1
|
Soni N, Nandi G, Chaudhary M, Bissa B. The role of ncRNA in the co-regulation of autophagy and exosome pathways during cancer progression. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119523. [PMID: 37348764 DOI: 10.1016/j.bbamcr.2023.119523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
Since its discovery a few decades ago, autophagy has been recognized as a crucial signaling pathway, linked to the recycling of cellular components in nutrient stress. Autophagy is a two-way sword, playing a dual role in tumorigenesis. In this catabolic process, dysfunctional organelles, biomolecules, and misfolded proteins are sequestered in the autophagosome and sent to the lysosome for degradation. Alongside, there are cellular messengers called exosomes, which are released from cells and are known to communicate and regulate metabolism in recipient cells. Multivesicular bodies (MVB) act as the intricate link between autophagy and exosome pathways. The continuous crosstalk between the two pathways is coordinated and regulated by multiple players among which ncRNA is the emerging candidates. The exosomes carry varied cargo of which non-coding RNA exerts an immediate regulatory effect on recipient cells. ncRNA is known to exhibit dual behavior in both promoting and inhibiting tumor growth. There is increasing evidence for the involvement of ncRNAs' in the regulation of different hallmarks of cancer. Different ncRNAs are involved in the co-regulation of autophagy and exosome pathways and therefore represent a superior therapeutic approach to target cancer chemoresistance. Here, we will discuss the ncRNA involved in regulating autophagy, and exosomes pathways and its relevance in cancer therapeutics.
Collapse
Affiliation(s)
- Naveen Soni
- Dept. of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Gargi Nandi
- Dept. of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Megha Chaudhary
- Dept. of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Bhawana Bissa
- Dept. of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India.
| |
Collapse
|
2
|
miRNome and Proteome Profiling of Human Keratinocytes and Adipose Derived Stem Cells Proposed miRNA-Mediated Regulations of Epidermal Growth Factor and Interleukin 1-Alpha. Int J Mol Sci 2023; 24:ijms24054956. [PMID: 36902387 PMCID: PMC10002856 DOI: 10.3390/ijms24054956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 03/08/2023] Open
Abstract
Wound healing is regulated by complex crosstalk between keratinocytes and other cell types, including stem cells. In this study, a 7-day direct co-culture model of human keratinocytes and adipose-derived stem cells (ADSCs) was proposed to study the interaction between the two cell types, in order to identify regulators of ADSCs differentiation toward the epidermal lineage. As major mediators of cell communication, miRNome and proteome profiles in cell lysates of cultured human keratinocytes and ADSCs were explored through experimental and computational analyses. GeneChip® miRNA microarray, identified 378 differentially expressed miRNAs; of these, 114 miRNAs were upregulated and 264 miRNAs were downregulated in keratinocytes. According to miRNA target prediction databases and the Expression Atlas database, 109 skin-related genes were obtained. Pathway enrichment analysis revealed 14 pathways including vesicle-mediated transport, signaling by interleukin, and others. Proteome profiling showed a significant upregulation of the epidermal growth factor (EGF) and Interleukin 1-alpha (IL-1α) compared to ADSCs. Integrated analysis through cross-matching the differentially expressed miRNA and proteins suggested two potential pathways for regulations of epidermal differentiation; the first is EGF-based through the downregulation of miR-485-5p and miR-6765-5p and/or the upregulation of miR-4459. The second is mediated by IL-1α overexpression through four isomers of miR-30-5p and miR-181a-5p.
Collapse
|
3
|
He W, Meng J. CDC20: a novel therapeutic target in cancer. Am J Transl Res 2023; 15:678-693. [PMID: 36915766 PMCID: PMC10006751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/27/2022] [Indexed: 03/16/2023]
Abstract
Cell division cycle protein 20 (Cdc20) is a member of the cell cyclin family. In the early stage of mitosis, it activates the anaphase-promoting complex (APC) and forms the E3 ubiquitin ligase complex APCCdc20, which destroys key regulators of the cell cycle and promotes mitosis. Cdc20 serves as a target for the spindle checkpoint, ensuring proper chromosome segregation. As an oncoprotein, Cdc20 is highly expressed in a variety of malignant tumors, and Cdc20 overexpression is associated with poor prognosis of these tumors. This review aims to dissect the tumorigenic role of Cdc20 in human malignancies and its targeting strategies.
