1
|
Rivas IL, Soltero-Rivera M, Vapniarsky N, Arzi B. Stromal cell therapy in cats with feline chronic gingivostomatitis: current perspectives and future direction. J Feline Med Surg 2023; 25:1098612X231185395. [PMID: 37548494 PMCID: PMC10811994 DOI: 10.1177/1098612x231185395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Feline chronic gingivostomatitis (FCGS) is a painful, immune-mediated, oral mucosal inflammatory disease in cats. The etiology of FCGS remains unclear, with evidence pointing potentially toward a viral cause. Full-mouth tooth extraction is the current standard of care, and cats that are non-responsive to extraction therapy may need lifelong medical management and, in some cases, euthanasia. Adipose-derived mesenchymal stromal cells (adMSCs) have been demonstrated to have advantages in the treatment and potentially the cure of non-responsive FCGS in cats. Therefore, adMSCs have attracted a series of ongoing clinical trials in the past decade. AdMSC therapy immediately after full-mouth tooth extraction was not explored, and we postulate that it may benefit the overall success rate of FCGS therapy. Here, we aim to summarize the current knowledge and impact of adMSCs for the therapeutic management of FCGS and to suggest a novel modified approach to further increase the efficacy of FCGS treatment in cats.
Collapse
Affiliation(s)
- Iris L Rivas
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Maria Soltero-Rivera
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Natalia Vapniarsky
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
- Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
- Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
2
|
Baouche M, Ochota M, Locatelli Y, Mermillod P, Niżański W. Mesenchymal Stem Cells: Generalities and Clinical Significance in Feline and Canine Medicine. Animals (Basel) 2023; 13:1903. [PMID: 37370414 DOI: 10.3390/ani13121903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells: they can proliferate like undifferentiated cells and have the ability to differentiate into different types of cells. A considerable amount of research focuses on the potential therapeutic benefits of MSCs, such as cell therapy or tissue regeneration, and MSCs are considered powerful tools in veterinary regenerative medicine. They are the leading type of adult stem cells in clinical trials owing to their immunosuppressive, immunomodulatory, and anti-inflammatory properties, as well as their low teratogenic risk compared with pluripotent stem cells. The present review details the current understanding of the fundamental biology of MSCs. We focus on MSCs' properties and their characteristics with the goal of providing an overview of therapeutic innovations based on MSCs in canines and felines.
Collapse
Affiliation(s)
- Meriem Baouche
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, 50-366 Wrocław, Poland
| | - Małgorzata Ochota
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, 50-366 Wrocław, Poland
| | - Yann Locatelli
- Physiology of Reproduction and Behaviors (PRC), UMR085, INRAE, CNRS, University of Tours, 37380 Nouzilly, France
- Museum National d'Histoire Naturelle, Réserve Zoologique de la Haute Touche, 36290 Obterre, France
| | - Pascal Mermillod
- Physiology of Reproduction and Behaviors (PRC), UMR085, INRAE, CNRS, University of Tours, 37380 Nouzilly, France
| | - Wojciech Niżański
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, 50-366 Wrocław, Poland
| |
Collapse
|
3
|
Zhai ZH, Li J, You Z, Cai Y, Yang J, An J, Zhao DP, Wang HJ, Dou MM, Du R, Qin J. Feline umbilical cord-derived mesenchymal stem cells: isolation, identification, and antioxidative stress role through NF-κB signaling pathway. Front Vet Sci 2023; 10:1203012. [PMID: 37303730 PMCID: PMC10249476 DOI: 10.3389/fvets.2023.1203012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
