1
|
Reddy N, Lynch B, Gujral J, Karnik K. Alternatives to animal testing in toxicity testing: Current status and future perspectives in food safety assessments. Food Chem Toxicol 2023; 179:113944. [PMID: 37453475 DOI: 10.1016/j.fct.2023.113944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The development of alternative methods to animal testing has gained great momentum since Russel and Burch introduced the "3Rs" concept of Reduction, Refinement, and Replacement of animals in safety testing in 1959. Several alternatives to animal testing have since been introduced, including but not limited to in vitro and in chemico test systems, in silico models, and computational models (e.g., [quantitative] structural activity relationship models, high-throughput screens, organ-on-chip models, and genomics or bioinformatics) to predict chemical toxicity. Furthermore, several agencies have developed robust integrated testing strategies to determine chemical toxicity. The cosmetics sector is pioneering the adoption of alternative methodologies for safety evaluations, and other sectors are aiming to completely abandon animal testing by 2035. However, beyond the use of in vitro genetic testing, agencies regulating the food industry have been slow to implement alternative methodologies into safety evaluations compared with other sectors; setting health-based guidance values for food ingredients requires data from systemic toxicity, and to date, no standalone validated alternative models to assess systemic toxicity exist. The abovementioned models show promise for assessing systemic toxicity with further research. In this paper, we review the current alternatives and their applicability and limitations in food safety evaluations.
Collapse
Affiliation(s)
- Navya Reddy
- Intertek Health Sciences Inc., 2233 Argentia Rd, Suite 201, Mississauga, ON, L5N 2X7, Canada
| | - Barry Lynch
- Intertek Health Sciences Inc., 2233 Argentia Rd, Suite 201, Mississauga, ON, L5N 2X7, Canada.
| | - Jaspreet Gujral
- Tate & Lyle, 5450 Prairie Stone Pkwy, Hoffman Estates, IL, 60192, USA
| | - Kavita Karnik
- Tate & Lyle PLC, 5 Marble Arch, London, W1H 7EJ, United Kingdom
| |
Collapse
|
2
|
Bachour-El Azzi P, Chesné C, Uehara S. Expression and functional activity of cytochrome P450 enzymes in human hepatocytes with sustainable reproducibility for in vitro phenotyping studies. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:285-305. [PMID: 35953158 DOI: 10.1016/bs.apha.2022.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Primary human hepatocytes are an essential in vitro tool for evaluating drug metabolism, drug-drug interactions, and hepatotoxicity. This model is considered as the gold standard in matter of DMPK studies in both industrial and academic research. The primary human hepatocytes are used either in suspension or in monolayer, as fresh or frozen cells. However, the use of this model is limited due to the lack of availability, rapid loss of functionality, high cost as well as the variable hepatocyte plating efficiencies in culture and the limited stock of hepatocytes derived from the same origin. Chimeric TK-NOG mice with humanized livers (humanized liver mice) are an attractive platform for drug metabolism and toxicity, which were produced by transplanting human hepatocytes into immunodeficient mice with injured livers. Here, we show that, using humanized mouse liver, in vivo human hepatocyte repopulation was over ~100-fold enabling the continuous and abundant use of human hepatocytes of the same origin and improving their plateability. In our latest cell preparations, hepatocytes isolated from humanized liver mice (Hu-Liver cells) exhibited high purity (ratio of HLA-positive cells: 92±3%), good viability (75±12%), and yield (1.0×108 cells/mouse). Human hepatic drug metabolizing enzymes, transporters, and nuclear receptors genes were expressed in humanized mouse liver. Drug-metabolizing activities in Hu-Liver cells were comparable to or higher than those in primary human hepatocytes. An extensive P450-dependent human drug metabolism was observed in Hu-Liver cells. CYP1A2, CYP2B6, and CYP3A4/5 activities/mRNA in Hu-Liver cells were induced by the hepatocyte exposure to typical human P450 inducers, omeprazole, phenobarbital, and rifampicin, respectively. Finally, Human albumin secretion and CYP3A-mediated drug oxidation activity were maintained over 4-weeks. Altogether, the expression level of pharmacokinetics-related genes, enzyme activity, human-typed drug metabolism, and inducibility of P450 in Hu-Liver cells make from humanized mouse liver a relevant and robust model for in vitro preclinical studies, including drug metabolism, pharmacokinetics, and toxicology studies.
Collapse
Affiliation(s)
| | | | - Shotaro Uehara
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| |
Collapse
|
3
|
Quality criteria for in vitro human pluripotent stem cell-derived models of tissue-based cells. Reprod Toxicol 2022; 112:36-50. [PMID: 35697279 DOI: 10.1016/j.reprotox.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 12/21/2022]
Abstract
The advent of the technology to isolate or generate human pluripotent stem cells provided the potential to develop a wide range of human models that could enhance understanding of mechanisms underlying human development and disease. These systems are now beginning to mature and provide the basis for the development of in vitro assays suitable to understand the biological processes involved in the multi-organ systems of the human body, and will improve strategies for diagnosis, prevention, therapies and precision medicine. Induced pluripotent stem cell lines are prone to phenotypic and genotypic changes and donor/clone dependent variability, which means that it is important to identify the most appropriate characterization markers and quality control measures when sourcing new cell lines and assessing differentiated cell and tissue culture preparations for experimental work. This paper considers those core quality control measures for human pluripotent stem cell lines and evaluates the state of play in the development of key functional markers for their differentiated cell derivatives to promote assurance of reproducibility of scientific data derived from pluripotent stem cell-based systems.
Collapse
|
4
|
Snijders KE, Fehér A, Táncos Z, Bock I, Téglási A, van den Berk L, Niemeijer M, Bouwman P, Le Dévédec SE, Moné MJ, Van Rossom R, Kumar M, Wilmes A, Jennings P, Verfaillie CM, Kobolák J, Ter Braak B, Dinnyés A, van de Water B. Fluorescent tagging of endogenous Heme oxygenase-1 in human induced pluripotent stem cells for high content imaging of oxidative stress in various differentiated lineages. Arch Toxicol 2021; 95:3285-3302. [PMID: 34480604 PMCID: PMC8448683 DOI: 10.1007/s00204-021-03127-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/27/2021] [Indexed: 12/28/2022]
Abstract
Tagging of endogenous stress response genes can provide valuable in vitro models for chemical safety assessment. Here, we present the generation and application of a fluorescent human induced pluripotent stem cell (hiPSC) reporter line for Heme oxygenase-1 (HMOX1), which is considered a sensitive and reliable biomarker for the oxidative stress response. CRISPR/Cas9 technology was used to insert an enhanced green fluorescent protein (eGFP) at the C-terminal end of the endogenous HMOX1 gene. Individual clones were selected and extensively characterized to confirm precise editing and retained stem cell properties. Bardoxolone-methyl (CDDO-Me) induced oxidative stress caused similarly increased expression of both the wild-type and eGFP-tagged HMOX1 at the mRNA and protein level. Fluorescently tagged hiPSC-derived proximal tubule-like, hepatocyte-like, cardiomyocyte-like and neuron-like progenies were treated with CDDO-Me (5.62–1000 nM) or diethyl maleate (5.62–1000 µM) for 24 h and 72 h. Multi-lineage oxidative stress responses were assessed through transcriptomics analysis, and HMOX1-eGFP reporter expression was carefully monitored using live-cell confocal imaging. We found that eGFP intensity increased in a dose-dependent manner with dynamics varying amongst lineages and stressors. Point of departure modelling further captured the specific lineage sensitivities towards oxidative stress. We anticipate that the newly developed HMOX1 hiPSC reporter will become a valuable tool in understanding and quantifying critical target organ cell-specific oxidative stress responses induced by (newly developed) chemical entities.