Collapse
Affiliation(s)
- Wenning He
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University Hohhot 010050, Inner Mongolia Autonomous Region, P. R. China
| | - Jun Meng
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University Hohhot 010050, Inner Mongolia Autonomous Region, P. R. China
| |
Collapse
|
4
|
Stang A, Weilert H, Lipp MJ, Oldhafer KJ, Hoheisel JD, Zhang C, Bauer AS. MicroRNAs in blood act as biomarkers of colorectal cancer and indicate potential therapeutic targets. Mol Oncol 2021; 15:2480-2490. [PMID: 34288395 PMCID: PMC8410571 DOI: 10.1002/1878-0261.13065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
Association studies have linked alterations of blood-derived microRNAs (miRNAs) with colorectal cancer (CRC). Here, we performed a microarray-based comparison of the profiles of 2549 miRNAs in 80 blood samples from healthy donors and patients with colorectal adenomas, colorectal diverticulitis and CRC at different stages. Confirmation by quantitative real-time PCR (RT-PCR) was complemented by validation of identified molecules in another 36 blood samples. No variations in miRNA levels were observed in samples from patients with colorectal adenomas and diverticulitis or from healthy donors. However, there were 179 CRC-associated miRNAs of differential abundance compared to healthy controls. Only three - miR-1225-5p, miR-1207-5p and miR-4459 - exhibited increased levels at all CRC stages. Most deregulated miRNAs (128/179, 71%) specifically predicted metastatic CRC. Pathway analysis found several cancer-related pathways to which the miRNAs contribute in various ways. In conclusion, miRNA levels in blood vary throughout CRC progression and affect cellular functions relevant to haematogenous CRC progression and dissemination. The identified biomarker and therapeutic candidates require further confirmation of their clinical relevance.
Collapse
Affiliation(s)
- Axel Stang
- Department of Haematology, Oncology & Palliative CareAsklepios Hospital BarmbekHamburgGermany
- Faculty of MedicineSemmelweis UniversityHamburgGermany
| | - Hauke Weilert
- Department of Haematology, Oncology & Palliative CareAsklepios Hospital BarmbekHamburgGermany
- Faculty of MedicineSemmelweis UniversityHamburgGermany
| | - Michael J. Lipp
- Faculty of MedicineSemmelweis UniversityHamburgGermany
- Department of Abdominal & Visceral SurgeryAsklepios Hospital BarmbekHamburgGermany
| | - Karl J. Oldhafer
- Faculty of MedicineSemmelweis UniversityHamburgGermany
- Department of Abdominal & Visceral SurgeryAsklepios Hospital BarmbekHamburgGermany
| | - Jörg D. Hoheisel
- Division of Functional Genome AnalysisGerman Cancer Research CenterHeidelbergGermany
| | - Chaoyang Zhang
- Division of Functional Genome AnalysisGerman Cancer Research CenterHeidelbergGermany
| | - Andrea S. Bauer
- Division of Functional Genome AnalysisGerman Cancer Research CenterHeidelbergGermany
| |
Collapse
|
5
|
Lu P, Li M, Zhang D, Jiang W. Lnc-ing pluripotency maintenance and early differentiation in human pluripotent stem cells. FASEB J 2021; 35:e21438. [PMID: 33749897 DOI: 10.1096/fj.202002278r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/28/2020] [Accepted: 01/29/2021] [Indexed: 01/17/2023]
Abstract
Pluripotency maintenance and lineage differentiation are two major characteristics of human embryonic and induced pluripotent stem cells. The determination of self-renewal or differentiation is under the exquisite control of the gene regulatory network, which is composed of transcription factors, signaling pathways, metabolic factors, chromatin or histone modifiers, miRNAs, and lncRNAs. Growing evidence has shown that long noncoding RNAs (lncRNAs) play important roles in epigenetic, transcriptional, and posttranscriptional gene regulation during the cell fate determination of pluripotent stem cells. Here, we summarize recent reports of lncRNA functions in pluripotency maintenance/exit and the early germ layer specification of human pluripotent stem cells. We also illustrate four major lncRNA functional mechanisms according to different types of cofactors: chromatin or histone modifiers, transcription factors, canonical and noncanonical RNA-binding proteins, and miRNAs. Further understanding of lncRNA-based regulation will provide more insights into the drivers manipulating cell fate and promote the therapeutic and research potential of human embryonic and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Pei Lu
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Mao Li
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Wei Jiang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
6
|
Jin L, Hong N, Ai X, Wang J, Li Z, Han Z, Zhang Q, Yu Y, Sun K. LncRNAs as Therapeutic Targets for Autophagy-involved Cardiovascular Diseases: A Review of Molecular Mechanism and T herapy Strategy. Curr Med Chem 2021; 28:1796-1814. [PMID: 32196441 DOI: 10.2174/0929867327666200320161835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/12/2020] [Accepted: 03/06/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) remain the leading cause of death worldwide. The concept of precision medicine in CVD therapy today requires the incorporation of individual genetic and environmental variability to achieve personalized disease prevention and tailored treatment. Autophagy, an evolutionarily conserved intracellular degradation process, has been demonstrated to be essential in the pathogenesis of various CVDs. Nonetheless, there have been no effective treatments for autophagy- involved CVDs. Long noncoding RNAs (lncRNAs) are noncoding RNA sequences that play versatile roles in autophagy regulation, but much needs to be explored about the relationship between lncRNAs and autophagy-involved CVDs. SUMMARY Increasing evidence has shown that lncRNAs contribute considerably to modulate autophagy in the context of CVDs. In this review, we first summarize the current knowledge of the role lncRNAs play in cardiovascular autophagy and autophagy-involved CVDs. Then, recent developments of antisense oligonucleotides (ASOs) designed to target lncRNAs to specifically modulate autophagy in diseased hearts and vessels are discussed, focusing primarily on structure-activity relationships of distinct chemical modifications and relevant clinical trials. PERSPECTIVE ASOs are promising in cardiovascular drug innovation. We hope that future studies of lncRNA-based therapies would overcome existing technical limitations and help people who suffer from autophagy-involved CVDs.