At present, the differentiation potential and antioxidant activity of feline umbilical cord-derived mesenchymal stem cells (UC-MSCs) have not been clearly studied. In this study, feline UC-MSCs were isolated by tissue adhesion method, identified by flow cytometry detection of cell surface markers (CD44, CD90, CD34, and CD45), and induced differentiation toward osteogenesis and adipogenesis in vitro. Furthermore, the oxidative stress model was established with hydrogen peroxide (H2O2) (100 μM, 300 μM, 500 μM, 700 μM, and 900 μM). The antioxidant properties of feline UC-MSCs and feline fibroblasts were compared by morphological observation, ROS detection, cell viability via CCK-8 assay, as well as oxidative and antioxidative parameters via ELISA. The mRNA expression of genes related to NF-κB pathway was detected via quantitative real-time polymerase chain reaction, while the levels of NF-κB signaling cascade-related proteins were determined via Western Blot. The results showed that feline UC-MSCs highly expressed CD44 and CD90, while negative for CD34 and CD45 expression. Feline UC-MSCs cultured under osteogenic and adipogenic conditions showed good differentiation capacity. After being exposed to different concentrations of H2O2 for eight hours, feline UC-MSCs exhibited the significantly higher survival rate than feline fibroblasts. A certain concentration of H2O2 could up-regulate the activities of SOD2 and GSH-Px in feline UC-MSCs. The expression levels of p50, MnSOD, and FHC mRNA in feline UC-MSCs stimulated by 300 μM and 500 μM H2O2 significantly increased compared with the control group. Furthermore, it was observed that 500 μM H2O2 significantly enhanced the protein levels of p-IκB, IκB, p-p50, p50, MnSOD, and FHC, which could be reversed by BAY 11-7,082, a NF-κB signaling pathway inhibitor. In conclusion, it was confirmed that feline UC-MSCs, with good osteogenesis and adipogenesis abilities, had better antioxidant property which might be related to NF-κB signaling pathway. This study lays a foundation for the further application of feline UC-MSCs in treating the various inflammatory and oxidative injury diseases of pets.
Collapse
Affiliation(s)
- Zhu-Hui Zhai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jun Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zhao You
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yang Cai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jie Yang
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jie An
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Di-Peng Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - He-Jie Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Min-Min Dou
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Rong Du
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jian Qin
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi, China
- Center of Experiment Teaching, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
4
|
Dalmizrak A, Dalmizrak O. Mesenchymal stem cell-derived exosomes as new tools for delivery of miRNAs in the treatment of cancer. Front Bioeng Biotechnol 2022; 10:956563. [PMID: 36225602 PMCID: PMC9548561 DOI: 10.3389/fbioe.2022.956563] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Although ongoing medical research is working to find a cure for a variety of cancers, it continues to be one of the major causes of death worldwide. Chemotherapy and immunotherapy, as well as surgical intervention and radiation therapy, are critical components of cancer treatment. Most anti-cancer drugs are given systemically and distribute not just to tumor tissues but also to normal tissues, where they may cause side effects. Furthermore, because anti-cancer drugs have a low delivery efficiency, some tumors do not respond to them. As a result, tumor-targeted drug delivery is critical for improving the safety and efficacy of anti-cancer treatment. Exosomes are microscopic extracellular vesicles that cells produce to communicate with one another. MicroRNA (miRNA), long non-coding RNA (lncRNA), small interfering RNA (siRNA), DNA, protein, and lipids are among the therapeutic cargos found in exosomes. Recently, several studies have focused on miRNAs as a potential therapeutic element for the treatment of cancer. Mesenchymal stem cells (MSC) have been known to have angiogenic, anti-apoptotic, anti-inflammatory and immunomodulatory effects. Exosomes derived from MSCs are gaining popularity as a non-cellular alternative to MSC-based therapy, as this method avoids unwanted lineage differentiation. Therefore more research have focused on transferring miRNAs to mesenchymal stem cells (MSC) and targeting miRNA-loaded exosomes to cancer cells. Here, we initially gave an overview of the characteristics and potentials of MSC as well as the use of MSC-derived exosomes in cancer therapy. Finally, we emphasized the utilization of MSC-derived exosomes for miRNA delivery in the treatment of cancer.