Collapse
Affiliation(s)
- Kirsten E Snijders
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | | | | | | | | | - Linda van den Berk
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Marije Niemeijer
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Peter Bouwman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Sylvia E Le Dévédec
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Martijn J Moné
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Rob Van Rossom
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Manoj Kumar
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Anja Wilmes
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Amsterdam, The Netherlands
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems, Amsterdam, The Netherlands
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | | | - Bas Ter Braak
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - András Dinnyés
- BioTalentum Ltd., 2100, Gödöllő, Hungary. .,Department of Physiology and Animal Health, Institute of Physiology and Animal Health, Hungarian University of Agriculture and Life Sciences, 2100, Gödöllő, Hungary.
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
5
|
Chandrasekaran V, Carta G, da Costa Pereira D, Gupta R, Murphy C, Feifel E, Kern G, Lechner J, Cavallo AL, Gupta S, Caiment F, Kleinjans JCS, Gstraunthaler G, Jennings P, Wilmes A. Generation and characterization of iPSC-derived renal proximal tubule-like cells with extended stability. Sci Rep 2021; 11:11575. [PMID: 34078926 PMCID: PMC8172841 DOI: 10.1038/s41598-021-89550-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/23/2021] [Indexed: 12/21/2022] Open
Abstract
The renal proximal tubule is responsible for re-absorption of the majority of the glomerular filtrate and its proper function is necessary for whole-body homeostasis. Aging, certain diseases and chemical-induced toxicity are factors that contribute to proximal tubule injury and chronic kidney disease progression. To better understand these processes, it would be advantageous to generate renal tissues from human induced pluripotent stem cells (iPSC). Here, we report the differentiation and characterization of iPSC lines into proximal tubular-like cells (PTL). The protocol is a step wise exposure of small molecules and growth factors, including the GSK3 inhibitor (CHIR99021), the retinoic acid receptor activator (TTNPB), FGF9 and EGF, to drive iPSC to PTL via cell stages representing characteristics of early stages of renal development. Genome-wide RNA sequencing showed that PTL clustered within a kidney phenotype. PTL expressed proximal tubular-specific markers, including megalin (LRP2), showed a polarized phenotype, and were responsive to parathyroid hormone. PTL could take up albumin and exhibited ABCB1 transport activity. The phenotype was stable for up to 7 days and was maintained after passaging. This protocol will form the basis of an optimized strategy for molecular investigations using iPSC derived PTL.
Collapse
Affiliation(s)
- Vidya Chandrasekaran
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081, HZ, Amsterdam, The Netherlands
| | - Giada Carta
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081, HZ, Amsterdam, The Netherlands
| | - Daniel da Costa Pereira
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081, HZ, Amsterdam, The Netherlands
| | - Rajinder Gupta
- Department of Toxicogenomics, Maastricht University, School of Oncology and Developmental Biology (GROW), Maastricht, The Netherlands
| | - Cormac Murphy
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081, HZ, Amsterdam, The Netherlands
| | - Elisabeth Feifel
- Institute of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Kern
- Institute of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Judith Lechner
- Institute of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | - Florian Caiment
- Department of Toxicogenomics, Maastricht University, School of Oncology and Developmental Biology (GROW), Maastricht, The Netherlands
| | - Jos C S Kleinjans
- Department of Toxicogenomics, Maastricht University, School of Oncology and Developmental Biology (GROW), Maastricht, The Netherlands
| | - Gerhard Gstraunthaler
- Institute of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081, HZ, Amsterdam, The Netherlands.
| | - Anja Wilmes
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081, HZ, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Onozato D, Ogawa I, Kida Y, Mizuno S, Hashita T, Iwao T, Matsunaga T. Generation of Budding-Like Intestinal Organoids from Human Induced Pluripotent Stem Cells. J Pharm Sci 2021; 110:2637-2650. [PMID: 33794275 DOI: 10.1016/j.xphs.2021.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
Human induced pluripotent stem (iPS) cell-derived intestinal organoids have low invasiveness; however, the current differentiation method does not reflect the crypt-villus-like structure due to structural immaturity. Here, we generated budding-like organoids that formed epithelial tissue-like structures and had the characteristics of the mature small intestine from human iPS cells. They showed a high expression of drug transporters and induced the expression of cytochrome P450 3A4 and P-glycoprotein. When treated with tumor necrosis factor-α and/or transforming growth factor-β, the budding-like organoids replicated the pathogenesis of mucosal damage or intestinal fibrosis. Upon dissociation and seeding on cell culture inserts, the organoids retained intestinal characteristics, forming polarized intestinal folds with approximately 400 Ω × cm2 transepithelial electrical resistance. This novel method has great potential for disease modeling and drug screening applications.
Collapse
Affiliation(s)
- Daichi Onozato
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Isamu Ogawa
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yuriko Kida
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Shota Mizuno
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Tadahiro Hashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| |
Collapse
|
7
|
Generation of Human Induced Pluripotent Stem Cells Using Endothelial Progenitor Cells Derived from Umbilical Cord Blood and Adult Peripheral Blood. Methods Mol Biol 2021. [PMID: 33733392 DOI: 10.1007/7651_2021_372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Induced pluripotent stem cells (iPSCs) offer the potential to generate tissue cells with donor diversity therefore promising to have widespread applications in regenerative medicine, disease modeling, drug discovery, and toxicity testing. Several somatic cell types have been utilized, with varying efficiencies, as source cells for the reprogramming of iPSCs. Recently, it has been reported that endothelial progenitor cells (EPCs) derived from umbilical cord blood (CB) or adult peripheral blood (PB) afford a practical and efficient cellular substrate for iPSC generation, and possess several advantages over other cell types. In this chapter, we describe a protocol that covers all steps of reprogramming iPSCs from blood-derived EPCs, including (1) isolation of mononuclear cells (MNCs) from blood samples, (2) derivation of EPCs from MNCs, and (3) generation of iPSCs from EPCs. The final step of reprogramming EPCs into iPSCs is achieved through ectopic expression of four transcription factors, OCT4, KLF4, SOX2, and c-MYC, using self-replicative RNA (srRNA) technology.