Collapse
Affiliation(s)
- Lihui Jin
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Nanchao Hong
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Xuefeng Ai
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jing Wang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Zhuoyan Li
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Zhenyuan Han
- Department of Oral Pathology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Qi Zhang
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Yu Yu
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| |
Collapse
|
7
|
Qiu W, Deng Y, Zhuang M, Wang P, Li C, Li Y, Zhu B, Zhang P, Li D, Sun Y, Yang J, Cao S, Sun Y. Identification of differentially expressed long non-coding RNAs in mice intestines after severe burns and a preliminary study into the key gene H19. J Burn Care Res 2021; 43:16-29. [PMID: 33512532 DOI: 10.1093/jbcr/irab017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND The intestine is considered the key organ in stress response to severe burns and injury to intestine after severe burns can be fatal. However, the injury and subsequent repair of intestinal tissues after severe burns at the genetic level are poorly understood. Long non-coding RNAs (lncRNAs) have important functions in regulating many biological processes, including gene transcription and translation. Autophagy is a process of intracellular degradation and reutilization of cytoplasmic proteins and organelles. METHODS We herein analyzed the genome-wide expression profile of lncRNAs and mRNAs after severe burns in the intestines of mice by lncRNA microarray. qRT-PCR was performed to verify the reliability of microarray analysis results, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used for bioinformatics analysis of differentially expressed mRNAs. The common regulatory network between the top ten differentially expressed lncRNAs and trans-related mRNAs was visualized by Cytoscape (v3.7.2). Next, we hypothesized that H19 is the key gene for intestinal mucosal repair. After H19 was overexpressed, the changes in downstream autophagy protein expression levels were observed. RESULTS GO and KEGG analysis indicated that the differentially expressed mRNAs were mainly enriched in a cell cycle- and mitosis-related genes.Overexpression of lncRNA-H19 showed that the autophagy-related gene Trim21 was up-regulated, while HIF1α was down-regulated. CONCLUSION LncRNA-H19 played a key role in repairing the intestinal mucosa, and overexpression of lncRNA-H19 activated autophagy and migration of intestinal epithelial cells (IEC-6).
Collapse
Affiliation(s)
- Wei Qiu
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Yuequ Deng
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Mengmeng Zhuang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Peng Wang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Cuijie Li
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Ye Li
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Bo Zhu
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Pan Zhang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Dan Li
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Yuan Sun
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Juan Yang
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Shuqin Cao
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| | - Yong Sun
- Department of Burn Surgery, The Affiliated Huaihai Hospital of Xuzhou Medical University, China
- Department of Burn Surgery, The 71st Group Army Hospital of PLA, Xuzhou, China
| |
Collapse
|
8
|
Wang RQ, Long XR, Zhou NN, Chen DN, Zhang MY, Wen ZS, Zhang LJ, He FZ, Zhou ZL, Mai SJ, Wang HY. Lnc-GAN1 expression is associated with good survival and suppresses tumor progression by sponging mir-26a-5p to activate PTEN signaling in non-small cell lung cancer. J Exp Clin Cancer Res 2021; 40:9. [PMID: 33407724 PMCID: PMC7786923 DOI: 10.1186/s13046-020-01819-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/17/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play vital roles in the development and progression of non-small-cell lung cancer (NSCLC); however, the role of most lncRNAs in NSCLC remains unknown. This study explored the clinical significance, biological function and underlying mechanism of lnc-GAN1 in NSCLC. METHODS With a custom lncRNA microarray we found that lnc-GAN1 is markedly downregulated in NSCLC tissues. Then lnc-GAN1 expression level was measured using qRT-PCR in NSCLC tissues and cell lines. Survival was assessed using the Kaplan-Meier method. The biological functions of lnc-GAN1 in lung cancer cells were evaluated in vitro and in vivo. RNA fluorescence in situ hybridization and subcellular localization assays revealed the subcellular distribution of lnc-GAN1 in cells. Bioinformatic analysis was adopted to predict miRNAs and signaling pathways regulated by lnc-GAN1. RNA immunoprecipitation and Dual-luciferase reporter assays were used to assess the interaction between lnc-GAN1 and miR-26a-5p in lung cancer cells. RESULTS lnc-GAN1 is downregulated in HCC tissues and associated with larger tumor size and poor overall survival and disease-free survival; its ectopic expression suppresses cell proliferation, colony formation, and cell cycle progression and induces apoptosis in NSCLC cells; it also inhibits tumor growth in the NSCLC xenograft model. We further proved that lnc-GAN1 is localized in cytoplasm and transcribed independently from its parental gene GAN. Mechanistically, lnc-GAN1 acts as a sponge for miR-26a-5p by two seed sequences, and the two non-coding RNAs have a negative relationship in NSCLC tissues; we further prove that PTEN is a direct target of miR-26a-5p and lnc-GAN1 inhibits cell cycle signaling pathway by activating PTEN, whose expression level correlated negatively with miR-26a-5p level but positively with lnc-GAN1 level in NSCLC samples. CONCLUSIONS Lnc-GAN1 is downregulated and associated with poor survival of NSCLC patients, and mechanistically acts as a tumor suppressor via sponging and inhibiting miR-26a-5p to upregulate PTEN. This study provides a potential prognostic biomarker and treatment target for NSCLC.
