1
|
Roman A, Huntemer-Silveira A, Waldron MA, Khalid Z, Blake J, Parr AM, Low WC. Cell Transplantation for Repair of the Spinal Cord and Prospects for Generating Region-Specific Exogenic Neuronal Cells. Cell Transplant 2024; 33:9636897241241998. [PMID: 38590295 PMCID: PMC11005494 DOI: 10.1177/09636897241241998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Spinal cord injury (SCI) is associated with currently irreversible consequences in several functional components of the central nervous system. Despite the severity of injury, there remains no approved treatment to restore function. However, with a growing number of preclinical studies and clinical trials, cell transplantation has gained significant potential as a treatment for SCI. Researchers have identified several cell types as potential candidates for transplantation. To optimize successful functional outcomes after transplantation, one key factor concerns generating neuronal cells with regional and subtype specificity, thus calling on the developmental transcriptome patterning of spinal cord cells. A potential source of spinal cord cells for transplantation is the generation of exogenic neuronal progenitor cells via the emerging technologies of gene editing and blastocyst complementation. This review highlights the use of cell transplantation to treat SCI in the context of relevant developmental gene expression patterns useful for producing regionally specific exogenic spinal cells via in vitro differentiation and blastocyst complementation.
Collapse
Affiliation(s)
- Alex Roman
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Anne Huntemer-Silveira
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Madison A. Waldron
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Zainab Khalid
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Jeffrey Blake
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Ann M. Parr
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Sen SQ. Generating neural diversity through spatial and temporal patterning. Semin Cell Dev Biol 2023; 142:54-66. [PMID: 35738966 DOI: 10.1016/j.semcdb.2022.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022]
Abstract
The nervous system consists of a vast diversity of neurons and glia that are accurately assembled into functional circuits. What are the mechanisms that generate these diverse cell types? During development, an epithelial sheet with neurogenic potential is initially regionalised into spatially restricted domains of gene expression. From this, pools of neural stem cells (NSCs) with distinct molecular profiles and the potential to generate different neuron types, are specified. These NSCs then divide asymmetrically to self-renew and generate post-mitotic neurons or glia. As NSCs age, they experience transitions in gene expression, which further allows them to generate different neurons or glia over time. Versions of this general template of spatial and temporal patterning operate during the development of different parts of different nervous systems. Here, I cover our current knowledge of Drosophila brain and optic lobe development as well as the development of the vertebrate cortex and spinal cord within the framework of this above template. I highlight where our knowledge is lacking, where mechanisms beyond these might operate, and how the emergence of new technologies might help address unanswered questions.
Collapse
Affiliation(s)
- Sonia Q Sen
- Tata Institute for Genetics and Society, UAS-GKVK Campus, Bellary Road, Bangalore, India.
| |
Collapse
|
3
|
Berzanskyte I, Riccio F, Machado CB, Bradbury EJ, Lieberam I. Enrichment of human embryonic stem cell-derived V3 interneurons using an Nkx2-2 gene-specific reporter. Sci Rep 2023; 13:2008. [PMID: 36737643 PMCID: PMC9898512 DOI: 10.1038/s41598-023-29165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
V3 spinal interneurons are a key element of the spinal circuits, which control motor function. However, to date, there are no effective ways of deriving a pure V3 population from human pluripotent stem cells. Here, we report a method for differentiation and isolation of spinal V3 interneurons, combining extrinsic factor-mediated differentiation and magnetic activated cell sorting. We found that differentiation of V3 progenitors can be enhanced with a higher concentration of Sonic Hedgehog agonist, as well as culturing cells in 3D format. To enable V3 progenitor purification from mixed differentiation cultures, we developed a transgene reporter, with a part of the regulatory region of V3-specific gene Nkx2-2 driving the expression of a membrane marker CD14. We found that in human cells, NKX2-2 initially exhibited co-labelling with motor neuron progenitor marker, but V3 specificity emerged as the differentiation culture progressed. At these later differentiation timepoints, we were able to enrich V3 progenitors labelled with CD14 to ~ 95% purity, and mature them to postmitotic V3 interneurons. This purification tool for V3 interneurons will be useful for in vitro disease modeling, studies of normal human neural development and potential cell therapies for disorders of the spinal cord.
Collapse
Affiliation(s)
- Ieva Berzanskyte
- Centre for Gene Therapy and Regenerative Medicine, Centre for Developmental Neurobiology, MRC Centre for Neurodevelopmental Disorders, King's College London, 28th Floor Tower Wing, Guy's Campus, Great Maze Pond, London, SE1 9RT, UK.