Collapse
|
8
|
Ahmed U, Ahmed R, Masoud MS, Tariq M, Ashfaq UA, Augustine R, Hasan A. Stem cells based in vitro models: trends and prospects in biomaterials cytotoxicity studies. Biomed Mater 2021; 16:042003. [PMID: 33686970 DOI: 10.1088/1748-605x/abe6d8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Advanced biomaterials are increasingly used for numerous medical applications from the delivery of cancer-targeted therapeutics to the treatment of cardiovascular diseases. The issues of foreign body reactions induced by biomaterials must be controlled for preventing treatment failure. Therefore, it is important to assess the biocompatibility and cytotoxicity of biomaterials on cell culture systems before proceeding to in vivo studies in animal models and subsequent clinical trials. Direct use of biomaterials on animals create technical challenges and ethical issues and therefore, the use of non-animal models such as stem cell cultures could be useful for determination of their safety. However, failure to recapitulate the complex in vivo microenvironment have largely restricted stem cell cultures for testing the cytotoxicity of biomaterials. Nevertheless, properties of stem cells such as their self-renewal and ability to differentiate into various cell lineages make them an ideal candidate for in vitro screening studies. Furthermore, the application of stem cells in biomaterials screening studies may overcome the challenges associated with the inability to develop a complex heterogeneous tissue using primary cells. Currently, embryonic stem cells, adult stem cells, and induced pluripotent stem cells are being used as in vitro preliminary biomaterials testing models with demonstrated advantages over mature primary cell or cell line based in vitro models. This review discusses the status and future directions of in vitro stem cell-based cultures and their derivatives such as spheroids and organoids for the screening of their safety before their application to animal models and human in translational research.
Collapse
Affiliation(s)
- Uzair Ahmed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000 Punjab, Pakistan
| | | | | | | | | | | | | |
Collapse
|
9
|
Ryu B, Choi SW, Lee SG, Jeong YH, Kim U, Kim J, Jung CR, Chung HM, Park JH, Kim CY. Development and evaluation of next-generation cardiotoxicity assay based on embryonic stem cell-derived cardiomyocytes. BMB Rep 2020. [PMID: 32336319 PMCID: PMC7473479 DOI: 10.5483/bmbrep.2020.53.8.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In accordance with requirements of the ICH S7B safety pharma-cology guidelines, numerous next-generation cardiotoxicity studies using human stem cell-derived cardiomyocytes (CMs) are being conducted globally. Although several stem cell-derived CMs are being developed for commercialization, there is insufficient research to verify if these CMs can replace animal experiments. In this study, in vitro high-efficiency CMs derived from human embryonic stem cells (hESC-CMs) were compared with Sprague-Dawley rats as in vivo experimental animals, and primary cultured in vitro rat-CMs for cardiotoxicity tests. In vivo rats were administrated with two consecutive injections of 100 mg/kg isoproterenol, 15 mg/kg doxorubicin, or 100 mg/kg nifedipine, while in vitro rat-CMs and hESC-CMs were treated with 5 µM isoproterenol, 5 µM doxorubicin, and 50 µM nifedipine. We have verified the equivalence of hESC-CMs assessments over various molecular biological markers, morphological analysis. Also, we have identified the advantages of hESC-CMs, which can distinguish between species variability, over electrophysiological analysis of ion channels against cardiac damage. Our findings demonstrate the possibility and advantage of high-effi-ciency hESC-CMs as next-generation cardiotoxicity assessment.
Collapse
Affiliation(s)
- Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Seong Woo Choi
- Department of Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea
| | - Seul-Gi Lee
- Department of Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea
| | - Young-Hoon Jeong
- Department of Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea
| | - Ukjin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Cho-Rok Jung
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Hyung-Min Chung
- Department of Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - C-Yoon Kim
- Department of Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
10
|
Characterization and application of electrically active neuronal networks established from human induced pluripotent stem cell-derived neural progenitor cells for neurotoxicity evaluation. Stem Cell Res 2020; 45:101761. [PMID: 32244191 DOI: 10.1016/j.scr.2020.101761] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 12/13/2022] Open
Abstract
Neurotoxicity is mediated by a variety of modes-of-actions leading to disturbance of neuronal function. In order to screen larger numbers of compounds for their neurotoxic potential, in vitro functional neuronal networks (NN) might be helpful tools. We established and characterized human NN (hNN) from hiPSC-derived neural progenitor cells by comparing hNN formation with two different differentiation media: in presence (CINDA) and absence (neural differentiation medium (NDM)) of maturation-supporting factors. As a NN control we included differentiating rat NN (rNN) in the study. Gene/protein expression and electrical activity from in vitro developing NN were assessed at multiple time points. Transcriptomes of 5, 14 and 28 days in vitro CINDA-grown hNN were compared to gene expression profiles of in vivo human developing brains. Molecular expression analyses as well as measures of electrical activity indicate that NN mature into neurons of different subtypes and astrocytes over time. In contrast to rNN, hNN are less electrically active within the same period of differentiation time, yet hNN grown in CINDA medium develop higher firing rates than hNN without supplements. Challenge of NN with neuronal receptor stimulators and inhibitors demonstrate presence of inhibitory, GABAergic neurons, whereas glutamatergic responses are limited. hiPSC-derived GABAergic hNN grown in CINDA medium might be a useful tool as part of an in vitro battery for assessing neurotoxicity.
Collapse
|
11
|
Sirenko O, Parham F, Dea S, Sodhi N, Biesmans S, Mora-Castilla S, Ryan K, Behl M, Chandy G, Crittenden C, Vargas-Hurlston S, Guicherit O, Gordon R, Zanella F, Carromeu C. Functional and Mechanistic Neurotoxicity Profiling Using Human iPSC-Derived Neural 3D Cultures. Toxicol Sci 2019; 167:58-76. [PMID: 30169818 DOI: 10.1093/toxsci/kfy218] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neurological disorders affect millions of people worldwide and appear to be on the rise. Whereas the reason for this increase remains unknown, environmental factors are a suspected contributor. Hence, there is an urgent need to develop more complex, biologically relevant, and predictive in vitro assays to screen larger sets of compounds with the potential for neurotoxicity. Here, we employed a human induced pluripotent stem cell (iPSC)-based 3D neural platform composed of mature cortical neurons and astrocytes as a model for this purpose. The iPSC-derived human 3D cortical neuron/astrocyte co-cultures (3D neural cultures) present spontaneous synchronized, readily detectable calcium oscillations. This advanced neural platform was optimized for high-throughput screening in 384-well plates and displays highly consistent, functional performance across different wells and plates. Characterization of oscillation profiles in 3D neural cultures was performed through multi-parametric analysis that included the calcium oscillation rate and peak width, amplitude, and waveform irregularities. Cellular and mitochondrial toxicity were assessed by high-content imaging. For assay characterization, we used a set of neuromodulators with known mechanisms of action. We then explored the neurotoxic profile of a library of 87 compounds that included pharmaceutical drugs, pesticides, flame retardants, and other chemicals. Our results demonstrated that 57% of the tested compounds exhibited effects in the assay. The compounds were then ranked according to their effective concentrations based on in vitro activity. Our results show that a human iPSC-derived 3D neural culture assay platform is a promising biologically relevant tool to assess the neurotoxic potential of drugs and environmental toxicants.