Collapse
Affiliation(s)
- Rui-Qi Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China
| | - Xiao-Ran Long
- Department of Gynecology and Obstetrics, Renji Hospital, Medical School of Shanghai Jiaotong University, Shanghai, China
| | - Ning-Ning Zhou
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Dong-Ni Chen
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Zhe-Sheng Wen
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Lan-Jun Zhang
- Department of Thoracic Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Fa-Zhong He
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China
| | - Zhi-Lin Zhou
- Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China
| | - Shi-Juan Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
9
|
Ni WJ, Xie F, Leng XM. Terminus-Associated Non-coding RNAs: Trash or Treasure? Front Genet 2020; 11:552444. [PMID: 33101379 PMCID: PMC7522407 DOI: 10.3389/fgene.2020.552444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
3′ untranslated regions (3′ UTRs) of protein-coding genes are well known for their important roles in determining the fate of mRNAs in diverse processes, including trafficking, stabilization, translation, and RNA–protein interactions. However, non-coding RNAs (ncRNAs) scattered around 3′ termini of the protein-coding genes, here referred to as terminus-associated non-coding RNAs (TANRs), have not attracted wide attention in RNA research. Indeed, whether TANRs are transcriptional noise, degraded mRNA products, alternative 3′ UTRs, or functional molecules has remained unclear for a long time. As a new category of ncRNAs, TANRs are widespread, abundant, and conserved in diverse eukaryotes. The biogenesis of TANRs mainly follows the same promoter model, the RNA-dependent RNA polymerase activity-dependent model, or the independent promoter model. Functional studies of TANRs suggested that they are significantly involved in the versatile regulation of gene expression. For instance, at the transcriptional level, they can lead to transcriptional interference, induce the formation of gene loops, and participate in transcriptional termination. Furthermore, at the posttranscriptional level, they can act as microRNA sponges, and guide cleavage or modification of target RNAs. Here, we review current knowledge of the potential role of TANRs in the modulation of gene expression. In this review, we comprehensively summarize the current state of knowledge about TANRs, and discuss TANR nomenclature, relation to ncRNAs, cross-talk biogenesis pathways and potential functions. We further outline directions of future studies of TANRs, to promote investigations of this emerging and enigmatic category of RNA.
Collapse
Affiliation(s)
- Wen-Juan Ni
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Fuhua Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Xiao-Min Leng
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| |
Collapse
|
10
|
Madadi S, Schwarzenbach H, Saidijam M, Mahjub R, Soleimani M. Potential microRNA-related targets in clearance pathways of amyloid-β: novel therapeutic approach for the treatment of Alzheimer's disease. Cell Biosci 2019; 9:91. [PMID: 31749959 PMCID: PMC6852943 DOI: 10.1186/s13578-019-0354-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Imbalance between amyloid-beta (Aβ) peptide synthesis and clearance results in Aβ deregulation. Failure to clear these peptides appears to cause the development of Alzheimer's disease (AD). In recent years, microRNAs have become established key regulators of biological processes that relate among others to the development and progression of neurodegenerative diseases, such as AD. This review article gives an overview on microRNAs that are involved in the Aβ cascade and discusses their inhibitory impact on their target mRNAs whose products participate in Aβ clearance. Understanding of the mechanism of microRNA in the associated signal pathways could identify novel therapeutic targets for the treatment of AD.
Collapse
Affiliation(s)
- Soheil Madadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Massoud Saidijam
- Department of Genetics and Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Mahjub
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Meysam Soleimani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
11
|
Mechanosensitive MiRs regulated by anabolic and catabolic loading of human cartilage. Osteoarthritis Cartilage 2019; 27:1208-1218. [PMID: 31009748 DOI: 10.1016/j.joca.2019.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/26/2019] [Accepted: 04/10/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Elucidation of whether miRs are involved in mechanotransduction pathways by which cartilage is maintained or disturbed has a particular importance in our understanding of osteoarthritis (OA) pathophysiology. The aim was to investigate whether mechanical loading influences global miR-expression in human chondrocytes and to identify mechanosensitive miRs responding to beneficial and non-beneficial loading regimes as potential to obtain valuable diagnostic or therapeutic targets to advance OA-treatment. METHOD Mature tissue-engineered human cartilage was subjected to two distinct loading regimes either stimulating or suppressing proteoglycan-synthesis, before global miR microarray analysis. Promising candidate miRs were selected, re-evaluated by qRT-PCR and tested for expression in human healthy vs OA cartilage samples. RESULTS After anabolic loading, miR microarray profiling revealed minor changes in miR-expression while catabolic stimulation produced a significant regulation of 80 miRs with a clear separation of control and compressed samples by hierarchical clustering. Cross-testing of selected miRs revealed that miR-221, miR-6872-3p, miR-6723-5p were upregulated by both loading conditions while others (miR-199b-5p, miR-1229-5p, miR-1275, miR-4459, miR-6891-5p, miR-7150) responded specifically after catabolic loading. Mechanosensitivity of miR-221 correlated with pERK1/2-activation induced by both loading conditions. The miR-response to loading was transient and a constitutive deregulation of mechano-miRs in OA vs healthy articular cartilage was not observed. CONCLUSIONS MiRs with broader vs narrower mechanosensitivity were discovered and the first group of mechanosensitive miRs characteristic for non-beneficial loading was defined that may shape the proteome differentially when cartilage tissue is disturbed. The findings prompt future investigations into miR-relevance for mechano-responsive pathways and the corresponding miR-target molecules.
