1
|
Hamza S, Garanina EE, Alsaadi M, Khaiboullina SF, Tezcan G. Blocking the Hormone Receptors Modulates NLRP3 in LPS-Primed Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24054846. [PMID: 36902278 PMCID: PMC10002867 DOI: 10.3390/ijms24054846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
NOD-like receptor protein 3 (NLRP3) may contribute to the growth and propagation of breast cancer (BC). The effect of estrogen receptor-α (ER-α), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) on NLRP3 activation in BC remains unknown. Additionally, our knowledge of the effect of blocking these receptors on NLRP3 expression is limited. We used GEPIA, UALCAN, and the Human Protein Atlas for transcriptomic profiling of NLRP3 in BC. Lipopolysaccharide (LPS) and adenosine 5'-triphosphate (ATP) were used to activate NLRP3 in luminal A MCF-7 and in TNBC MDA-MB-231 and HCC1806 cells. Tamoxifen (Tx), mifepristone (mife), and trastuzumab (Tmab) were used to block ER-α, PR, and HER2, respectively, on inflammasome activation in LPS-primed MCF7 cells. The transcript level of NLRP3 was correlated with ER-ɑ encoding gene ESR1 in luminal A (ER-α+, PR+) and TNBC tumors. NLRP3 protein expression was higher in untreated and LPS/ATP-treated MDA-MB-231 cells than in MCF7 cells. LPS/ATP-mediated NLRP3 activation reduced cell proliferation and recovery of wound healing in both BC cell lines. LPS/ATP treatment prevented spheroid formation in MDA-MB-231 cells but did not affect MCF7. HGF, IL-3, IL-8, M-CSF, MCP-1, and SCGF-b cytokines were secreted in both MDA-MB-231 and MCF7 cells in response to LPS/ATP treatment. Tx (ER-α inhibition) promoted NLRP3 activation and increased migration and sphere formation after LPS treatment of MCF7 cells. Tx-mediated activation of NLRP3 was associated with increased secretion of IL-8 and SCGF-b compared to LPS-only-treated MCF7 cells. In contrast, Tmab (Her2 inhibition) had a limited effect on NLRP3 activation in LPS-treated MCF7 cells. Mife (PR inhibition) opposed NLRP3 activation in LPS-primed MCF7 cells. We have found that Tx increased the expression of NLRP3 in LPS-primed MCF7. These data suggest a link between blocking ER-α and activation of NLRP3, which was associated with increased aggressiveness of the ER-α+ BC cells.
Collapse
Affiliation(s)
- Shaimaa Hamza
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Mohammad Alsaadi
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Svetlana F. Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: or (S.F.K.); (G.T.); Fax: +1-775682-8258 (S.F.K.); +90-224-294-00-78 (G.T.)
| | - Gulcin Tezcan
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa 16059, Turkey
- Correspondence: or (S.F.K.); (G.T.); Fax: +1-775682-8258 (S.F.K.); +90-224-294-00-78 (G.T.)
| |
Collapse
|
2
|
Jang KW, Tu TW, Rosenblatt RB, Burks SR, Frank JA. MR-guided pulsed focused ultrasound improves mesenchymal stromal cell homing to the myocardium. J Cell Mol Med 2020; 24:13278-13288. [PMID: 33067927 PMCID: PMC7701528 DOI: 10.1111/jcmm.15944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/28/2020] [Accepted: 09/14/2020] [Indexed: 12/26/2022] Open
Abstract
Image-guided pulsed focused ultrasound (pFUS) is a non-invasive technique that can increase tropism of intravenously (IV)-infused mesenchymal stromal cells (MSC) to sonicated tissues. MSC have shown promise for cardiac regenerative medicine strategies but can be hampered by inefficient homing to the myocardium. This study sonicated the left ventricles (LV) in rats with magnetic resonance imaging (MRI)-guided pFUS and examined both proteomic responses and subsequent MSC tropism to treated myocardium. T2-weighted MRI was used for pFUS targeting of the entire LV. pFUS increased numerous pro- and anti-inflammatory cytokines, chemokines, and trophic factors and cell adhesion molecules in the myocardial microenvironment for up to 48 hours post-sonication. Cardiac troponin I and N-terminal pro-B-type natriuretic peptide were elevated in the serum and myocardium. Immunohistochemistry revealed transient hypoxia and immune cell infiltration in pFUS-targeted regions. Myocardial tropism of IV-infused human MSC following pFUS increased twofold-threefold compared with controls. Proteomic and histological changes in myocardium following pFUS suggested a reversible inflammatory and hypoxic response leading to increased tropism of MSC. MR-guided pFUS could represent a non-invasive modality to improve MSC therapies for cardiac regenerative medicine approaches.