Collapse
Affiliation(s)
- Aysegul Dalmizrak
- Department of Medical Biology, Faculty of Medicine, Balıkesir University, Balıkesir, Turkey
| | - Ozlem Dalmizrak
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia, Mersin, Turkey
- *Correspondence: Ozlem Dalmizrak,
| |
Collapse
|
5
|
Park SG, An JH, Li Q, Chae HK, Park SM, Lee JH, Ahn JO, Song WJ, Youn HY. Feline adipose tissue-derived mesenchymal stem cells pretreated with IFN-γ enhance immunomodulatory effects through the PGE₂ pathway. J Vet Sci 2021; 22:e16. [PMID: 33774932 PMCID: PMC8007449 DOI: 10.4142/jvs.2021.22.e16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/12/2020] [Accepted: 01/07/2021] [Indexed: 01/03/2023] Open
Abstract
Background Preconditioning with inflammatory stimuli is used to improve the secretion of anti-inflammatory agents in stem cells from variant species such as mouse, human, and dog. However, there are only few studies on feline stem cells. Objectives This study aimed to evaluate the immune regulatory capacity of feline adipose tissue-derived (fAT) mesenchymal stem cells (MSCs) pretreated with interferon-gamma (IFN-γ). Methods To assess the interaction of lymphocytes and macrophages with IFN-γ-pretreated fAT-MSCs, mouse splenocytes and RAW 264.7 cells were cultured with the conditioned media from IFN-γ-pretreated MSCs. Results Pretreatment with IFN-γ increased the gene expression levels of cyclooxygenase-2, indoleamine 2,3-dioxygenase, hepatocyte growth factor, and transforming growth factor-beta 1 in the MSCs. The conditioned media from IFN-γ-pretreated MSCs increased the expression levels of M2 macrophage markers and regulatory T-cell markers compared to those in the conditioned media from naive MSCs. Further, prostaglandin E2 (PGE2) inhibitor NS-398 attenuated the immunoregulatory potential of MSCs, suggesting that the increased PGE2 levels induced by IFN-γ stimulation is a crucial factor in the immune regulatory capacity of MSCs pretreated with IFN-γ. Conclusions IFN-γ pretreatment improves the immune regulatory profile of fAT-MSCs mainly via the secretion of PGE2, which induces macrophage polarization and increases regulatory T-cell numbers.
Collapse
Affiliation(s)
- Seol Gi Park
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Ju Hyun An
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Qiang Li
- Department of Veterinary Medicine, College of Agriculture, Yanbian University, Yanji, Jilin 133000, China
| | - Hyung Kyu Chae
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Su Min Park
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jeong Hwa Lee
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Jin Ok Ahn
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Woo Jin Song
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and Research Institute of Veterinary Science, Jeju National University, Jeju 63243, Korea.
| | - Hwa Young Youn
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
6
|
Harman RM, Marx C, Van de Walle GR. Translational Animal Models Provide Insight Into Mesenchymal Stromal Cell (MSC) Secretome Therapy. Front Cell Dev Biol 2021; 9:654885. [PMID: 33869217 PMCID: PMC8044970 DOI: 10.3389/fcell.2021.654885] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The therapeutic potential of the mesenchymal stromal cell (MSC) secretome, consisting of all molecules secreted by MSCs, is intensively studied. MSCs can be readily isolated, expanded, and manipulated in culture, and few people argue with the ethics of their collection. Despite promising pre-clinical studies, most MSC secretome-based therapies have not been implemented in human medicine, in part because the complexity of bioactive factors secreted by MSCs is not completely understood. In addition, the MSC secretome is variable, influenced by individual donor, tissue source of origin, culture conditions, and passage. An increased understanding of the factors that make up the secretome and the ability to manipulate MSCs to consistently secrete factors of biologic importance will improve MSC therapy. To aid in this goal, we can draw from the wealth of information available on secreted factors from MSC isolated from veterinary species. These translational animal models will inspire efforts to move human MSC secretome therapy from bench to bedside.
Collapse
Affiliation(s)
| | | | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
7
|
Lou S, Duan Y, Nie H, Cui X, Du J, Yao Y. Mesenchymal stem cells: Biological characteristics and application in disease therapy. Biochimie 2021; 185:9-21. [PMID: 33711361 DOI: 10.1016/j.biochi.2021.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells. In addition to the capacity for self-renewal and multipotential differentiation, MSCs also have the following characteristics. MSCs can exert immunomodulatory functions through interaction with innate or adaptive immune cells, MSCs with poor immunogenicity can be used for allogeneic transplantation, and MSCs can "home" to inflammation and tumour sites. Based on these biological properties, MSCs demonstrate broad clinical application prospects in the treatment of tissue injury, autoimmune diseases, transplantation, cancer and other inflammation-related diseases. In this review we describe the biological characteristics of MSCs and discuss the research advances of MSCs in regenerative medicine, immunomodulation, oncology, and COVID-19, to fully understand the range of diseases in which MSC therapy may be beneficial.