Collapse
Affiliation(s)
| | - Frederick Parham
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Steven Dea
- StemoniX, Inc, Maple Grove, Minnesota 55311
| | - Neha Sodhi
- StemoniX, Inc, Maple Grove, Minnesota 55311
| | | | | | - Kristen Ryan
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Mamta Behl
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Zuppinger C. 3D Cardiac Cell Culture: A Critical Review of Current Technologies and Applications. Front Cardiovasc Med 2019; 6:87. [PMID: 31294032 PMCID: PMC6606697 DOI: 10.3389/fcvm.2019.00087] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/10/2019] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional (3D) cell culture is often mentioned in the context of regenerative medicine, for example, for the replacement of ischemic myocardium with tissue-engineered muscle constructs. Additionally, 3D cell culture is used, although less commonly, in basic research, toxicology, and drug development. These applications have recently benefited from innovations in stem cell technologies allowing the mass-production of hiPSC-derived cardiomyocytes or other cardiovascular cells, and from new culturing methods including organ-on-chip and bioprinting technologies. On the analysis side, improved sensors, computer-assisted image analysis, and data collection techniques have lowered the bar for switching to 3D cell culture models. Nevertheless, 3D cell culture is not as widespread or standardized as traditional cell culture methods using monolayers of cells on flat surfaces. The many possibilities of 3D cell culture, but also its limitations, drawbacks and methodological pitfalls, are less well-known. This article reviews currently used cardiovascular 3D cell culture production methods and analysis techniques for the investigation of cardiotoxicity, in drug development and for disease modeling.
Collapse
Affiliation(s)
- Christian Zuppinger
- Cardiology, Department of Biomedical Research, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
13
|
Coccini T, De Simone U, Roccio M, Croce S, Lenta E, Zecca M, Spinillo A, Avanzini MA. In vitro toxicity screening of magnetite nanoparticles by applying mesenchymal stem cells derived from human umbilical cord lining. J Appl Toxicol 2019; 39:1320-1336. [PMID: 31211441 DOI: 10.1002/jat.3819] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 01/05/2023]
Abstract
Despite the growing interest in nanoparticles (NPs), their toxicity has not yet been defined and the development of new strategies and predictive models are required. Human stem cells (SCs) offer a promising and innovative cell-based model. Among SCs, mesenchymal SCs (MSCs) derived from cord lining membrane (CL) may represent a new species-specific tool for establishing efficient platforms for primary screening and toxicity/safety testing of NPs. Superparamagnetic iron oxide NPs, including magnetite (Fe3 O4 NPs), have aroused great public health and scientific concerns despite their extensive uses. In this study, CL-MSCs were characterized and applied for in vitro toxicity screening of Fe3 O4 NPs. Cytotoxicity, internalization/uptake, differentiation and proliferative capacity were evaluated after exposure to different Fe3 O4 NP concentrations. Data were compared with those obtained from bone marrow (BM)-MSCs. We observed, at early passages (P3), that: (1) cytotoxicity occurred at 10 μg/mL in CL-MSCs and 100 μg/mL in BM-MSCs (no differences in toxicity, between CL- and BM-MSCs, were observed at higher dosage, 100-300 μg/mL); (2) cell density decrease and monolayer features loss were affected at ≥50 μg/mL in CL-MSCs only; and (3) NP uptake was concentration-dependent in both MSCs. After 100 μg/mL Fe3 O4 NP exposures, the capacity of proliferation was decreased (P5-P9) in CL-MSCs without morphology alteration. Moreover, a progressive decrease of intracellular Fe3 O4 NPs was observed over culture time. Antigen surface expression and multilineage differentiation were not influenced. These findings suggest that CL-MSCs could be used as a reliable cell-based model for Fe3 O4 NP toxicity screening evaluation and support the use of this approach for improving the confidence degree on the safety of NPs to predict health outcomes.
Collapse
Affiliation(s)
- Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, Toxicology Unit, ICS Maugeri SpA-SB, IRCCS, Pavia, Italy
| | - Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, Toxicology Unit, ICS Maugeri SpA-SB, IRCCS, Pavia, Italy
| | - Marianna Roccio
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Stefania Croce
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Elisa Lenta
- Laboratory of Transplant Immunology/Cell Factory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marco Zecca
- Paediatric Haematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Arsenio Spinillo
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Maria Antonietta Avanzini
- Laboratory of Transplant Immunology/Cell Factory, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
14
|
Gao X, Yourick JJ, Sprando RL. Generation of nine induced pluripotent stem cell lines as an ethnic diversity panel. Stem Cell Res 2018; 31:193-196. [PMID: 30099336 DOI: 10.1016/j.scr.2018.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 01/23/2023] Open
Abstract
Human induced pluripotent stem cells (iPSCs) provide a potentially unlimited source of differentiated cells from individuals with specific genetic backgrounds. Using self-replicative RNA reprogramming technology, we generated nine iPSC lines from endothelial progenitor cells (EPCs) derived from blood samples of three different ethnicities: Black or African American, Latino or Hispanic, and Non-Hispanic White. The resulting iPSC lines showed normal karyotype in large part, expressed pluripotency marker genes, and spontaneously differentiated in vitro into the three germ layers. These iPSC lines offer the potential to generate tissues with ethnic diversity, and thus afford a valuable tool for ethnic-related toxicological applications.
