC. Foetal defence against cancer: a hypothesis. J Cell Mol Med 2013; 17:1096-8. [PMID: 23815673 PMCID: PMC4118168 DOI: 10.1111/jcmm.12095] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/19/2013] [Accepted: 05/24/2013] [Indexed: 01/04/2023] Open
Affiliation(s)
- Hui-Tai Yang
- Department of Internal Medicine, Taipei City Hospital, Taipei, Taiwan
| | | |
Collapse
|