Collapse
Affiliation(s)
- Songyue Lou
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Henan, 450018, China.
| | - Huizong Nie
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Xujie Cui
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Jialing Du
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Yongfang Yao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Henan, 450018, China; School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
8
|
Safety and immunomodulatory properties of equine peripheral blood-derived mesenchymal stem cells in healthy cats. Vet Immunol Immunopathol 2020; 227:110083. [PMID: 32563854 DOI: 10.1016/j.vetimm.2020.110083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Due to the immunomodulatory properties of mesenchymal stem cells (MSCs) through stimulation of endogenous immune cells by paracrine signals and cell contact, they have been proposed as alternative treatment option for many inflammatory and immune-mediated diseases in veterinary medicine. However, the long-term cultivation possibilities of feline MSCs are currently compromised due to a restricted proliferation capacity. Therefore, the xenogeneic use of equine peripheral blood-derived MSCs (ePB-MSCs) would present an interesting alternative thanks to their superior cultivation properties. To the authors' knowledge, there are currently no safety reports concerning the xenogeneic use of ePB-MSCs in cats. Therefore, the overall goal of this preliminary study was to investigate if ePB-MSCs can safely be administered in healthy cats and by extension evaluating their immunogenic and immunomodulatory properties. METHODS Ten healthy cats were intravenously (i.v.) injected with 3 × 105 ePB-MSCs at three time points (T0, T1, T2). All cats were daily inspected by the caretaker and underwent a physical examination with hematological and biochemical analysis at day 0 (T0), week 2 (T1), week 4 (T2) and week 6 (T3) by a veterinarian. Furthermore, a modified mixed lymphocyte reaction (MLR) was performed at T0 and T3 for each cat in order to evaluate immunogenic and immunomodulatory properties of the ePB-MSCs RESULTS: No adverse clinical effects could be detected following repeated i.v. administration of ePB-MSCs in all cats. Significant lower protein (T1: P-value = 0.002; T2: P-value > 0.001; T3: P-value = 0.004) and albumin levels (T1: P-value = 0.003; T2: P-value = 0.001) were seen after repeated administration of ePB-MSCs, compared to T0. However, all biochemical and hematological parameters stayed within clinical acceptance level. In addition, the repeated injections did not induce a cellular immune response before and after repeated ePB-MSCs administration. Furthermore, convincing immunomodulatory properties of ePB-MSCs on feline peripheral blood mononuclear cells were confirmed in the MLR-assay CONCLUSION: This preliminary study demonstrates that ePB-MSCs can safely be administered in healthy cats and provide a promising alternative for the treatment of various inflammatory diseases in cats.
Collapse
|
9
|
Taechangam N, Iyer SS, Walker NJ, Arzi B, Borjesson DL. Mechanisms utilized by feline adipose-derived mesenchymal stem cells to inhibit T lymphocyte proliferation. Stem Cell Res Ther 2019; 10:188. [PMID: 31238978 PMCID: PMC6593543 DOI: 10.1186/s13287-019-1300-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/20/2019] [Accepted: 06/07/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Feline adipose-derived mesenchymal stem cells (ASCs) have been successfully used in clinical trials for the treatment of immune-mediated diseases with T cell dysregulation. However, the immunomodulatory pathways utilized by feline ASCs to suppress T cell activation have not been fully determined. We investigated the mechanisms used by feline ASCs to inhibit T cell proliferation, including the soluble factors and the cell-cell contact ligands responsible for ASC-T cell interaction. METHODS The immunomodulatory activity of feline ASCs was evaluated via cell cycle analysis and in vitro mixed leukocyte reaction using specific immunomodulatory inhibitors. Cell-cell interactions were assessed with static adhesion assays, also with inhibitors. RESULTS Feline ASCs decrease T cell proliferation by causing cell cycle arrest in G0-G1. Blocking prostaglandin (PGE2), but not IDO, partially restored lymphocyte proliferation. Although PDL-1 and CD137L are both expressed on activated feline ASCs, only the interaction of intercellular adhesion molecule 1 (ICAM-1, CD54) with its ligand, lymphocyte function-associated antigen 1 (LFA-1, CD11a/CD18), was responsible for ASC-T cell adhesion. Blocking this interaction reduced cell-cell adhesion and mediator (IFN-γ) secretion and signaling. CONCLUSIONS Feline ASCs utilize PGE2 and ICAM-1/LFA-1 ligand interaction to inhibit T cell proliferation with a resultant cell cycle arrest in G0-G1. These data further elucidate the mechanisms by which feline ASCs interact with T cells, help define appropriate T cell-mediated disease targets in cats that may be amenable to ASC therapy, and may also inform potential translational models for human diseases.