Collapse
Affiliation(s)
- Kee W Jang
- Frank Laboratory, Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA.,Office of Product Evaluation and Quality, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Tsang-Wei Tu
- Frank Laboratory, Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA.,Molecular Imaging Laboratory, Department of Radiology, Howard University, Washington, DC, USA.,Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Robert B Rosenblatt
- Frank Laboratory, Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Scott R Burks
- Frank Laboratory, Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Joseph A Frank
- Frank Laboratory, Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, USA.,National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Cortez-Toledo E, Rose M, Agu E, Dahlenburg H, Yao W, Nolta JA, Zhou P. Enhancing Retention of Human Bone Marrow Mesenchymal Stem Cells with Prosurvival Factors Promotes Angiogenesis in a Mouse Model of Limb Ischemia. Stem Cells Dev 2018; 28:114-119. [PMID: 30398391 DOI: 10.1089/scd.2018.0090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) offer great promise in the treatment of ischemic injuries, including stroke, heart infarction, and limb ischemia. However, poor cell survival after transplantation remains a major obstacle to achieve effective MSC therapies. To improve cell survival and retention, we transplanted human bone marrow MSCs with or without a specific prosurvival factor (PSF) cocktail consisting of IGF1, Bcl-XL, a caspase inhibitor, a mitochondrial pathway inhibitor, and Matrigel into the limbs of immune deficient mice, after induction of hindlimb ischemia. The PSF markedly prolonged the retention of the MSCs in the ischemic limb muscles as demonstrated by bioluminescence imaging. Using microcomputed tomography to image the limb muscle vasculature in the mice 9 weeks after the transplantation, we found that the mice transplanted with MSCs without PSF did not show a significant increase in the blood vessels in the ischemic limb compared with the nontransplanted control mice. In contrast, the mice transplanted with MSCs plus PSF showed a significant increase in the blood vessels, especially the larger and branching vessels, in the ischemic limb compared with the control mice that did not receive MSCs. Thus, we demonstrated that prolonged retention of MSCs using PSF effectively promoted angiogenesis in ischemic animal limbs. This study highlights the importance of enhancing cell survival in the development of effective MSC therapies to treat vascular diseases.