Collapse
|
12
|
Li B, Hu X, Yang Y, Zhu M, Zhang J, Wang Y, Pei X, Zhou H, Wu J. GAS5/miR-21 Axis as a Potential Target to Rescue ZCL-082-Induced Autophagy of Female Germline Stem Cells In Vitro. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:436-447. [PMID: 31319247 PMCID: PMC6637212 DOI: 10.1016/j.omtn.2019.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/24/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
Abstract
Several studies have recently revealed the regulatory mechanisms underlying female germline stem cell (FGSC) differentiation, proliferation, and apoptosis, but other biological processes such as autophagy and its mechanism in FGSCs are largely unclear. The use of small chemical compounds may be a good approach to further investigate the process and mechanism of autophagy in FGSC development. In this study, we used ZCL-082, a derivative of benzoxaboroles, to treat FGSCs. Using a cell counting kit-8 (CCK8) and 5-ethynyl-2′-deoxyuridine (EdU) assays, we found that ZCL-082 could significantly reduce the viability, proliferation, and number of FGSCs in vitro. Moreover, western blotting revealed that the expression of light chain 3 beta 2 (LC3B-II) in FGSCs was significantly increased after treatment with ZCL-082 for 3 and 6 h. Meanwhile, the expression of sequestosome-1 (SQSTM1) was significantly decreased. These results suggested that ZCL-082 can induce autophagy of FGSCs in vitro. Regarding the molecular mechanism, ZCL-082 could significantly reduce the expression of growth arrest-specific 5 (GAS5) long non-coding RNA, which could directly bind to microRNA-21a (miR-21a) and negatively regulate each other in FGSCs. Knockdown of GAS5 induced the autophagy of FGSCs, while GAS5 overexpression inhibited the autophagy of FGSCs in vitro and rescued FGSC autophagy induced by ZCL-082. Additionally, overexpression of miR-21a significantly enhanced LC3B-II protein expression while significantly reducing the expression of programmed cell death protein 4 (PDCD4) and SQSTM1 protein in FGSCs compared with control cells. The inhibition of miR-21a significantly reduced the basal or ZCL-082-induced upregulated expression of LC3B-II, and it significantly enhanced the expression of PDCD4 while downregulating the basal or ZCL-082-induced expression of SQSTM1 in FGSCs. Furthermore, the overexpression of GAS5 enhanced the protein expression of PDCD4, but knockdown of GAS5 reduced the protein expression of PDCD4. Taken together, these results suggested that ZCL-082 induced autophagy through GAS5 functioning as a competing endogenous RNA (ceRNA) sponge for miR-21a in FGSCs. It also suggested that the GAS5/miR-21a axis may be a potential therapeutic target for premature ovarian failure in the clinic.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaopeng Hu
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Mingyan Zhu
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Jiong Zhang
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Yanrong Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Huchen Zhou
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, 200240 Shanghai, China.
| | - Ji Wu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
13
|
Zhu J, Wang Y, Yu W, Xia K, Huang Y, Wang J, Liu B, Tao H, Liang C, Li F. Long Noncoding RNA: Function and Mechanism on Differentiation of Mesenchymal Stem Cells and Embryonic Stem Cells. Curr Stem Cell Res Ther 2019; 14:259-267. [PMID: 30479219 DOI: 10.2174/1574888x14666181127145809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/20/2018] [Accepted: 11/22/2018] [Indexed: 12/30/2022]
Abstract
Background:Long suspected as transcriptional noise, recently recognized, long non-coding
RNAs (lncRNAs) are emerging as an indicator, biomarker and therapy target in the physiologic and
pathologic process. Mesenchymal stem cells and embryonic stem cells are important source for normal
and therapeutic tissue repair. However, the mechanism of stem cell differentiation is not completely
understood. Research on lncRNAs may provide novel insights into the mechanism of differentiation
process of the stem cell which is important for the application of stem cell therapy. The lncRNAs field
is still very young, new insights into lncRNAs function are emerging to a greater understanding of biological
processes.
Objective:
In this review, we summarize the recent researches studying lncRNAs and illustrate how
they act in the differentiation of the mesenchymal stem cells and embryonic stem cells, and discuss
some future directions in this field.