Collapse
Affiliation(s)
- Xiugong Gao
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708.
| | - Jeffrey J Yourick
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708
| | - Robert L Sprando
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708
| |
Collapse
|
15
|
Grimm FA, Blanchette A, House JS, Ferguson K, Hsieh NH, Dalaijamts C, Wright AA, Anson B, Wright FA, Chiu WA, Rusyn I. A human population-based organotypic in vitro model for cardiotoxicity screening. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2018; 35:441-452. [PMID: 29999168 PMCID: PMC6231908 DOI: 10.14573/altex.1805301] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
Abstract
Assessing inter-individual variability in responses to xenobiotics remains a substantial challenge, both in drug development with respect to pharmaceuticals and in public health with respect to environmental chemicals. Although approaches exist to characterize pharmacokinetic variability, there are no methods to routinely address pharmacodynamic variability. In this study, we aimed to demonstrate the feasibility of characterizing inter-individual variability in a human in vitro model. Specifically, we hypothesized that genetic variability across a population of iPSC-derived cardiomyocytes translates into reproducible variability in both baseline phenotypes and drug responses. We measured baseline and drug-related effects in iPSC-derived cardiomyocytes from 27 healthy donors on kinetic Ca2+ flux and high-content live cell imaging. Cells were treated in concentration-response with cardiotoxic drugs: isoproterenol (β-adrenergic receptor agonist/positive inotrope), propranolol (β-adrenergic receptor antagonist/negative inotrope), and cisapride (hERG channel inhibitor/QT prolongation). Cells from four of the 27 donors were further evaluated in terms of baseline and treatment-related gene expression. Reproducibility of phenotypic responses was evaluated across batches and time. iPSC-derived cardiomyocytes exhibited reproducible donor-specific differences in baseline function and drug-induced effects. We demonstrate the feasibility of using a panel of population-based organotypic cells from healthy donors as an animal replacement experimental model. This model can be used to rapidly screen drugs and chemicals for inter-individual variability in cardiotoxicity. This approach demonstrates the feasibility of quantifying inter-individual variability in xenobiotic responses and can be expanded to other cell types for which in vitro populations can be derived from iPSCs.
Collapse
Affiliation(s)
- Fabian A Grimm
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Alexander Blanchette
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - John S House
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Kyle Ferguson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Nan-Hung Hsieh
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Chimeddulam Dalaijamts
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Alec A Wright
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Blake Anson
- Cellular Dynamics International, Madison, WI, USA
| | - Fred A Wright
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
16
|
Kyffin JA, Sharma P, Leedale J, Colley HE, Murdoch C, Mistry P, Webb SD. Impact of cell types and culture methods on the functionality of in vitro liver systems - A review of cell systems for hepatotoxicity assessment. Toxicol In Vitro 2018; 48:262-275. [PMID: 29408671 DOI: 10.1016/j.tiv.2018.01.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/26/2018] [Accepted: 01/27/2018] [Indexed: 12/21/2022]
Abstract
Xenobiotic safety assessment is an area that impacts a multitude of different industry sectors such as medicinal drugs, agrochemicals, industrial chemicals, cosmetics and environmental contaminants. As such there are a number of well-developed in vitro, in vivo and in silico approaches to evaluate their properties and potential impact on the environment and to humans. Additionally, there is the continual investment in multidisciplinary scientists to explore non-animal surrogate technologies to predict specific toxicological outcomes and to improve our understanding of the biological processes regarding the toxic potential of xenobiotics. Here we provide a concise, critical evaluation of a number of in vitro systems utilised to assess the hepatotoxic potential of xenobiotics.
Collapse
Affiliation(s)
- Jonathan A Kyffin
- Department of Applied Mathematics, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Parveen Sharma
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Sherrington Building, Ashton Street, University of Liverpool, L69 3GE, United Kingdom.
| | - Joseph Leedale
- EPSRC Liverpool Centre for Mathematics in Healthcare, Department of Mathematical Sciences, Peach Street, University of Liverpool, L69 7ZL, United Kingdom
| | - Helen E Colley
- School of Clinical Dentistry, Claremont Crescent, University of Sheffield, Sheffield S10 2TA, United Kingdom
| | - Craig Murdoch
- School of Clinical Dentistry, Claremont Crescent, University of Sheffield, Sheffield S10 2TA, United Kingdom
| | - Pratibha Mistry
- Syngenta Ltd., Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Steven D Webb
- Department of Applied Mathematics, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, United Kingdom
| |
Collapse
|
17
|
Corrêa NCR, Kuligovski C, Paschoal ACC, Abud APR, Rebelatto CLK, Leite LMB, Senegaglia AC, Dallagiovanna B, Aguiar AMD. Human adipose-derived stem cells (ADSC) and human periodontal ligament stem cells (PDLSC) as cellular substrates of a toxicity prediction assay. Regul Toxicol Pharmacol 2018; 92:75-82. [DOI: 10.1016/j.yrtph.2017.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 01/08/2023]
|
18
|
Smirnova L, Kleinstreuer N, Corvi R, Levchenko A, Fitzpatrick SC, Hartung T. 3S - Systematic, systemic, and systems biology and toxicology. ALTEX 2018; 35:139-162. [PMID: 29677694 PMCID: PMC6696989 DOI: 10.14573/altex.1804051] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022]
Abstract
A biological system is more than the sum of its parts - it accomplishes many functions via synergy. Deconstructing the system down to the molecular mechanism level necessitates the complement of reconstructing functions on all levels, i.e., in our conceptualization of biology and its perturbations, our experimental models and computer modelling. Toxicology contains the somewhat arbitrary subclass "systemic toxicities"; however, there is no relevant toxic insult or general disease that is not systemic. At least inflammation and repair are involved that require coordinated signaling mechanisms across the organism. However, the more body components involved, the greater the challenge to reca-pitulate such toxicities using non-animal models. Here, the shortcomings of current systemic testing and the development of alternative approaches are summarized. We argue that we need a systematic approach to integrating existing knowledge as exemplified by systematic reviews and other evidence-based approaches. Such knowledge can guide us in modelling these systems using bioengineering and virtual computer models, i.e., via systems biology or systems toxicology approaches. Experimental multi-organ-on-chip and microphysiological systems (MPS) provide a more physiological view of the organism, facilitating more comprehensive coverage of systemic toxicities, i.e., the perturbation on organism level, without using substitute organisms (animals). The next challenge is to establish disease models, i.e., micropathophysiological systems (MPPS), to expand their utility to encompass biomedicine. Combining computational and experimental systems approaches and the chal-lenges of validating them are discussed. The suggested 3S approach promises to leverage 21st century technology and systematic thinking to achieve a paradigm change in studying systemic effects.
Collapse
Affiliation(s)
- Lena Smirnova
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, MD, USA
| | | | - Raffaella Corvi
- European Commission, Joint Research Centre (JRC), EU Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Ispra, (VA), Italy
| | - Andre Levchenko
- Yale Systems Biology Institute and Biomedical Engineering Department, Yale University, New Haven, CT, USA
| | - Suzanne C Fitzpatrick
- Food and Drug Administration (FDA), Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Thomas Hartung
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, MD, USA.