- The Wolfson Centre for Age-Related Diseases, King's College London, London, UK.
| | - Federica Riccio
- Centre for Gene Therapy and Regenerative Medicine, Centre for Developmental Neurobiology, MRC Centre for Neurodevelopmental Disorders, King's College London, 28th Floor Tower Wing, Guy's Campus, Great Maze Pond, London, SE1 9RT, UK
| | - Carolina Barcellos Machado
- Centre for Gene Therapy and Regenerative Medicine, Centre for Developmental Neurobiology, MRC Centre for Neurodevelopmental Disorders, King's College London, 28th Floor Tower Wing, Guy's Campus, Great Maze Pond, London, SE1 9RT, UK
| | | | - Ivo Lieberam
- Centre for Gene Therapy and Regenerative Medicine, Centre for Developmental Neurobiology, MRC Centre for Neurodevelopmental Disorders, King's College London, 28th Floor Tower Wing, Guy's Campus, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
4
|
Pardieck J, Harb M, Sakiyama-Elbert SE. A transgenic mouse embryonic stem cell line for puromycin selection of V0 V interneurons from heterogenous induced cultures. Stem Cell Res Ther 2022; 13:131. [PMID: 35346349 PMCID: PMC8962475 DOI: 10.1186/s13287-022-02801-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 03/07/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Spinal interneurons (INs) relay sensory and motor control information between the brain and body. When this relay circuitry is disrupted from injury or disease, it is devastating to patients due to the lack of native recovery in central nervous system (CNS) tissues. Obtaining a purified population of INs is necessary to better understand their role in normal function and as potential therapies in CNS. The ventral V0 (V0V) INs are excitatory neurons involved in locomotor circuits and are thus of interest for understanding normal and pathological spinal cord function. To achieve scalable amounts of V0V INs, they can be derived from pluripotent sources, such as mouse embryonic stem cells (mESCs), but the resultant culture is heterogenous, obscuring the specific role of V0V INs. This study generated a transgenic mESC line to enrich V0V INs from induced cultures to allow for a scalable, enriched population for future in vitro and in vivo studies. METHODS The transgenic Evx1-PAC mESC line was created by CRISPR-Cas9-mediated insertion of puromycin-N-acetyltransferase (PAC) into the locus of V0V IN marker Evx1. Evx1 and PAC mRNA expression were measured by qPCR. Viability staining helped establish the selection protocol for V0V INs derived from Evx1-PAC mESCs inductions. Immunostaining was used to examine composition of selected inductions. Cultures were maintained up to 30 days to examine maturation by expression of mature/synaptic markers, determined by immunostaining, and functional activity in co-cultures with selected motor neurons (MNs) and V2a INs on microelectrode arrays (MEAs). RESULTS V0V IN inductions were best selected with 4 µg/mL puromycin on day 10 to 11 and showed reduction of other IN populations and elimination of proliferative cells. Long-term selected cultures were highly neuronal, expressing neuronal nuclear marker NeuN, dendritic marker MAP2, pre-synaptic marker Bassoon, and glutamatergic marker VGLUT2, with some cholinergic VAChT-expressing cells. Functional studies on MEAs showed that co-cultures with MNs or MNs plus V2a INs created neuronal networks with synchronized bursting. CONCLUSIONS Evx1-PAC mESCs can be used to purify V0V IN cultures for largely glutamatergic neurons that can be used in network formation studies or for rodent models requiring transplanted V0V INs.
Collapse
Affiliation(s)
- Jennifer Pardieck
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton St., Austin, TX 78712-1139 USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO USA
| | - Manwal Harb
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton St., Austin, TX 78712-1139 USA
| | - Shelly E. Sakiyama-Elbert
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton St., Austin, TX 78712-1139 USA
| |
Collapse
|
5
|
Pardieck J, Harb M, Sakiyama-Elbert S. Induction of Ventral Spinal V0 Interneurons from Mouse Embryonic Stem Cells. Stem Cells Dev 2021; 30:816-829. [PMID: 34139881 DOI: 10.1089/scd.2021.0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ventral spinal population of V0 interneurons (INs) contributes to the coordinated movements directed by spinal central pattern generators (CPGs), including respiratory circuits and left-right alternation in locomotion. One challenge in studying V0 INs has been the limited number of cells that can be isolated from primary sources for basic research or therapeutic use. However, derivation from a pluripotent source, such as has been done recently for other IN populations, could resolve this issue. However, there is currently no protocol to specifically derive V0 interneurons from pluripotent cell types. To generate an induction protocol, mouse embryonic stem cells (mESCs) were grown in suspension culture and then exposed to retinoic acid (RA) and collected at different time points to measure mRNA expression of the V0 progenitor transcription factor marker, Dbx1, and postmitotic transcription factor marker, Evx1. The cultures were also exposed to the sonic hedgehog signaling pathway agonist purmorphamine (purm) and the Notch signaling pathway inhibitor N-{N-(3,5-difluorophenacetyl-L-alanyl)}-(S)-phenylglycine-t-butyl-ester (DAPT) to determine if either of these pathways contribute to V0 IN induction, specifically the ventral (V0V) subpopulation. From the various parameters tested, the final protocol that generated the greatest percentage of cells expressing V0V IN markers was an 8-day protocol using 4 days of suspension culture to form embryoid bodies followed by addition of 1 μM RA from days 4 to 8, 100 nM purm from days 4 to 6, and 5 μM DAPT from days 6 to 8. This protocol will allow investigators to obtain V0 IN cultures for use in in vitro studies, such as those examining CPG microcircuits, electrophysiological characterization, or even for transplantation studies in injury or disease models.