Results:
Numerous lncRNAs were differentially expressed during differentiation of mesenchymal stem
cells and embryonic stem cells. LncRNAs were able to regulate the differentiation processes through
epigenetic regulation, transcription regulation and post-transcription regulation.
Conclusion:
LncRNAs are involved in the differentiation process of mesenchymal stem cells and embryonic
stem cells, and they could become promising indicator, biomarker and therapeutic targets in the
physiologic and pathologic process. However, the mechanisms of the role of lncRNAs still require further
investigation.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Yitian Wang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Wei Yu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Kaishun Xia
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Yuluan Huang
- Department of Gynecologic Oncology, Women`s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junjie Wang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Bing Liu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Huimin Tao
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Chengzhen Liang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| | - Fangcai Li
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, #88 Jie Fang Road, Hangzhou, 310009, Zhejiang, China
| |
Collapse
|
14
|
Calloni R, Bonatto D. Characteristics of the competition among RNAs for the binding of shared miRNAs. Eur J Cell Biol 2019; 98:94-102. [PMID: 31053368 DOI: 10.1016/j.ejcb.2019.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
Competing endogenous RNAs (ceRNAs) are RNAs that share common miRNA binding sites and compete with each other for the miRNA association at these sites. The observation of this phenomenon in the cells altered the view of the miRNA target RNAs from molecules that are passively controlled by miRNAs to molecules that also modulate the miRNAs activity. In this review, we build a general profile of ceRNAS characteristics in order to facilitate ceRNAs identification by researchers. The information summarized here contains an actualized list of previously reported ceRNAs and classes of RNAs that can participate in this type of interaction, the expression behavior and characteristics of ceRNAs and miRNAs in the context of competition, the influence of the shared MREs/miRNAs numbers and the miRNA binding strength on the competition, reports on competition between RNAs in different subcellular localizations and the concept that ceRNAs may form a huge regulatory network in the cell.
Collapse
Affiliation(s)
- Raquel Calloni
- Departamento de Biologia Molecular e Biotecnologia, Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Diego Bonatto
- Departamento de Biologia Molecular e Biotecnologia, Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
15
|
Fico A, Fiorenzano A, Pascale E, Patriarca EJ, Minchiotti G. Long non-coding RNA in stem cell pluripotency and lineage commitment: functions and evolutionary conservation. Cell Mol Life Sci 2019; 76:1459-1471. [PMID: 30607432 PMCID: PMC6439142 DOI: 10.1007/s00018-018-3000-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/13/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023]
Abstract
LncRNAs have recently emerged as new and fundamental transcriptional and post-transcriptional regulators acting at multiple levels of gene expression. Indeed, lncRNAs participate in a wide variety of stem cell and developmental processes, acting in cis and/or in trans in the nuclear and/or in the cytoplasmic compartments, and generating an intricate network of interactions with RNAs, enhancers, and chromatin-modifier complexes. Given the versatility of these molecules to operate in different subcellular compartments, via different modes of action and with different target specificity, the interest in this research field is rapidly growing. Here, we review recent progress in defining the functional role of lncRNAs in stem cell biology with a specific focus on the underlying mechanisms. We also discuss recent findings on a new family of evolutionary conserved lncRNAs transcribed from ultraconserved elements, which show perfect conservation between human, mouse, and rat genomes, and that are emerging as new player in this complex scenario.
Collapse
Affiliation(s)
- Annalisa Fico
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy.
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy.
| | - Alessandro Fiorenzano
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
- Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, 22184, Lund, Sweden
| | - Emilia Pascale
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
| | - Eduardo Jorge Patriarca
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
| | - Gabriella Minchiotti
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
- Institute of Genetics and Biophysics "A. Buzzati-Traverso", CNR, 80131, Naples, Italy
| |
Collapse
|
16
|
Wang X, Gao Y, Gao J, Li M, Zhou M, Wang J, Pang Y, Cheng H, Yuan C, Chu Y, Jiang Y, Zhou J, Luo HR, Ju Z, Cheng T, Yuan W. Rheb1 loss leads to increased hematopoietic stem cell proliferation and myeloid-biased differentiation in vivo. Haematologica 2018; 104:245-255. [PMID: 30262562 PMCID: PMC6355497 DOI: 10.3324/haematol.2018.194811] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 09/21/2018] [Indexed: 12/18/2022] Open
Abstract
Hematopoietic stem cells constitute a unique subpopulation of blood cells that can give rise to all types of mature cells in response to physiological demands. However, the intrinsic molecular machinery that regulates this transformative property remains elusive. In this paper, we demonstrate that small GTPase Rheb1 is a critical regulator of proliferation and differentiation of hematopoietic stem cells in vivo Rheb1 deletion led to increased phenotypic hematopoietic stem cell/hematopoietic progenitor cell proliferation under a steady state condition. Over-proliferating Rheb1-deficient hematopoietic stem cells were severely impaired in functional repopulation assays, and they failed to regenerate the blood system when challenged with hematopoietic ablation by sublethal irradiation. In addition, it was discovered that Rheb1 loss resulted in a lack of maturation of neutrophils / caused neutrophil immaturation by reducing mTORC1 activity, and that activation of the mTORC1 signaling pathway by mTOR activator 3BDO partially restored the maturation of Rheb1-deficient neutrophils. Rheb1 deficiency led to a progressive enlargement of the hematopoietic stem cell population and an eventual excessive myeloproliferation in vivo, including an overproduction of peripheral neutrophils and an excessive expansion of extramedullary hematopoiesis. Moreover, low RHEB expression was correlated with poor survival in acute myeloid leukemia patients with normal karyotype. Our results, therefore, demonstrate a critical and unique role for Rheb1 in maintaining proper hematopoiesis and myeloid differentiation.