- CAAT-Europe, University of Konstanz, Konstanz, Germany
| |
Collapse
|
19
|
Gao X, Yourick JJ, Sprando RL. Comparative transcriptomic analysis of endothelial progenitor cells derived from umbilical cord blood and adult peripheral blood: Implications for the generation of induced pluripotent stem cells. Stem Cell Res 2017; 25:202-212. [DOI: 10.1016/j.scr.2017.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/06/2017] [Accepted: 11/04/2017] [Indexed: 12/28/2022] Open
|
20
|
Wilmes A, Rauch C, Carta G, Kern G, Meier F, Posch W, Wilflingseder D, Armstrong L, Lako M, Beilmann M, Gstraunthaler G, Jennings P. Towards optimisation of induced pluripotent cell culture: Extracellular acidification results in growth arrest of iPSC prior to nutrient exhaustion. Toxicol In Vitro 2017; 45:445-454. [DOI: 10.1016/j.tiv.2017.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 01/05/2023]
|
21
|
Eskes C, Boström AC, Bowe G, Coecke S, Hartung T, Hendriks G, Pamies D, Piton A, Rovida C. Good cell culture practices & in vitro toxicology. Toxicol In Vitro 2017; 45:272-277. [DOI: 10.1016/j.tiv.2017.04.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 11/30/2022]
|
22
|
Berggren E, White A, Ouedraogo G, Paini A, Richarz AN, Bois FY, Exner T, Leite S, Grunsven LAV, Worth A, Mahony C. Ab initio chemical safety assessment: A workflow based on exposure considerations and non-animal methods. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 4:31-44. [PMID: 29214231 PMCID: PMC5695905 DOI: 10.1016/j.comtox.2017.10.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/12/2022]
Abstract
We describe and illustrate a workflow for chemical safety assessment that completely avoids animal testing. The workflow, which was developed within the SEURAT-1 initiative, is designed to be applicable to cosmetic ingredients as well as to other types of chemicals, e.g. active ingredients in plant protection products, biocides or pharmaceuticals. The aim of this work was to develop a workflow to assess chemical safety without relying on any animal testing, but instead constructing a hypothesis based on existing data, in silico modelling, biokinetic considerations and then by targeted non-animal testing. For illustrative purposes, we consider a hypothetical new ingredient x as a new component in a body lotion formulation. The workflow is divided into tiers in which points of departure are established through in vitro testing and in silico prediction, as the basis for estimating a safe external dose in a repeated use scenario. The workflow includes a series of possible exit (decision) points, with increasing levels of confidence, based on the sequential application of the Threshold of Toxicological (TTC) approach, read-across, followed by an "ab initio" assessment, in which chemical safety is determined entirely by new in vitro testing and in vitro to in vivo extrapolation by means of mathematical modelling. We believe that this workflow could be applied as a tool to inform targeted and toxicologically relevant in vitro testing, where necessary, and to gain confidence in safety decision making without the need for animal testing.
Collapse
Affiliation(s)
- Elisabet Berggren
- Chemical Safety and Alternative Methods Unit, & EURL ECVAM, Directorate F – Health, Consumers and Reference Materials, Joint Research Centre, European Commission, Ispra, Italy
| | | | | | - Alicia Paini
- Chemical Safety and Alternative Methods Unit, & EURL ECVAM, Directorate F – Health, Consumers and Reference Materials, Joint Research Centre, European Commission, Ispra, Italy
| | - Andrea-Nicole Richarz
- Chemical Safety and Alternative Methods Unit, & EURL ECVAM, Directorate F – Health, Consumers and Reference Materials, Joint Research Centre, European Commission, Ispra, Italy
| | | | | | - Sofia Leite
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Leo A. van Grunsven
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andrew Worth
- Chemical Safety and Alternative Methods Unit, & EURL ECVAM, Directorate F – Health, Consumers and Reference Materials, Joint Research Centre, European Commission, Ispra, Italy
| | | |
Collapse
|
23
|
Abstract
Food is a very common source of toxicant exposure to humans. An unknown number of naturally occurring contaminants find their way into food. The most ominous are products of mold growth called mycotoxins, which include the carcinogenic aflatoxins. On the other hand, more than 2500 chemical substances are added to foods to modify or impart flavor, color, stability, and texture, to fortify or enrich nutritive value, or to reduce cost. In addition, an estimated 12,000 substances are used in such a way that they may unintentionally enter the food supply. The term “food additive” is a regulatory term that encompasses any functional substance that is normally neither consumed as a food itself, but is intentionally added to food (usually in small quantities) to augment its processing or to improve aroma, color, consistency, taste, texture, or shelf life. Additives are not considered “nutritional” even if they possess nutritive value. The purpose of the present review is to give an overview of the approaches to, and procedures involved in ensuring the safety of the US food supply in the context of food additives, with particular reference to the existing and emerging scientific and regulatory landscape and consumer perceptions.
Collapse
Affiliation(s)
| | - Roger Clemens
- USC School of Pharmacy and the International Center for Regulatory Science, Los Angeles, CA, USA
| | - Wally Hayes
- T.H. Chan School of Public Health, Cambridge, MA, USA
| | - Chada Reddy
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
24
|
Morrison M, Bell J, George C, Harmon S, Munsie M, Kaye J. The European General Data Protection Regulation: challenges and considerations for iPSC researchers and biobanks. Regen Med 2017; 12:693-703. [PMID: 28976812 PMCID: PMC5857917 DOI: 10.2217/rme-2017-0068] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/26/2017] [Indexed: 02/08/2023] Open
Abstract
Increasingly, human induced pluripotent stem cells (iPSC) and their associated genetic and clinical information are being used in a wide range of applications, with large biobanks being established to support and increase their scientific use. The new European General Data Protection Regulations, which comes into effect in 2018, will have implications for biobanks that generate, store and allow research access to iPSC. This paper describes some of the challenges that iPSC biobanks face and suggests some points for the development of appropriate governance structures to address these new requirements. These suggestions also have implications for iPSC research in general.
Collapse
Affiliation(s)
- Michael Morrison
- Nuffield Department of Population Health, HeLEX – Center for Health, Law & Emerging Technologies, University of Oxford, Ewert House, Ewert Place, Banbury Road, Oxford OX2 7DD, UK
| | - Jessica Bell
- Nuffield Department of Population Health, HeLEX – Center for Health, Law & Emerging Technologies, University of Oxford, Ewert House, Ewert Place, Banbury Road, Oxford OX2 7DD, UK
- Melbourne Law School, University of Melbourne, Parkville, VIC 3010, Australia
| | - Carol George
- School of Law, Kenyon Mason Institute for Medicine, Life Sciences & Law, University of Edinburgh, Old College, South Bridge, Edinburgh EH8 9YL, UK
| | - Shawn Harmon
- School of Law, Kenyon Mason Institute for Medicine, Life Sciences & Law, University of Edinburgh, Old College, South Bridge, Edinburgh EH8 9YL, UK
| | - Megan Munsie
- Department of Anatomy & Neuroscience, Stem Cells Center for Stem Cell Systems, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jane Kaye
- Nuffield Department of Population Health, HeLEX – Center for Health, Law & Emerging Technologies, University of Oxford, Ewert House, Ewert Place, Banbury Road, Oxford OX2 7DD, UK
- Melbourne Law School, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
25
|
Effects of Co-Culture Media on Hepatic Differentiation of hiPSC with or without HUVEC Co-Culture. Int J Mol Sci 2017; 18:ijms18081724. [PMID: 28783133 PMCID: PMC5578114 DOI: 10.3390/ijms18081724] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/24/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022] Open
Abstract
The derivation of hepatocytes from human induced pluripotent stem cells (hiPSC) is of great interest for applications in pharmacological research. However, full maturation of hiPSC-derived hepatocytes has not yet been achieved in vitro. To improve hepatic differentiation, co-cultivation of hiPSC with human umbilical vein endothelial cells (HUVEC) during hepatic differentiation was investigated in this study. In the first step, different culture media variations based on hepatocyte culture medium (HCM) were tested in HUVEC mono-cultures to establish a suitable culture medium for co-culture experiments. Based on the results, two media variants were selected to differentiate hiPSC-derived definitive endodermal (DE) cells into mature hepatocytes with or without HUVEC addition. DE cells differentiated in mono-cultures in the presence of those media variants showed a significant increase (p < 0.05) in secretion of α-fetoprotein and in activities of cytochrome P450 (CYP) isoenzymes CYP2B6 and CYP3A4 as compared with cells differentiated in unmodified HCM used as control. Co-cultivation with HUVEC did not further improve the differentiation outcome. Thus, it can be concluded that the effect of the used medium outweighed the effect of HUVEC co-culture, emphasizing the importance of the culture medium composition for hiPSC differentiation.