Collapse
Affiliation(s)
- Jennifer Pardieck
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Manwal Harb
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
6
|
McIntyre WB, Pieczonka K, Khazaei M, Fehlings MG. Regenerative replacement of neural cells for treatment of spinal cord injury. Expert Opin Biol Ther 2021; 21:1411-1427. [PMID: 33830863 DOI: 10.1080/14712598.2021.1914582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Traumatic Spinal Cord Injury (SCI) results from primary physical injury to the spinal cord, which initiates a secondary cascade of neural cell death. Current therapeutic approaches can attenuate the consequences of the primary and secondary events, but do not address the degenerative aspects of SCI. Transplantation of neural stem/progenitor cells (NPCs) for the replacement of the lost/damaged neural cells is suggested here as a regenerative approach that is complementary to current therapeutics.Areas Covered: This review addresses how neurons, oligodendrocytes, and astrocytes are impacted by traumatic SCI, and how current research in regenerative-NPC therapeutics aims to restore their functionality. Methods used to enhance graft survival, as well as bias progenitor cells towards neuronal, oligodendrogenic, and astroglia lineages are discussed.Expert Opinion: Despite an NPC's ability to differentiate into neurons, oligodendrocytes, and astrocytes in the transplant environment, their potential therapeutic efficacy requires further optimization prior to translation into the clinic. Considering the temporospatial identity of NPCs could promote neural repair in region specific injuries throughout the spinal cord. Moreover, understanding which cells are targeted by NPC-derived myelinating cells can help restore physiologically-relevant myelin patterns. Finally, the duality of astrocytes is discussed, outlining their context-dependent importance in the treatment of SCI.
Collapse
Affiliation(s)
- William Brett McIntyre
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Katarzyna Pieczonka
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Mohamad Khazaei
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Olmsted ZT, Paluh JL. Stem Cell Neurodevelopmental Solutions for Restorative Treatments of the Human Trunk and Spine. Front Cell Neurosci 2021; 15:667590. [PMID: 33981202 PMCID: PMC8107236 DOI: 10.3389/fncel.2021.667590] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
The ability to reliably repair spinal cord injuries (SCI) will be one of the greatest human achievements realized in regenerative medicine. Until recently, the cellular path to this goal has been challenging. However, as detailed developmental principles are revealed in mouse and human models, their application in the stem cell community brings trunk and spine embryology into efforts to advance human regenerative medicine. New models of posterior embryo development identify neuromesodermal progenitors (NMPs) as a major bifurcation point in generating the spinal cord and somites and is leading to production of cell types with the full range of axial identities critical for repair of trunk and spine disorders. This is coupled with organoid technologies including assembloids, circuitoids, and gastruloids. We describe a paradigm for applying developmental principles towards the goal of cell-based restorative therapies to enable reproducible and effective near-term clinical interventions.
Collapse
|
8
|
Nedelec S, Martinez-Arias A. In vitro models of spinal motor circuit's development in mammals: achievements and challenges. Curr Opin Neurobiol 2021; 66:240-249. [PMID: 33677159 DOI: 10.1016/j.conb.2020.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/12/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
The connectivity patterns of neurons sustaining the functionality of spinal locomotor circuits rely on the specification of hundreds of motor neuron and interneuron subtypes precisely arrayed within the embryonic spinal cord. Knowledge acquired by developmental biologists on the molecular mechanisms underpinning this process in vivo has supported the development of 2D and 3D differentiation strategies to generate spinal neuronal diversity from mouse and human pluripotent stem cells (PSCs). Here, we review recent breakthroughs in this field and the perspectives opened up by models of in vitro embryogenesis to approach the mechanisms underlying neuronal diversification and the formation of functional mouse and human locomotor circuits. Beyond serving fundamental investigations, these new approaches should help engineering neuronal circuits differentially impacted in neuromuscular disorders, such as amyotrophic lateral sclerosis or spinal muscular atrophies, and thus open new avenues for disease modeling and drug screenings.