Collapse
Affiliation(s)
- Nopmanee Taechangam
- Department of Pathology, Microbiology and Immunology, Vet Med 3A, University of California, 1285 Veterinary Medicine Mall, Davis, CA, 95616, USA.,Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Smita S Iyer
- Department of Pathology, Microbiology and Immunology, Vet Med 3A, University of California, 1285 Veterinary Medicine Mall, Davis, CA, 95616, USA
| | - Naomi J Walker
- Department of Pathology, Microbiology and Immunology, Vet Med 3A, University of California, 1285 Veterinary Medicine Mall, Davis, CA, 95616, USA.,Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, University of California, Davis, CA, 95616, USA.,Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Dori L Borjesson
- Department of Pathology, Microbiology and Immunology, Vet Med 3A, University of California, 1285 Veterinary Medicine Mall, Davis, CA, 95616, USA. .,Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
10
|
Westropp JL, Delgado M, Buffington CAT. Chronic Lower Urinary Tract Signs in Cats. Vet Clin North Am Small Anim Pract 2019; 49:187-209. [DOI: 10.1016/j.cvsm.2018.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
11
|
Calle A, Barrajón-Masa C, Gómez-Fidalgo E, Martín-Lluch M, Cruz-Vigo P, Sánchez-Sánchez R, Ramírez MÁ. Iberian pig mesenchymal stem/stromal cells from dermal skin, abdominal and subcutaneous adipose tissues, and peripheral blood: in vitro characterization and migratory properties in inflammation. Stem Cell Res Ther 2018; 9:178. [PMID: 29973295 PMCID: PMC6032775 DOI: 10.1186/s13287-018-0933-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 12/26/2022] Open
Abstract
Background Recently, the capacity of mesenchymal stem/stromal cells (MSCs) to migrate into damaged tissues has been reported. For MSCs to be a promising tool for tissue engineering and cell and gene therapy, it is essential to know their migration ability according to their tissue of origin. However, little is known about the molecular mechanisms regulating porcine MSC chemotaxis. The aim of this study was to examine the migratory properties in an inflammatory environment of porcine MSC lines from different tissue origins: subcutaneous adipose tissue (SCA-MSCs), abdominal adipose tissue (AA-MSCs), dermal skin tissue (DS-MSCs) and peripheral blood (PB-MSCs). Methods SCA-MSCs, AA-MSCs, DS-MSCs and PB-MSCs were isolated and analyzed in terms of morphological features, alkaline phosphatase activity, expression of cell surface and intracellular markers of pluripotency, proliferation, in vitro chondrogenic, osteogenic and adipogenic differentiation capacities, as well as their ability to migrate in response to inflammatory cytokines. Results SCA-MSCs, AA-MSCs, DS-MSCs and PB-MSCs were isolated and showed plastic adhesion with a fibroblast-like morphology. All MSC lines were positive for CD44, CD105, CD90 and vimentin, characteristic markers of MSCs. The cytokeratin marker was also detected in DS-MSCs. No expression of MHCII or CD34 was detected in any of the four types of MSC. In terms of pluripotency features, all MSC lines expressed POU5F1 and showed alkaline phosphatase activity. SCA-MSCs had a higher growth rate compared to the rest of the cell lines, while the AA-MSC cell line had a longer population doubling time. All MSC lines cultured under adipogenic, chondrogenic and osteogenic conditions showed differentiation capacity to the previously mentioned mesodermal lineages. All MSC lines showed migration ability in an agarose drop assay. DS-MSCs migrated greater distances than the rest of the cell lines both in nonstimulated conditions and in the presence of the inflammatory cytokines TNF-α and IL-1β. SCA-MSCs and DS-MSCs increased their migration capacity in the presence of IL-1β as compared to PBS control. Conclusions This study describes the isolation and characterization of porcine cell lines from different tissue origin, with clear MSC properties. We show for the first time a comparative study of the migration capacity induced by inflammatory mediators of porcine MSCs of different tissue origin.