Collapse
Affiliation(s)
- Xiaomin Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yanan Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Juan Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Minghao Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Mi Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinhong Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yakun Pang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Chase Yuan
- College of Arts and Sciences, University of North Carolina at Chapel Hill, NC, USA
| | - Yajing Chu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongbo R Luo
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Zhenyu Ju
- Institute of Aging, Hangzhou Normal University, Hangzhou, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
17
|
Abstract
Macroautophagy/autophagy is a catabolic process that is widely found in nature. Over the past few decades, mounting evidence has indicated that noncoding RNAs, ranging from small noncoding RNAs to long noncoding RNAs (lncRNAs) and even circular RNAs (circRNAs), mediate the transcriptional and post-transcriptional regulation of autophagy-related genes by participating in autophagy regulatory networks. The differential expression of noncoding RNAs affects autophagy levels at different physiological and pathological stages, including embryonic proliferation and differentiation, cellular senescence, and even diseases such as cancer. We summarize the current knowledge regarding noncoding RNA dysregulation in autophagy and investigate the molecular regulatory mechanisms underlying noncoding RNA involvement in autophagy regulatory networks. Then, we integrate public resources to predict autophagy-related noncoding RNAs across species and discuss strategies for and the challenges of identifying autophagy-related noncoding RNAs. This article will deepen our understanding of the relationship between noncoding RNAs and autophagy, and provide new insights to specifically target noncoding RNAs in autophagy-associated therapeutic strategies.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Peiyuan Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin Wan
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China,CONTACT Da Pang ; Shouping Xu Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, No. 150 Haping Road, Harbin, China 150040
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China,Heilongjiang Academy of Medical Sciences, Harbin, China,CONTACT Da Pang ; Shouping Xu Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, No. 150 Haping Road, Harbin, China 150040
| |
Collapse
|
18
|
Xu Z, Yan Y, Qian L, Gong Z. Long non-coding RNAs act as regulators of cell autophagy in diseases (Review). Oncol Rep 2017; 37:1359-1366. [PMID: 28184916 PMCID: PMC5364869 DOI: 10.3892/or.2017.5416] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/27/2017] [Indexed: 02/07/2023] Open
Abstract
Identification of long non-coding RNAs (lncRNAs) has provided a substantial increase in our understanding of the non-coding transcriptome. Studies have revealed a crucial function of lncRNAs in the modulation of cell autophagy in vitro and in vivo, further contributing to the hallmarks of disease phenotypes. These findings have profoundly altered our understanding of disease pathobiology, and may lead to the emergence of new biological concepts underlying autophagy-associated diseases, such as the carcinomas. Studies on the molecular mechanism of the lncRNA-autophagy axis may offer additional avenues for therapeutic intervention and biomarker assessment. In this review, we discuss recent findings on the multiple molecular roles of regulatory lncRNAs in the signaling pathways of cell autophagy. The emerging knowledge in this rapidly advancing field will offer novel insights into human diseases, especially cancers.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
19
|
Tao SC, Yuan T, Zhang YL, Yin WJ, Guo SC, Zhang CQ. Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics 2017; 7:180-195. [PMID: 28042326 PMCID: PMC5196895 DOI: 10.7150/thno.17133] [Citation(s) in RCA: 499] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 10/04/2016] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Osteoarthritis (OA) is the most common joint disease throughout the world. Exosomes derived from miR-140-5p-overexpressing synovial mesenchymal stem cells (SMSC-140s) may be effective in treating OA. We hypothesized that exosomes derived from SMSC-140 (SMSC-140-Exos) would enhance the proliferation and migration abilities of articular chondrocytes (ACs) without harming extracellular matrix (ECM) secretion. METHODS SMSCs were transfected with or without miR-140-5p. Exosomes derived from SMSCs or SMSC-140s (SMSC-Exos or SMSC-140-Exos) were isolated and identified. Proliferation, migration and ECM secretion were measured in vitro and compared between groups. The mechanism involving alternative Wnt signalling and activation of Yes-associated protein (YAP) was investigated using lentivirus, oligonucleotides or chemical drugs. The preventative effect of exosomes in vivo was measured using Safranin-O and Fast green staining and immunohistochemical staining. RESULTS Wnt5a and Wnt5b carried by exosomes activated YAP via the alternative Wnt signalling pathway and enhanced proliferation and migration of chondrocytes with the side-effect of significantly decreasing ECM secretion. Highly-expressed miR-140-5p blocked this side-effect via RalA. SMSC-140-Exos enhanced the proliferation and migration of ACs without damaging ECM secretion in vitro, while in vivo, SMSC-140-Exos successfully prevented OA in a rat model. CONCLUSIONS These findings highlight the promising potential of SMSC-140-Exos in preventing OA. We first found a potential source of exosomes and studied their merits and shortcomings. Based on our understanding of the molecular mechanism, we overcame the shortcomings by modifying the exosomes. Such exosomes derived from modified cells hold potential as future therapeutic strategies.