Collapse
Affiliation(s)
- Stéphane Nedelec
- Institut du Fer à Moulin, 75005, Paris, France; Inserm, UMR-S 1270, 75005 Paris, France; Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France.
| | | |
Collapse
|
9
|
Sagner A, Briscoe J. Establishing neuronal diversity in the spinal cord: a time and a place. Development 2019; 146:146/22/dev182154. [DOI: 10.1242/dev.182154] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ABSTRACT
The vertebrate spinal cord comprises multiple functionally distinct neuronal cell types arranged in characteristic positions. During development, these different types of neurons differentiate from transcriptionally distinct neural progenitors that are arrayed in discrete domains along the dorsal-ventral and anterior-posterior axes of the embryonic spinal cord. This organization arises in response to morphogen gradients acting upstream of a gene regulatory network, the architecture of which determines the spatial and temporal pattern of gene expression. In recent years, substantial progress has been made in deciphering the regulatory network that underlies the specification of distinct progenitor and neuronal cell identities. In this Review, we outline how distinct neuronal cell identities are established in response to spatial and temporal patterning systems, and outline novel experimental approaches to study the emergence and function of neuronal diversity in the spinal cord.
Collapse
|
10
|
LaPallo BK, Giorgi A, Perreault MC. Crossed activation of thoracic trunk motoneurons by medullary reticulospinal neurons. J Neurophysiol 2019; 122:2601-2613. [PMID: 31664872 DOI: 10.1152/jn.00194.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Activation of contralateral muscles by supraspinal neurons, or crossed activation, is critical for bilateral coordination. Studies in mammals have focused on the neural circuits that mediate cross activation of limb muscles, but the neural circuits involved in crossed activation of trunk muscles are still poorly understood. In this study, we characterized functional connections between reticulospinal (RS) neurons in the medial and lateral regions of the medullary reticular formation (medMRF and latMRF) and contralateral trunk motoneurons (MNs) in the thoracic cord (T7 and T10 segments). To do this, we combined electrical microstimulation of the medMRF and latMRF and calcium imaging from single cells in an ex vivo brain stem-spinal cord preparation of neonatal mice. Our findings substantiate two spatially distinct RS pathways to contralateral trunk MNs. Both pathways originate in the latMRF and are midline crossing, one at the level of the spinal cord via excitatory descending commissural interneurons (reticulo-commissural pathway) and the other at the level of the brain stem (crossed RS pathway). Activation of these RS pathways may enable different patterns of bilateral trunk coordination. Possible implications for recovery of trunk function after stroke or spinal cord injury are discussed.NEW & NOTEWORTHY We identify two spatially distinct reticulospinal pathways for crossed activation of trunk motoneurons. Both pathways cross the midline, one at the level of the brain stem and the other at the level of the spinal cord via excitatory commissural interneurons. Jointly, these pathways provide new opportunities for repair interventions aimed at recovering trunk functions after stroke or spinal cord injury.
Collapse
Affiliation(s)
- Brandon K LaPallo
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Andrea Giorgi
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | | |
Collapse
|
11
|
V2a interneuron differentiation from mouse and human pluripotent stem cells. Nat Protoc 2019; 14:3033-3058. [PMID: 31628445 DOI: 10.1038/s41596-019-0203-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
Abstract
V2a interneurons are located in the hindbrain and spinal cord, where they provide rhythmic input to major motor control centers. Many of the phenotypic properties and functions of excitatory V2a interneurons have yet to be fully defined. Definition of these properties could lead to novel regenerative therapies for traumatic injuries and drug targets for chronic degenerative diseases. Here we describe how to produce V2a interneurons from mouse and human pluripotent stem cells (PSCs), as well as strategies to characterize and mature the cells for further analysis. The described protocols are based on a sequence of small-molecule treatments that induce differentiation of PSCs into V2a interneurons. We also include a detailed description of how to phenotypically characterize, mature, and freeze the cells. The mouse and human protocols are similar in regard to the sequence of small molecules used but differ slightly in the concentrations and durations necessary for induction. With the protocols described, scientists can expect to obtain V2a interneurons with purities of ~75% (mouse) in 7 d and ~50% (human) in 20 d.
Collapse
|
12
|
Abstract
Cellular transplantation for repair of the injured spinal cord has a rich history with strategies focused on neuroprotection, immunomodulation, and neural reconstruction. The goal of the present review is to provide a concise overview and discussion of five key themes that have become important considerations for rebuilding functional neural networks. The questions raised include: (i) who are the donor cells selected for transplantation, (ii) what is the intended target for repair, (iii) when is the optimal time for transplantation, (iv) where should the cells be delivered, and lastly (v) why does cell transplantation remain an attractive candidate for promoting neural repair after injury? Recent developments in neurobiology and engineering now enable us to start addressing these questions with multidisciplinary expertise and methods.