Collapse
Affiliation(s)
- Elizabeth Cortez-Toledo
- 1 Stem Cell Program, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California
| | - Melanie Rose
- 1 Stem Cell Program, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California
| | - Emmanuel Agu
- 1 Stem Cell Program, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California
| | - Heather Dahlenburg
- 1 Stem Cell Program, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California
| | - Wei Yao
- 2 Center for Musculoskeletal Health, University of California Davis Medical Center, Sacramento, California
| | - Jan A Nolta
- 1 Stem Cell Program, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California
| | - Ping Zhou
- 1 Stem Cell Program, Department of Internal Medicine, University of California Davis Medical Center, Sacramento, California
| |
Collapse
|
4
|
Zhang Q, Liu S, Li T, Yuan L, Liu H, Wang X, Wang F, Wang S, Hao A, Liu D, Wang Z. Preconditioning of bone marrow mesenchymal stem cells with hydrogen sulfide improves their therapeutic potential. Oncotarget 2018; 7:58089-58104. [PMID: 27517324 PMCID: PMC5295414 DOI: 10.18632/oncotarget.11166] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/27/2016] [Indexed: 12/15/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) transplantation has shown great promises for treating various brain diseases. However, poor viability of transplanted BMSCs in injured brain has limited the therapeutic efficiency. Hypoxia-ischemic injury is one of major mechanisms underlying the survival of transplanted BMSCs. We investigated the mechanism of preconditioning of BMSCs with hydrogen sulfide (H2S), which has been proposed as a novel therapeutic strategy for hypoxia-ischemic injury. In this study, we demonstrated that preconditioning of NaHS, a H2S donor, effectively suppressed hypoxia-ischemic-induced apoptosis whereby the rise in Bax/Bcl-2 ratio. Further analyses revealed Akt and ERK1/2 pathways were involved in the protective effects of NaHS. In addition, NaHS preconditioning increased secretion of BDNF and VEGF in BMSCs. Consistent with in vitro data, transplantation of NaHS preconditioned BMSCs in vivo further enhanced the therapeutic effects of BMSCs on neuronal injury and neurological recovery, associated with increased vessel density and upregulation of BDNF and VEGF in the ischemic tissue. These findings suggest that H2S could enhance the therapeutic effects of BMSCs. The underlying mechanisms might be due to enhanced capacity of BMSCs and upregulation of protective cytokines in the hypoxia tissue.
Collapse
Affiliation(s)
- Qun Zhang
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Song Liu
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Tong Li
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Lin Yuan
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Hansen Liu
- Department of Medical Psychology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Xueer Wang
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Fuwu Wang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Shuanglian Wang
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Aijun Hao
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Dexiang Liu
- Department of Medical Psychology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| | - Zhen Wang
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China.,Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
5
|
Transplantation of Hypoxic-Preconditioned Bone Mesenchymal Stem Cells Retards Intervertebral Disc Degeneration via Enhancing Implanted Cell Survival and Migration in Rats. Stem Cells Int 2018. [PMID: 29535780 PMCID: PMC5832130 DOI: 10.1155/2018/7564159] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Objective Special hypoxic and hypertonic microenvironment in intervertebral discs (IVDs) decreases the treatment effect of cell transplantation. We investigated the hypothesis that hypoxic preconditioning (HP) could improve the therapeutic effect of bone mesenchymal stem cells (BMSCs) to IVD degeneration. Methods BMSCs from green fluorescent protein-transgenic rats were pretreated with cobalt chloride (CoCl2, 100 μM, 24 h) for hypoxic conditions in vitro. Apoptosis (related pathways of caspase-3 and bcl-2) and migration (related pathways of HIF-1α and CXCR4) were detected in BMSCs. In vivo, BMSCs and HP BMSCs (H-BMSCs) were injected into the rat model of IVD degeneration. The IVD height, survival, migration, and differentiation of transplanted BMSCs and matrix protein expression (collagen II, aggrecan, and MMP-13) were tested. Results H-BMSCs could extensively decrease IVD degeneration by increasing IVD height and collagen II and aggrecan expressions when compared with BMSCs. Significantly, more GFP-positive BMSCs were observed in the nucleus pulposus and annulus fibrosus regions of IVD. HP could significantly decrease BMSC apoptosis (activating bcl-2 and inhibiting caspase-3) and improve BMSC migration (increasing HIF-1α and CXCR4) in vitro. Conclusion HP could significantly enhance the capacity of BMSCs to repair DDD by increasing the survival and migration of implanted cells and increasing matrix protein expression.