Collapse
|
26
|
Phenotypic Assays for Characterizing Compound Effects on Induced Pluripotent Stem Cell-Derived Cardiac Spheroids. Assay Drug Dev Technol 2017; 15:280-296. [DOI: 10.1089/adt.2017.792] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
27
|
Precision toxicology based on single cell sequencing: an evolving trend in toxicological evaluations and mechanism exploration. Arch Toxicol 2017; 91:2539-2549. [DOI: 10.1007/s00204-017-1971-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/20/2017] [Indexed: 12/11/2022]
|
28
|
Sirenko O, Grimm FA, Ryan KR, Iwata Y, Chiu WA, Parham F, Wignall JA, Anson B, Cromwell EF, Behl M, Rusyn I, Tice RR. In vitro cardiotoxicity assessment of environmental chemicals using an organotypic human induced pluripotent stem cell-derived model. Toxicol Appl Pharmacol 2017; 322:60-74. [PMID: 28259702 DOI: 10.1016/j.taap.2017.02.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/24/2017] [Accepted: 02/27/2017] [Indexed: 01/22/2023]
Abstract
An important target area for addressing data gaps through in vitro screening is the detection of potential cardiotoxicants. Despite the fact that current conservative estimates relate at least 23% of all cardiovascular disease cases to environmental exposures, the identities of the causative agents remain largely uncharacterized. Here, we evaluate the feasibility of a combinatorial in vitro/in silico screening approach for functional and mechanistic cardiotoxicity profiling of environmental hazards using a library of 69 representative environmental chemicals and drugs. Human induced pluripotent stem cell-derived cardiomyocytes were exposed in concentration-response for 30min or 24h and effects on cardiomyocyte beating and cellular and mitochondrial toxicity were assessed by kinetic measurements of intracellular Ca2+ flux and high-content imaging using the nuclear dye Hoechst 33342, the cell viability marker Calcein AM, and the mitochondrial depolarization probe JC-10. More than half of the tested chemicals exhibited effects on cardiomyocyte beating after 30min of exposure. In contrast, after 24h, effects on cell beating without concomitant cytotoxicity were observed in about one third of the compounds. Concentration-response data for in vitro bioactivity phenotypes visualized using the Toxicological Prioritization Index (ToxPi) showed chemical class-specific clustering of environmental chemicals, including pesticides, flame retardants, and polycyclic aromatic hydrocarbons. For environmental chemicals with human exposure predictions, the activity-to-exposure ratios between modeled blood concentrations and in vitro bioactivity were between one and five orders of magnitude. These findings not only demonstrate that some ubiquitous environmental pollutants might have the potential at high exposure levels to alter cardiomyocyte function, but also indicate similarities in the mechanism of these effects both within and among chemicals and classes.
Collapse
Affiliation(s)
| | - Fabian A Grimm
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Kristen R Ryan
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Yasuhiro Iwata
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Frederick Parham
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Blake Anson
- Cellular Dynamics International, Madison, WI, USA
| | | | - Mamta Behl
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Raymond R Tice
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
29
|
A transcriptomic study suggesting human iPSC-derived hepatocytes potentially offer a better in vitro model of hepatotoxicity than most hepatoma cell lines. Cell Biol Toxicol 2017; 33:407-421. [PMID: 28144825 DOI: 10.1007/s10565-017-9383-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/05/2017] [Accepted: 01/17/2017] [Indexed: 01/08/2023]
Abstract
Hepatocytes derived from human induced pluripotent stem cells (iPSCs) hold great promise as an in vitro liver model by virtue of their unlimited long-term supply, stability and consistency in functionality, and affordability of donor diversity. However, the suitability of iPSC-derived hepatocytes (iPSC-Heps) for toxicology studies has not been fully validated. In the current study, we characterized global gene expression profiles of iPSC-Heps in comparison to those of primary human hepatocytes (PHHs) and several human hepatoma cell lines (HepaRG, HuH-7, HepG2, and HepG2/C3A). Furthermore, genes associated with hepatotoxicity, drug-metabolizing enzymes, transporters, and nuclear receptors were extracted for more detailed comparisons. Our results showed that iPSC-Heps correlate more closely to PHHs than hepatoma cell lines, suggesting that iPSC-Heps had a relatively mature hepatic phenotype that more closely resembles that of adult hepatocytes. HepaRG was the sole exception but nonetheless suffers from lack of donor diversity and poor prediction of hepatotoxicity. The effects of sex differences and DMSO treatment on gene expression of the cellular models were also investigated. Overall, the results presented in the current study suggest that iPSC-Heps represent a reproducible source of human hepatocytes and a promising in vitro model for hepatotoxicity evaluation. Further studies are needed to develop a robust protocol for hepatocyte differentiation towards a more mature adult phenotype.
Collapse
|
30
|
Zuppinger C. Edge-Detection for Contractility Measurements with Cardiac Spheroids. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2017. [DOI: 10.1007/978-1-4939-6661-5_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Yao X, Yin N, Faiola F. Stem cell toxicology: a powerful tool to assess pollution effects on human health. Natl Sci Rev 2016. [DOI: 10.1093/nsr/nww089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AbstractEnvironmental pollution is a global problem; the lack of comprehensive toxicological assessments may lead to increased health risks. To fully understand the health effects of pollution, it is paramount to implement fast, efficient and specific toxicity screening that relies on human models rather than on time-consuming, expensive and often inaccurate tests involving live animals. Human stem cell toxicology represents a valid alternative to traditional toxicity assays because it takes advantage of the ability of stem cells to differentiate into multiple cell types and tissues of the human body. Thus, this branch of toxicology provides a possibility to assess cellular, embryonic, developmental, reproductive and functional toxicity in vitro within a single system highly relevant to human physiology. In this review, we describe the development, performance and future perspectives of stem cell toxicology, with an emphasis on how it can meet the increasing challenges posed by environmental pollution in the modern world.