Collapse
Affiliation(s)
- Lyandysha V Zholudeva
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA.,2 The Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Michael A Lane
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA.,2 The Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
13
|
White N, Sakiyama-Elbert SE. Derivation of Specific Neural Populations From Pluripotent Cells for Understanding and Treatment of Spinal Cord Injury. Dev Dyn 2019; 248:78-87. [PMID: 30324766 PMCID: PMC6640631 DOI: 10.1002/dvdy.24680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022] Open
Abstract
Due to the nature of the biological response to traumatic spinal cord injury, there are very limited therapeutic options available to patients. Recent advances in cell transplantation have demonstrated the therapeutic potential of transplanting supportive cell types following spinal cord injury. In particular, pluripotent stem cell derived neural cells are of interest for future investigation. Use of pluripotent stem cells as the source allows many cell types to be produced from a population that can be expanded in vitro. In this review, we will discuss the signaling pathways that have been used to differentiate spinal neural phenotypes from pluripotent stem cells. Additionally, we will highlight methods that have been developed to direct the differentiation of pluripotent stem cells to specific neural fates. Further refinement and elaboration of these techniques might aid in elucidating the multitude of neuronal subtypes endogenous to the spinal cord, as well as produce further therapeutic options for spinal cord injury recovery. Developmental Dynamics 248:78-87, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicholas White
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | | |
Collapse
|
14
|
Spruance VM, Zholudeva LV, Hormigo KM, Randelman ML, Bezdudnaya T, Marchenko V, Lane MA. Integration of Transplanted Neural Precursors with the Injured Cervical Spinal Cord. J Neurotrauma 2018; 35:1781-1799. [PMID: 29295654 PMCID: PMC6033309 DOI: 10.1089/neu.2017.5451] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cervical spinal cord injuries (SCI) result in devastating functional consequences, including respiratory dysfunction. This is largely attributed to the disruption of phrenic pathways, which control the diaphragm. Recent work has identified spinal interneurons as possible contributors to respiratory neuroplasticity. The present work investigated whether transplantation of developing spinal cord tissue, inherently rich in interneuronal progenitors, could provide a population of new neurons and growth-permissive substrate to facilitate plasticity and formation of novel relay circuits to restore input to the partially denervated phrenic motor circuit. One week after a lateralized, C3/4 contusion injury, adult Sprague-Dawley rats received allografts of dissociated, developing spinal cord tissue (from rats at gestational days 13-14). Neuroanatomical tracing and terminal electrophysiology was performed on the graft recipients 1 month later. Experiments using pseudorabies virus (a retrograde, transynaptic tracer) revealed connections from donor neurons onto host phrenic circuitry and from host, cervical interneurons onto donor neurons. Anatomical characterization of donor neurons revealed phenotypic heterogeneity, though donor-host connectivity appeared selective. Despite the consistent presence of cholinergic interneurons within donor tissue, transneuronal tracing revealed minimal connectivity with host phrenic circuitry. Phrenic nerve recordings revealed changes in burst amplitude after application of a glutamatergic, but not serotonergic antagonist to the transplant, suggesting a degree of functional connectivity between donor neurons and host phrenic circuitry that is regulated by glutamatergic input. Importantly, however, anatomical and functional results were variable across animals, and future studies will explore ways to refine donor cell populations and entrain consistent connectivity.
Collapse
Affiliation(s)
- Victoria M Spruance
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Lyandysha V Zholudeva
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Kristiina M Hormigo
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Margo L Randelman
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Tatiana Bezdudnaya
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Vitaliy Marchenko
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Michael A Lane
- Department of Neurobiology and Anatomy, Spinal Cord Research Center, Drexel University College of Medicine , Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Ortiz-Virumbrales M, Moreno CL, Kruglikov I, Marazuela P, Sproul A, Jacob S, Zimmer M, Paull D, Zhang B, Schadt EE, Ehrlich ME, Tanzi RE, Arancio O, Noggle S, Gandy S. CRISPR/Cas9-Correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer's PSEN2 N141I neurons. Acta Neuropathol Commun 2017; 5:77. [PMID: 29078805 PMCID: PMC5660456 DOI: 10.1186/s40478-017-0475-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/16/2017] [Indexed: 12/18/2022] Open
Abstract
Basal forebrain cholinergic neurons (BFCNs) are believed to be one of the first cell types to be affected in all forms of AD, and their dysfunction is clinically correlated with impaired short-term memory formation and retrieval. We present an optimized in vitro protocol to generate human BFCNs from iPSCs, using cell lines from presenilin 2 (PSEN2) mutation carriers and controls. As expected, cell lines harboring the PSEN2N141I mutation displayed an increase in the Aβ42/40 in iPSC-derived BFCNs. Neurons derived from PSEN2N141I lines generated fewer maximum number of spikes in response to a square depolarizing current injection. The height of the first action potential at rheobase current injection was also significantly decreased in PSEN2N141I BFCNs. CRISPR/Cas9 correction of the PSEN2 point mutation abolished the electrophysiological deficit, restoring both the maximal number of spikes and spike height to the levels recorded in controls. Increased Aβ42/40 was also normalized following CRISPR/Cas-mediated correction of the PSEN2N141I mutation. The genome editing data confirms the robust consistency of mutation-related changes in Aβ42/40 ratio while also showing a PSEN2-mutation-related alteration in electrophysiology.