Collapse
Affiliation(s)
- Alexandra Calle
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Avenida Puerta de Hierro 12, local 10, 28040, Madrid, Spain
| | - Clara Barrajón-Masa
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Avenida Puerta de Hierro 12, local 10, 28040, Madrid, Spain
| | - Ernesto Gómez-Fidalgo
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Avenida Puerta de Hierro 12, local 10, 28040, Madrid, Spain
| | - Mercedes Martín-Lluch
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Avenida Puerta de Hierro 12, local 10, 28040, Madrid, Spain
| | - Paloma Cruz-Vigo
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Avenida Puerta de Hierro 12, local 10, 28040, Madrid, Spain
| | - Raúl Sánchez-Sánchez
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Avenida Puerta de Hierro 12, local 10, 28040, Madrid, Spain
| | - Miguel Ángel Ramírez
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Avenida Puerta de Hierro 12, local 10, 28040, Madrid, Spain.
| |
Collapse
|
12
|
Villatoro AJ, Claros S, Fernández V, Alcoholado C, Fariñas F, Moreno A, Becerra J, Andrades JA. Safety and efficacy of the mesenchymal stem cell in feline eosinophilic keratitis treatment. BMC Vet Res 2018; 14:116. [PMID: 29587744 PMCID: PMC5870249 DOI: 10.1186/s12917-018-1413-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 03/06/2018] [Indexed: 01/07/2023] Open
Abstract
Background Feline eosinophilic keratitis (FEK) is a chronic keratopathy caused by a suspected immune mediated response to an unknown antigenic stimulus. The purpose of this study was to investigate the safety and therapeutic effects of allogeneic feline adipose-derived mesenchymal stromal cells (fAd-MSCs) implanted subconjunctival around the ocular surface lesion in five cats with FEK refractory to current available treatments. Results FEK was diagnosed by clinical appearance and evidence of eosinophil and/or mast cells in corneal cytology. Each animal was treated with two applications of 2 × 106 million of fAd-MSCs 2 months apart. Ocular surface integrity was assessed before treatment and at 1, 3, 6 and 11 months after treatment. Clinical signs showed a significant change during the follow-up with resolution of the corneal and conjunctiva lesions and there were no signs of regression or worsening. Conclusions Implanted cells were well-tolerated and effective reducing clinical signs of FEK with a sustained effect during the study period. None of the animals showed systemic or local complications during the study. To our knowledge, this is the first time in literature that local implantation of allogeneic fAd-MSCs has been found as an effective therapeutic alternative to treat cats with FEK.
Collapse
Affiliation(s)
- Antonio J Villatoro
- ImmuneStem, Instituto de Inmunología Clínica y Terapia Celular, 29018, Málaga, Spain.,Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Biomedicine Research Institute of Malaga (IBIMA), Campus Universitario de Teatinos, 29071, Málaga, Spain
| | - Silvia Claros
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Biomedicine Research Institute of Malaga (IBIMA), Campus Universitario de Teatinos, 29071, Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
| | - Viviana Fernández
- ImmuneStem, Instituto de Inmunología Clínica y Terapia Celular, 29018, Málaga, Spain.,Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Biomedicine Research Institute of Malaga (IBIMA), Campus Universitario de Teatinos, 29071, Málaga, Spain
| | - Cristina Alcoholado
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Biomedicine Research Institute of Malaga (IBIMA), Campus Universitario de Teatinos, 29071, Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
| | - Fernando Fariñas
- ImmuneStem, Instituto de Inmunología Clínica y Terapia Celular, 29018, Málaga, Spain.,Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Biomedicine Research Institute of Malaga (IBIMA), Campus Universitario de Teatinos, 29071, Málaga, Spain
| | - Antonio Moreno
- Hospital veterinario Alhaurín el Grande. Alhaurín el Grande, 29120, Málaga, Spain
| | - José Becerra
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Biomedicine Research Institute of Malaga (IBIMA), Campus Universitario de Teatinos, 29071, Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain.,Laboratory of Bioengineering and Tissue Regeneration, Andalusian Center for Nanomedicine and Biotechnology-BIONAND, 29590, Málaga, Spain
| | - José A Andrades
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Biomedicine Research Institute of Malaga (IBIMA), Campus Universitario de Teatinos, 29071, Málaga, Spain. .,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain.