Collapse
Affiliation(s)
- Shi-Cong Tao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Ting Yuan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yue-Lei Zhang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Wen-Jing Yin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Shang-Chun Guo
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- ✉ Corresponding authors: Chang-Qing Zhang, Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China. E-mail: . Shang-Chun Guo, Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China. E-mail:
| | - Chang-Qing Zhang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
- ✉ Corresponding authors: Chang-Qing Zhang, Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China. E-mail: . Shang-Chun Guo, Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China. E-mail:
| |
Collapse
|
20
|
Chen XP, Fan CD, Su L, Zhao BX, Miao JY. A synthesized butyrolactone derivative in combination with chloroquine can inhibit cancer cell growth and lysosome vacuolation induced by chloroquine in A549 lung cancer cells. RSC Adv 2016. [DOI: 10.1039/c6ra02533a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
3BDO in combination with chloroquine could elevate the Na+,K+-ATPase activity and decrease the expression of competing endogenous non-coding RNA TGFB2-OT1. Therefore, the combination inhibited the cells growth and lysosomal vacuolation induced by CQ.
Collapse
Affiliation(s)
- Xin-Peng Chen
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- China
| | - Chuan-Dong Fan
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- China
| | - Le Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- China
| | - Bao-Xiang Zhao
- Institute of Organic Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- China
| | - Jun-Ying Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- China
| |
Collapse
|
21
|
Xun M, Ma CF, Du QL, Ji YH, Xu JR. Differential expression of miRNAs in enterovirus 71-infected cells. Virol J 2015; 12:56. [PMID: 25889836 PMCID: PMC4416288 DOI: 10.1186/s12985-015-0288-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/24/2015] [Indexed: 12/17/2022] Open
Abstract
Background Enterovirus 71 (EV71) is one of the major etiological pathogens of hand, foot and mouth disease (HFMD) and can cause severe cerebral and pulmonary complications and even fatality. MicroRNAs (miRNAs), a class of small non-coding RNA molecules, play an important role in post-transcriptional regulation of gene expression and thereby influencing various physiological and pathological processes. Increasing evidence suggests that miRNAs act as key effector molecules in the complicated pathogen-host interactions. However, the roles of miRNAs in EV71 infection and pathogenesis are not well understood. Methods To identify special miRNAs involved in EV71 infection, a microarray assay was performed to study the expression pattern of miRNAs in EV71-infected human rhabdomyosarcoma cells (RD cells) and uninfected RD cells. We further predicted the putative target genes for the dysregulated miRNAs using the online bioinformatic algorithms (TargetScan, miRanda and PicTar) and carried out functional annotation including GO enrichment and KEGG pathway analysis for miRNA predicted targets. Then, the results of microarray were further confirmed by quantitative RT-PCR. Results Totally, 45 differentially expressed miRNAs ware identified by microarray, among which 36 miRNAs were up-regulated and 9 were down-regulated. 7166 predicted target genes for the dysregulated miRNAs were revealed by using TargetScan in conjunction with miRanda and PicTar. The GO annotation suggested that predicted targets of miRNAs were enriched into the category of signal transduction, regulation of transcription, metabolic process, protein phosphorylation, apoptotic process and immune response. KEGG pathway analysis suggested that these predicted target genes were involved in many important pathways, mainly including endocytosis and focal adhesion, MAPK signaling pathway, hypertrophic cardiomyopathy, melanogenesis and ErbB signaling pathway. The expression levels of 8 most differentially up-regulated miRNAs and 3 most differentially down-regulated miRNAs were confirmed by qRT-PCR. The expressions of hsa-miR-4530, hsa-miR-4492, hsa-miR-6125, hsa-miR-494-3p, hsa-miR-638, hsa-miR-6743-5p, hsa-miR-4459 and hsa-miR-4443 detected by qRT-PCR were consistent with the microarray data. Conclusion These results might extend our understanding to the regulatory mechanism of miRNAs underlying the pathogenesis of EV71 infection, thus strengthening the preventative and therapeutic strategies of HFMD caused by EV71.
Collapse
Affiliation(s)
- Meng Xun
- Department of Immunology and Microbiology, Medical School of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Chao-Feng Ma
- Department of Viral Diseases Laboratory, Xi'an Center for Disease Control and Prevention, Xi'an, 710054, Shaanxi, China.
| | - Quan-Li Du
- Department of Viral Diseases Laboratory, Xi'an Center for Disease Control and Prevention, Xi'an, 710054, Shaanxi, China.
| | - Yan-Hong Ji
- Department of Immunology and Microbiology, Medical School of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Ji-Ru Xu
- Department of Immunology and Microbiology, Medical School of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|