Collapse
|
16
|
Podleśny-Drabiniok A, Sobska J, de Lera AR, Gołembiowska K, Kamińska K, Dollé P, Cebrat M, Krężel W. Distinct retinoic acid receptor (RAR) isotypes control differentiation of embryonal carcinoma cells to dopaminergic or striatopallidal medium spiny neurons. Sci Rep 2017; 7:13671. [PMID: 29057906 PMCID: PMC5651880 DOI: 10.1038/s41598-017-13826-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/26/2017] [Indexed: 01/03/2023] Open
Abstract
Embryonal carcinoma (EC) cells are pluripotent stem cells extensively used for studies of cell differentiation. Although retinoic acid (RA) is a powerful inducer of neurogenesis in EC cells, it is not clear what specific neuronal subtypes are generated and whether different RAR isotypes may contribute to such neuronal diversification. Here we show that RA treatment during EC embryoid body formation is a highly robust protocol for generation of striatal-like GABAergic neurons which display molecular characteristics of striatopallidal medium spiny neurons (MSNs), including expression of functional dopamine D2 receptor. By using RARα, β and γ selective agonists we show that RARγ is the functionally dominant RAR in mediating RA control of early molecular determinants of MSNs leading to formation of striatopallidal-like neurons. In contrast, activation of RARα is less efficient in generation of this class of neurons, but is essential for differentiation of functional dopaminergic neurons, which may correspond to a subpopulation of inhibitory dopaminergic neurons expressing glutamic acid decarboxylase in vivo.
Collapse
Affiliation(s)
- Anna Podleśny-Drabiniok
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Laboratory of Molecular and Cellular Immunology, Department of Tumor Immunology, L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Joanna Sobska
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, CINBIO and IIS Galicia Sur, Universidade de Vigo, Vigo, Spain
| | - Krystyna Gołembiowska
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Kamińska
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Pascal Dollé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Institut de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Małgorzata Cebrat
- Laboratory of Molecular and Cellular Immunology, Department of Tumor Immunology, L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wroclaw, Poland
| | - Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France. .,Institut de la Santé et de la Recherche Médicale, U964, Illkirch, France. .,Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France. .,Université de Strasbourg, Illkirch, France.
| |
Collapse
|
17
|
Hu F, Xu P, Sun B, Teng G, Xiao Z. Deep sequencing reveals complex mechanisms of microRNA regulation during retinoic acid-induced neuronal differentiation of mesenchymal stem cells. Genomics 2017; 109:302-311. [PMID: 28502702 DOI: 10.1016/j.ygeno.2017.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 02/05/2023]
Abstract
Retinoic acid (RA) has an important role in nervous system development; exogenous RA could induce stem cells towards neural lineage cells. However, the miRNA regulation mechanism and biological process of this induction require further exploration. In this study, using high-throughput sequencing results, we evaluated the microRNA profiles of neurally differentiated adipose-derived mesenchymal stem cells (ASCs), summarized several crucial microRNAs that profoundly contributed to the differentiation process, and speculated that several miRNAs were likely to mimic RA or other factors to induce the neuronal differentiation of stem cells. The GO terms and KEGG PATHWAY in the DAVID tool were used to elucidate the biological process of RA induction. Finally, we described a network for clarifying the relationship among the miRNAs, target genes and signaling pathways. These findings will be beneficial for understanding the induction mechanism and supporting the application of RA in stem cell transformation.
Collapse
Affiliation(s)
- Feihu Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China; Medical School, Southeast University, Nanjing, Jiangsu, China
| | - Peng Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Bo Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Gaojun Teng
- Medical School, Southeast University, Nanjing, Jiangsu, China; Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China.