Collapse
|
6
|
Fotia C, Massa A, Boriani F, Baldini N, Granchi D. Prolonged exposure to hypoxic milieu improves the osteogenic potential of adipose derived stem cells. J Cell Biochem 2016; 116:1442-53. [PMID: 25648991 DOI: 10.1002/jcb.25106] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/27/2015] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSC) have been widely used in orthopedics for several applications. Conventionally, MSC are maintained under 21% O2 which does not reflect the real O2 tension in vivo. Recently, it was reported that different O2 conditions can give different cellular responses. Here, we investigated whether prolonged exposure to hypoxia affects the osteogenic differentiation of adipose-derived stem cells (ASC). ASC from six individuals were cultured under "low" (2-3%) or "air" (21%) oxygen tensions, either without or with osteogenic stimuli. The effect of the O2 tension was evaluated on cell proliferation, surface antigens, stemness and bone-related genes expression, alkaline phosphatase activity (ALP), mineralization activity, and release of osteogenic growth factors. Without differentiating stimuli, hypoxia favored ASC proliferation, reduced the number of CD184+ and CD34+ cells, and preserved the expression of NANOG and SOX2. The combination of hypoxia and osteogenic medium induced a high proliferation rate, a rapid and more pronounced mineralization activity, a higher expression of genes related to the MSC differentiation, a higher release of mitogenic growth factors (bFGF, PDGF-BB), and the decrease in TGF-β secretion, an inhibitor of the early stage of the osteoblast differentiation. We demonstrated that hypoxia acts dually, favoring ASC proliferation and the maintenance of the stemness in the absence of osteogenic stimuli, but inducing the differentiation in a bone-like microenvironment. In conclusion, prolonged cell culture in hypoxic microenvironment represents a proper method to modulate the stem cell function that may be used in several applications, for example, studies on bone pathophysiology or bone-tissue engineering.
Collapse
Affiliation(s)
- Caterina Fotia
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Annamaria Massa
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Filippo Boriani
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Nicola Baldini
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Donatella Granchi
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute, Bologna, Italy
| |
Collapse
|
7
|
Tebebi PA, Burks SR, Kim SJ, Williams RA, Nguyen BA, Venkatesh P, Frenkel V, Frank JA. Cyclooxygenase-2 or tumor necrosis factor-α inhibitors attenuate the mechanotransductive effects of pulsed focused ultrasound to suppress mesenchymal stromal cell homing to healthy and dystrophic muscle. Stem Cells 2016; 33:1173-86. [PMID: 25534849 DOI: 10.1002/stem.1927] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/05/2014] [Accepted: 11/21/2014] [Indexed: 12/13/2022]
Abstract
Maximal homing of infused stem cells to diseased tissue is critical for regenerative medicine. Pulsed focused ultrasound (pFUS) is a clinically relevant platform to direct stem cell migration. Through mechanotransduction, pFUS establishes local gradients of cytokines, chemokines, trophic factors (CCTF) and cell adhesion molecules (CAM) in treated skeletal muscle that subsequently infused mesenchymal stromal cells (MSC) can capitalize to migrate into the parenchyma. Characterizing molecular responses to mechanical pFUS effects revealed tumor necrosis factor-alpha (TNFα) drives cyclooxygenase-2 (COX2) signaling to locally increase CCTF/CAM that are necessary for MSC homing. pFUS failed to increase chemoattractants and induce MSC homing to treated muscle in mice pretreated with ibuprofen (nonspecific COX inhibitor) or etanercept (TNFα inhibitor). pFUS-induced MSC homing was also suppressed in COX2-knockout mice, demonstrating ibuprofen blocked the mechanically induced CCTF/CAM by acting on COX2. Anti-inflammatory drugs, including ibuprofen, are administered to muscular dystrophy (MD) patients, and ibuprofen also suppressed pFUS-induced homing to muscle in a mouse model of MD. Drug interactions with cell therapies remain unexplored and are not controlled for during clinical cell therapy trials. This study highlights potentially negative drug-host interactions that suppress stem cell homing and could undermine cell-based approaches for regenerative medicine.