| |
Collapse
|
13
|
Quimby JM, Borjesson DL. Mesenchymal stem cell therapy in cats: Current knowledge and future potential. J Feline Med Surg 2018; 20:208-216. [PMID: 29478398 PMCID: PMC10816289 DOI: 10.1177/1098612x18758590] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Practical relevance: Stem cell therapy is an innovative field of scientific investigation with tremendous potential for clinical application in veterinary medicine. Based on the known desirable immunomodulatory properties of mesenchymal stem cells, this therapy holds promise for the treatment of a variety of inflammatory diseases in cats. AIMS This review details our current understanding of feline stem cell biology and proposed mechanism of action. Studies performed in feline clinical trials for diseases including gingivostomatitis, chronic enteropathy, asthma and kidney disease are summarized, with the goal of providing an overview of the current status of this treatment modality and its potential for the future.
Collapse
Affiliation(s)
- Jessica M Quimby
- The Ohio State University, Department of Veterinary Clinical Sciences, Columbus, OH 43210, USA
| | - Dori L Borjesson
- University of California–Davis, Veterinary Institute for Regenerative Cures, and Department of Pathology, Microbiology and Immunology, Davis, CA 95616, USA
| |
Collapse
|
14
|
Parys M, Yuzbasiyan-Gurkan V, Kruger JM. Serum Cytokine Profiling in Cats with Acute Idiopathic Cystitis. J Vet Intern Med 2018; 32:274-279. [PMID: 29356123 PMCID: PMC5787166 DOI: 10.1111/jvim.15032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/16/2017] [Accepted: 11/28/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Feline idiopathic cystitis (FIC) is a common lower urinary tract disorder of domestic cats that resembles interstitial cystitis/painful bladder syndrome (IC/PBS) in humans. Diagnosis of FIC is based on clinical signs and exclusion of other disorders because of a lack of specific pathologic findings or other objective biomarkers. Cytokines are potential noninvasive biomarkers to define the presence, severity, and progression of disease, and response to treatment. OBJECTIVES The objective of this pilot study was to determine concentrations of selected cytokines in serum from healthy cats and cats with acute FIC. ANIMALS Serum samples from 13 healthy cats and from 12 cats with nonobstructive acute FIC were utilized. METHODS Multiplex analysis of 19 cytokines (CCL2, CCL5, CXCL1, CXCL12, CXCL8, Flt3L, GM-CSF, IFN-γ, IL-12 (p40), IL-13, IL-18, IL-1β, IL-2, IL-4, IL-6, PDGF-BB, SCF, sFas, and TNF-α) was performed with a commercially available feline-specific multiplex bead-based assay. RESULTS Mean serum concentrations of IL-12 (p40; P < 0.0001), CXCL12 (P = 0.002), IL-18 (P = 0.032), and Flt3L (P = 0.0024) were significantly increased in FIC cats compared to healthy cats. GM-CSF, IL-1b, IL-2, and PDGF-BB were undetectable or detected in an insufficient number of cats to allow meaningful comparisons. CONCLUSIONS AND CLINICAL IMPORTANCE We have identified increased serum concentrations of pro-inflammatory cytokines and chemokines CXCL12, IL-12, IL-18, and Flt3L in FIC-affected cats. These findings suggest potential candidates for noninvasive biomarkers for diagnosis, staging, and therapeutic outcome monitoring of affected cats and provide additional insight into the etiopathogenesis of FIC.
Collapse
Affiliation(s)
- M Parys
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - V Yuzbasiyan-Gurkan
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| | - J M Kruger
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI
| |
Collapse
|