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
18
|
Sternfeld MJ, Hinckley CA, Moore NJ, Pankratz MT, Hilde KL, Driscoll SP, Hayashi M, Amin ND, Bonanomi D, Gifford WD, Sharma K, Goulding M, Pfaff SL. Speed and segmentation control mechanisms characterized in rhythmically-active circuits created from spinal neurons produced from genetically-tagged embryonic stem cells. eLife 2017; 6. [PMID: 28195039 PMCID: PMC5308898 DOI: 10.7554/elife.21540] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/16/2017] [Indexed: 12/31/2022] Open
Abstract
Flexible neural networks, such as the interconnected spinal neurons that control distinct motor actions, can switch their activity to produce different behaviors. Both excitatory (E) and inhibitory (I) spinal neurons are necessary for motor behavior, but the influence of recruiting different ratios of E-to-I cells remains unclear. We constructed synthetic microphysical neural networks, called circuitoids, using precise combinations of spinal neuron subtypes derived from mouse stem cells. Circuitoids of purified excitatory interneurons were sufficient to generate oscillatory bursts with properties similar to in vivo central pattern generators. Inhibitory V1 neurons provided dual layers of regulation within excitatory rhythmogenic networks - they increased the rhythmic burst frequency of excitatory V3 neurons, and segmented excitatory motor neuron activity into sub-networks. Accordingly, the speed and pattern of spinal circuits that underlie complex motor behaviors may be regulated by quantitatively gating the intra-network cellular activity ratio of E-to-I neurons. DOI:http://dx.doi.org/10.7554/eLife.21540.001 The nerve cells or neurons within an animal’s nervous system connect with one another like the wires in a complex circuit. Each neuron can send and receive signals and a major challenge in neuroscience is to understand how these circuits of neurons behave. To do this, researchers often use genetic tools and computer modeling to map the connections between the cells in a nervous system. However, it remains difficult to predict how an input signal will appear at the output after it passes through a network made of different types of neuron. Brains contain many networks of interconnected neurons. Some of these networks send signals with a rhythmic pattern and typically drive repetitive movements such as breathing and walking. The networks are called central pattern generators (or CPGs for short). They contain both excitatory and inhibitory neurons and can generate rhythmic activity without any additional input. Nevertheless CPGs are not rigid, but can flexibly control when and how fast the muscles are activated to suit the animal's needs. It is thought the circuits are flexible because of the way excitatory and inhibitory neurons interact, but it is not known how these interactions define the behavior of the circuit. Sternfeld et al. have now developed a new method to examine how the neurons that make up a circuit influence its activity. First, embryonic stem cells from mice were coaxed to develop into a number of subtypes of both excitatory and inhibitory neurons in the laboratory. These neurons were used to grow networks of neurons in a dish, named “circuitoids”. The precise combination of subtypes of neuron was deliberately varied between each circuitoid, and Sternfeld et al. then studied how the different circuitoids behaved. Several subtypes of excitatory neurons showed rhythmic bursts of activity, just like simple CPGs. Moreover, the ratio of excitatory to inhibitory neurons in the circuitoids was critical for establishing how fast and synchronized the bursts of activity were across the network. It is possible that the brain also uses this simple strategy of varying the ratio of excitatory to inhibitory neurons in circuits of neurons to generate complex, yet highly flexible, circuits with rhythmic activity. Further work will be needed to test this idea. Finally, other researchers will hopefully be able to use this new approach to construct circuitoids and learn more about how the brain generates and controls rhythmic activity. It might also be possible to one-day transplant similar circuitoids into people to repair injured or diseased parts of a nervous system, or use circuitoids that resemble specific neurological disorders to screen for new treatments. DOI:http://dx.doi.org/10.7554/eLife.21540.002
Collapse
Affiliation(s)
- Matthew J Sternfeld
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States.,Biological Sciences Graduate Program, University of California, San Diego, La Jolla, United States
| | - Christopher A Hinckley
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
| | - Niall J Moore
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
| | - Matthew T Pankratz
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
| | - Kathryn L Hilde
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, United States
| | - Shawn P Driscoll
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
| | - Marito Hayashi
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States.,Biological Sciences Graduate Program, University of California, San Diego, La Jolla, United States
| | - Neal D Amin
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, United States.,Medical Scientist Training Program, University of California, San Diego, La Jolla, United States
| | - Dario Bonanomi
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
| | - Wesley D Gifford
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States.,Medical Scientist Training Program, University of California, San Diego, La Jolla, United States.,Neurosciences Graduate Program, University of California, San Diego, La Jolla, United States
| | - Kamal Sharma
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, United States
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Samuel L Pfaff
- Gene Expression Laboratory, Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
| |
Collapse
|
19
|
Iyer NR, Wilems TS, Sakiyama-Elbert SE. Stem cells for spinal cord injury: Strategies to inform differentiation and transplantation. Biotechnol Bioeng 2017; 114:245-259. [PMID: 27531038 PMCID: PMC5642909 DOI: 10.1002/bit.26074] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/20/2016] [Accepted: 08/07/2016] [Indexed: 12/13/2022]
Abstract