Collapse
Affiliation(s)
- Xinglei Yao
- Stake Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- Stake Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- Stake Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Abstract
There is no good science in bad models. Cell culture is especially prone to artifacts. A number of novel cell culture technologies have become more broadly available in the 21st century, which allow overcoming limitations of traditional culture and are more physiologically relevant. These include the use of stem-cell derived human cells, cocultures of different cell types, scaffolds and extracellular matrices, perfusion platforms (such as microfluidics), 3D culture, organ-on-chip technologies, tissue architecture, and organ functionality. The physiological relevance of such models is further enhanced by the measurement of biomarkers (e.g., key events of pathways), organ specific functionality, and more comprehensive assessment cell responses by high-content methods. These approaches are still rarely combined to create microphysiological systems. The complexity of the combination of these technologies can generate results closer to the in vivo situation but increases the number of parameters to control, bringing some new challenges. In fact, we do not argue that all cell culture needs to be that sophisticated. The efforts taken are determined by the purpose of our experiments and tests. If only a very specific molecular target to cell response is of interest, a very simple model, which reflects this, might be much more suited to allow standardization and high-throughput. However, the less defined the end point of interest and cellular response are, the better we should approximate organ- or tissue-like culture conditions to make physiological responses more probable. Besides these technologic advances, important progress in the quality assurance and reporting on cell cultures as well as the validation of cellular test systems brings the utility of cell cultures to a new level. The advancement and broader implementation of Good Cell Culture Practice (GCCP) is key here. In toxicology, this is a major prerequisite for meaningful and reliable results, ultimately supporting risk assessment and product development decisions.
Collapse
Affiliation(s)
- David Pamies
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland 21205, United States
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland 21205, United States.,CAAT-Europe, University of Konstanz , 78464 Konstanz, Germany
| |
Collapse
|
33
|
Prenatal exposure to environmental factors and congenital limb defects. ACTA ACUST UNITED AC 2016; 108:243-273. [DOI: 10.1002/bdrc.21140] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/26/2022]
|
34
|
Huang L, Zou S, Deng J, Dai T, Jiang J, Jia Y, Dai R, Xie S. Development of an optimized cytotoxicity assay system for CYP3A4-mediated metabolic activation via modified piggyBac transposition. Toxicol In Vitro 2016; 32:132-7. [DOI: 10.1016/j.tiv.2015.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/12/2015] [Accepted: 12/13/2015] [Indexed: 12/25/2022]
|
35
|
Blaauboer BJ, Boobis AR, Bradford B, Cockburn A, Constable A, Daneshian M, Edwards G, Garthoff JA, Jeffery B, Krul C, Schuermans J. Considering new methodologies in strategies for safety assessment of foods and food ingredients. Food Chem Toxicol 2016; 91:19-35. [PMID: 26939913 DOI: 10.1016/j.fct.2016.02.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/25/2016] [Indexed: 12/28/2022]
Abstract
Toxicology and safety assessment are changing and require new strategies for evaluating risk that are less depending on apical toxicity endpoints in animal models and relying more on knowledge of the mechanism of toxicity. This manuscript describes a number of developments that could contribute to this change and implement this in a stepwise roadmap that can be applied for the evaluation of food and food ingredients. The roadmap was evaluated in four case studies by using literature and existing data. This preliminary evaluation was shown to be useful. However, this experience should be extended by including examples where experimental work needs to be included. To further implement these new insights in toxicology and safety assessment for the area of food and food ingredients, the recommendation is that stakeholders take action in addressing gaps in our knowledge, e.g. with regard to the applicability of the roadmap for mixtures and food matrices. Further development of the threshold of toxicological concern is needed, as well as cooperation with other sectors where similar schemes are under development. Moreover, a more comprehensive evaluation of the roadmap, also including the identification of the need for in vitro experimental work is recommended.
Collapse
Affiliation(s)
- Bas J Blaauboer
- Utrecht University, Division of Toxicology, Institute for Risk Assessment Sciences, PO Box 80.177, 3508 TD, Utrecht, The Netherlands
| | - Alan R Boobis
- Imperial College London, Department of Medicine, Centre for Pharmacology & Therapeutics, London, W12 0NN, United Kingdom
| | - Bobbie Bradford
- Unilever, Safety & Environmental Assurance Centre, London, EC4Y 0DY, United Kingdom
| | - Andrew Cockburn
- University of Newcastle, Toxico-Logical Consulting Ltd, The Old Boiler House, Moor Place Park, Kettle Green Lane, Much Hadham, Hertfordshire, SG10 6AA, United Kingdom
| | - Anne Constable
- Nestlé Research Centre, Vers-Chez-les-Blanc, 1000, Lausanne 26, Switzerland
| | - Mardas Daneshian
- University of Konstanz, Center for Alternatives to Animal Testing-Europe CAAT-Europe, 78457, Konstanz, Germany
| | - Gareth Edwards
- Consultant, 63 Woodlands Road., Sonning Common, Reading, Berkshire, RG4 9TD, United Kingdom
| | | | - Brett Jeffery
- Mars, Global Chemical Food Safety Group, Slough, SL1 4JX, United Kingdom
| | - Cyrille Krul
- University of Applied Sciences, Research Centre Technology & Innovation, Dept. Innovative Testing in Life Sciences & Chemistry, PO Box 12011, 3501 AA, Utrecht, The Netherlands; TNO Healthy Living, PO box 360, 3700 AJ Zeist, The Netherlands
| | | |
Collapse
|
36
|
Zuppinger C. 3D culture for cardiac cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1873-81. [PMID: 26658163 DOI: 10.1016/j.bbamcr.2015.11.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/23/2015] [Accepted: 11/30/2015] [Indexed: 01/26/2023]
Abstract
This review discusses historical milestones, recent developments and challenges in the area of 3D culture models with cardiovascular cell types. Expectations in this area have been raised in recent years, but more relevant in vitro research, more accurate drug testing results, reliable disease models and insights leading to bioartificial organs are expected from the transition to 3D cell culture. However, the construction of organ-like cardiac 3D models currently remains a difficult challenge. The heart consists of highly differentiated cells in an intricate arrangement.Furthermore, electrical “wiring”, a vascular system and multiple cell types act in concert to respond to the rapidly changing demands of the body. Although cardiovascular 3D culture models have been predominantly developed for regenerative medicine in the past, their use in drug screening and for disease models has become more popular recently. Many sophisticated 3D culture models are currently being developed in this dynamic area of life science. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Christian Zuppinger
- Cardiology, Bern University Hospital, Department of Clinical Research, MEM G803b, Murtenstrasse 35, CH-3008, Bern, Switzerland.
| |
Collapse
|