Collapse
Affiliation(s)
- Pamela A Tebebi
- Department of Biomedical Engineering, Catholic University of America, Washington, District of Columbia, USA; Frank Lab, Radiology and Imaging Sciences Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Tang T, Jiang H, Yu Y, He F, Ji SZ, Liu YY, Wang ZS, Xiao SC, Tang C, Wang GY, Xia ZF. A new method of wound treatment: targeted therapy of skin wounds with reactive oxygen species-responsive nanoparticles containing SDF-1α. Int J Nanomedicine 2015; 10:6571-85. [PMID: 26527874 PMCID: PMC4621221 DOI: 10.2147/ijn.s88384] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objective To accelerate wound healing through promoting vascularization by using reactive oxygen species (ROS)-responsive nanoparticles loaded with stromal cell-derived factor-1α(SDF-1α). Methods The ROS-reactive nanomaterial poly-(1,4-phenyleneacetone dimethylene thioketal) was synthesized, and its physical and chemical properties were characterized. ROS-responsive nanoparticles containing SDF-1α were prepared through a multiple emulsion solvent evaporation method. The loading capacity, stability, activity of the encapsulated protein, toxicity, and in vivo distribution of these nanoparticles were determined. These nanoparticles were administered by intravenous infusion to mice with full-thickness skin defects to study their effects on the directed chemotaxis of bone marrow mesenchymal stem cells, wound vascularization, and wound healing. Results The synthesized ROS-reactive organic polymer poly-(1,4-phenyleneacetone dimethylene thioketal) possessed a molecular weight of approximately 11.5 kDa with a dispersity of 1.97. ROS-responsive nanoparticles containing SDF-1α were prepared with an average diameter of 110 nm and a drug loading capacity of 1.8%. The encapsulation process showed minimal effects on the activity of SDF-1α, and it could be effectively released from the nanoparticles in the presence of ROS. Encapsulated SDF-1α could exist for a long time in blood. In mice with full-thickness skin defects, SDF-1α was effectively released and targeted to the wounds, thus promoting the chemotaxis of bone marrow mesenchymal stem cells toward the wound and its periphery, inducing wound vascularization, and accelerating wound healing.
Collapse
Affiliation(s)
- Tao Tang
- Department of Burn Surgery, The Second Military Medical University Affiliated Changhai Hospital, Shanghai, People's Republic of China
| | - Hao Jiang
- Department of Burn Surgery, The Second Military Medical University Affiliated Changhai Hospital, Shanghai, People's Republic of China
| | - Yuan Yu
- Department of Pharmaceutics, School of Pharmacy, The Second Military Medical University, Shanghai, People's Republic of China
| | - Fang He
- Department of Burn Surgery, The Second Military Medical University Affiliated Changhai Hospital, Shanghai, People's Republic of China
| | - Shi-zhao Ji
- Department of Burn Surgery, The Second Military Medical University Affiliated Changhai Hospital, Shanghai, People's Republic of China
| | - Ying-ying Liu
- Department of Burn Surgery, The Second Military Medical University Affiliated Changhai Hospital, Shanghai, People's Republic of China
| | - Zhong-shan Wang
- Department of Burn Surgery, The Second Military Medical University Affiliated Changhai Hospital, Shanghai, People's Republic of China
| | - Shi-chu Xiao
- Department of Burn Surgery, The Second Military Medical University Affiliated Changhai Hospital, Shanghai, People's Republic of China
| | - Cui Tang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Guang-Yi Wang
- Department of Burn Surgery, The Second Military Medical University Affiliated Changhai Hospital, Shanghai, People's Republic of China
| | - Zhao-Fan Xia
- Department of Burn Surgery, The Second Military Medical University Affiliated Changhai Hospital, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Turtzo LC, Budde MD, Dean DD, Gold EM, Lewis BK, Janes L, Lescher J, Coppola T, Yarnell A, Grunberg NE, Frank JA. Failure of intravenous or intracardiac delivery of mesenchymal stromal cells to improve outcomes after focal traumatic brain injury in the female rat. PLoS One 2015; 10:e0126551. [PMID: 25946089 PMCID: PMC4422703 DOI: 10.1371/journal.pone.0126551] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/03/2015] [Indexed: 01/16/2023] Open
Abstract