The complex pathology of spinal cord injury (SCI), involving a cascade of secondary events and the formation of inhibitory barriers, hampers regeneration across the lesion site and often results in irreversible loss of motor function. The limited regenerative capacity of endogenous cells after SCI has led to a focus on the development of cell therapies that can confer both neuroprotective and neuroregenerative benefits. Stem cells have emerged as a candidate cell source because of their ability to self-renew and differentiate into a multitude of specialized cell types. While ethical and safety concerns impeded the use of stem cells in the past, advances in isolation and differentiation methods have largely mitigated these issues. A confluence of work in stem cell biology, genetics, and developmental neurobiology has informed the directed differentiation of specific spinal cell types. After transplantation, these stem cell-derived populations can replace lost cells, provide trophic support, remyelinate surviving axons, and form relay circuits that contribute to functional recovery. Further refinement of stem cell differentiation and transplantation methods, including combinatorial strategies that involve biomaterial scaffolds and drug delivery, is critical as stem cell-based treatments enter clinical trials. Biotechnol. Bioeng. 2017;114: 245-259. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nisha R Iyer
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton St., Stop C0800 BME 3.314, Austin, Texas 78712
| | - Thomas S Wilems
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton St., Stop C0800 BME 3.314, Austin, Texas 78712
| | - Shelly E Sakiyama-Elbert
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton St., Stop C0800 BME 3.314, Austin, Texas 78712
| |
Collapse
|
20
|
Iyer NR, Huettner JE, Butts JC, Brown CR, Sakiyama-Elbert SE. Generation of highly enriched V2a interneurons from mouse embryonic stem cells. Exp Neurol 2016; 277:305-316. [PMID: 26784005 PMCID: PMC4761286 DOI: 10.1016/j.expneurol.2016.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 12/21/2022]
Abstract
Challenges in parsing specific contributions to spinal microcircuit architecture have limited our ability to model and manipulate those networks for improved functional regeneration after injury or disease. While spinal interneurons (INs) have been implicated in driving coordinated locomotor behaviors, they constitute only a small percentage of the spinal cord and are difficult to isolate from primary tissue. In this study, we employed a genetic strategy to obtain large quantities of highly enriched mouse embryonic stem cell (ESC)-derived V2a INs, an excitatory glutamatergic IN population that is defined by expression of the homeodomain protein Chx10 during development. Puromycin N-acetyltransferase expression was driven by the native gene regulatory elements of Chx10 in the transgenic ESC line, resulting in positive selection of V2a INs after induction and treatment with puromycin. Directly after selection, approximately 80% of cells are Chx10(+), with 94% Lhx3(+); after several weeks, cultures remain free of proliferative cell types and mature into normal glutamatergic neurons as assessed by molecular markers and electrophysiological methods. Functional synapses were observed between selected ESC-derived V2a INs and motor neurons when co-cultured, demonstrating the potential of these cells to form neural networks. While ESC-derived neurons obtained in vitro are not identical to those that develop in the spinal cord, the transgenic ESCs here provide a unique tool to begin studying V2a INs in isolation or for use in in vitro models of spinal microcircuits.
Collapse
Affiliation(s)
- Nisha R Iyer
- Department of Biomedical Engineering, Washington University, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA
| | - James E Huettner
- Department of Cell Biology and Physiology, Washington University School of Medicine, Campus Box 8228, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Jessica C Butts
- Department of Biomedical Engineering, Washington University, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA
| | - Chelsea R Brown
- Department of Biomedical Engineering, Washington University, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA
| | - Shelly E Sakiyama-Elbert
- Department of Biomedical Engineering, Washington University, Campus Box 1097, One Brookings Drive, St. Louis, MO 63130, USA.
| |
Collapse
|
21
|
Xu H, Iyer N, Huettner JE, Sakiyama-Elbert SE. A puromycin selectable cell line for the enrichment of mouse embryonic stem cell-derived V3 interneurons. Stem Cell Res Ther 2015; 6:220. [PMID: 26555777 PMCID: PMC4641415 DOI: 10.1186/s13287-015-0213-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/21/2015] [Accepted: 10/23/2015] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Spinal V3 interneurons (INs) are a commissural, glutamatergic, propriospinal neuron population that holds great potential for understanding locomotion circuitry and local rewiring after spinal cord injury. Embryonic stem cells hold promise as a cell source. However, the inevitable heterogeneity resulting from differentiation protocols makes studying post-mitotic stem cell-derived neuron populations difficult because proliferative glia quickly overtake a culture. Previously, an induction protocol for V3 INs was established. However, because of the heterogeneous population resulting from the induction protocol, functional characterization of the induced cells was not possible. METHODS A selectable murine transgenic embryonic stem cell (ESC) line (Sim1-Puro) was generated by recombineering. The expression of the puromycin resistance enzyme, puromycin N-acetyl-transferase (PAC), was knocked into the locus of a post-mitotic V3 IN marker (Sim1), allowing Sim1 gene regulatory elements to control PAC expression. The resulting cell line was characterized for Sim1 expression by in situ hybridization, for glutamatergic marker expression by immunocytochemistry and quantitative real time polymerase chain reaction (qRT-PCR), and for functional maturation by electrophysiology. RESULTS Puromycin selection significantly enriched the population for V3 INs, allowing long-term characterization. The selected population expressed the neuronal marker β-III tubulin and the glutamatergic neuron marker VGluT2. The selected V3 INs also exhibited appropriate functional maturation, as assessed by electrophysiology, and remained glutamatergic for 2 weeks. CONCLUSION The Sim1-Puro cell line provides a simple, high throughput method for generating large numbers of V3 INs from mouse ESCs for future in vitro and cell transplantation studies.
Collapse
Affiliation(s)
- Hao Xu
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, Box 1097, St. Louis, MO, 63130, USA.
| | - Nisha Iyer
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, Box 1097, St. Louis, MO, 63130, USA.
| | - James E Huettner
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Shelly E Sakiyama-Elbert
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, Box 1097, St. Louis, MO, 63130, USA.
| |
Collapse
|