Mesenchymal stromal cells secrete a variety of anti-inflammatory factors and may provide a regenerative medicine option for the treatment of traumatic brain injury. The present study investigates the efficacy of multiple intravenous or intracardiac administrations of rat mesenchymal stromal cells or human mesenchymal stromal cells in female rats after controlled cortical impact by in vivo MRI, neurobehavior, and histopathology evaluation. Neither intravenous nor intracardiac administration of mesenchymal stromal cells derived from either rats or humans improved MRI measures of lesion volume or neurobehavioral outcome compared to saline treatment. Few mesenchymal stromal cells (<0.0005% of injected dose) were found within 3 days of last dosage at the site of injury after either delivery route, with no mesenchymal stromal cells being detectable in brain at 30 or 56 days post-injury. These findings suggest that non-autologous mesenchymal stromal cells therapy via intravenous or intracardiac administration is not a promising treatment after focal contusion traumatic brain injury in this female rodent model.
Collapse
Affiliation(s)
- L. Christine Turtzo
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Matthew D. Budde
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dana D. Dean
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eric M. Gold
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bobbi K. Lewis
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lindsay Janes
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jacob Lescher
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tiziana Coppola
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Angela Yarnell
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Neil E. Grunberg
- Department of Medical and Clinical Psychology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Joseph A. Frank
- Frank Laboratory, National Institutes of Health, Bethesda, Maryland, United States of America
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
10
|
Choi JR, Pingguan-Murphy B, Wan Abas WAB, Yong KW, Poon CT, Noor Azmi MA, Omar SZ, Chua KH, Xu F, Wan Safwani WKZ. In situ normoxia enhances survival and proliferation rate of human adipose tissue-derived stromal cells without increasing the risk of tumourigenesis. PLoS One 2015; 10:e0115034. [PMID: 25615717 PMCID: PMC4304807 DOI: 10.1371/journal.pone.0115034] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 11/18/2014] [Indexed: 12/25/2022] Open
Abstract
Adipose tissue-derived stromal cells (ASCs) natively reside in a relatively low-oxygen tension (i.e., hypoxic) microenvironment in human body. Low oxygen tension (i.e., in situ normoxia), has been known to enhance the growth and survival rate of ASCs, which, however, may lead to the risk of tumourigenesis. Here, we investigated the tumourigenic potential of ASCs under their physiological condition to ensure their safe use in regenerative therapy. Human ASCs isolated from subcutaneous fat were cultured in atmospheric O2 concentration (21% O2) or in situ normoxia (2% O2). We found that ASCs retained their surface markers, tri-lineage differentiation potential, and self-renewal properties under in situ normoxia without altering their morphology. In situ normoxia displayed a higher proliferation and viability of ASCs with less DNA damage as compared to atmospheric O2 concentration. Moreover, low oxygen tension significantly up-regulated VEGF and bFGF mRNA expression and protein secretion while reducing the expression level of tumour suppressor genes p16, p21, p53, and pRb. However, there were no significant differences in ASCs telomere length and their relative telomerase activity when cultured at different oxygen concentrations. Collectively, even with high proliferation and survival rate, ASCs have a low tendency of developing tumour under in situ normoxia. These results suggest 2% O2 as an ideal culture condition for expanding ASCs efficiently while maintaining their characteristics.
Collapse
Affiliation(s)
- Jane Ru Choi
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Wan Abu Bakar Wan Abas
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Kar Wey Yong
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Chi Tat Poon
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Mat Adenan Noor Azmi
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Siti Zawiah Omar
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Kien Hui Chua
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Feng Xu
- The Key Library of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Wan Kamarul Zaman Wan Safwani
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|