1
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
2
|
Aanei CM, Devêvre E, Șerban A, Tavernier-Tardy E, Guyotat D, Campos Catafal L. High-Dimensional Mass Cytometry Analysis of Embryonic Antigens and Their Signaling Pathways in Myeloid Cells from Bone Marrow Aspirates in AML Patients at Diagnosis. Cancers (Basel) 2023; 15:4707. [PMID: 37835401 PMCID: PMC10571794 DOI: 10.3390/cancers15194707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Embryonic antigens (EA) regulate pluripotency, self-renewal, and differentiation in embryonic stem (ES) cells during their development. In adult somatic cells, EA expression is normally inhibited; however, EAs can be re-expressed by cancer cells and are involved in the deregulation of different signaling pathways (SPs). In the context of AML, data concerning the expression of EAs are scarce and contradictory. METHODS We used mass cytometry to explore the expression of EAs and three SPs in myeloid cells from AML patients and normal bone marrow (NBM). Imaging flow cytometry was used for morphological assessment of cells in association with their OCT3/4 expression status (positive vs. negative). RESULTS An overall reduction in or absence of EA expression was observed in immature myeloid cells from AML patients compared to their normal counterparts. Stage-specific embryonic antigen-3 (SSEA-3) was consistently expressed at low levels in immature myeloid cells, whereas SSEA-1 was overexpressed in hematopoietic stem cells (HSCs) and myeloblasts from AML with monocytic differentiation (AML M4/M5). Therefore, these markers are valuable for distinguishing between normal and abnormal myeloid cells. These preliminary results show that the exploration of myeloid cell intracellular SPs in the setting of AML is very informative. Deregulation of three important leukemogenic SPs was also observed in myeloid cells from AML. CONCLUSIONS Exploring EAs and SPs in myeloid cells from AML patients by mass cytometry may help identify characteristic phenotypes and facilitate AML follow-up.
Collapse
Affiliation(s)
- Carmen-Mariana Aanei
- Laboratory of Hematology, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France; (A.Ș.); (L.C.C.)
- Santé Ingénierie Biologie Saint-Etienne, INSERM SainBiose U1059, 42270 Saint-Priest-en-Jarez, France
| | - Estelle Devêvre
- Plateau de Cytométrie AniRA, SFR BioSciences (UAR3444-US8), 69367 Lyon, France;
| | - Adrian Șerban
- Laboratory of Hematology, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France; (A.Ș.); (L.C.C.)
| | - Emmanuelle Tavernier-Tardy
- Department of Clinical Hematology, University Hospital of Saint-Etienne, 42100 Saint-Etienne, France; (E.T.-T.); (D.G.)
| | - Denis Guyotat
- Department of Clinical Hematology, University Hospital of Saint-Etienne, 42100 Saint-Etienne, France; (E.T.-T.); (D.G.)
| | - Lydia Campos Catafal
- Laboratory of Hematology, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France; (A.Ș.); (L.C.C.)
| |
Collapse
|
3
|
Comparison of POU5F1 gene expression and protein localization in two differentiated and undifferentiated spermatogonial stem cells. Biol Futur 2022; 73:503-512. [PMID: 36583847 DOI: 10.1007/s42977-022-00149-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/17/2022] [Indexed: 12/31/2022]
Abstract
The POU domain, class 5, transcription factor 1 (POU5F1), plays a vital role in creating pluripotency and maintaining self-renewal of the spermatogonial stem cells (SSCs). In this experimental research, the gene and protein expression of POU5F1 in two populations of differentiated and undifferentiated spermatogonia were examined, by immunohistochemistry (IMH), immunocytochemistry (ICC) and Fluidigm real-time RT-PCR. Our study was extended with online databases and the creation of PPI networks. The results indicated that the POU5F1 protein was localized in the basal compartment of seminiferous tubules. Under in vitro conditions, isolated SSC colonies were ICC-positive for the POU5F1, but the protein expression level of POU5F1 in the undifferentiated populations was higher than that in differentiated. A significant POU5F1 mRNA expression was seen in passage 4 compared to passage 0 for both populations. POU5F1 has a significantly higher mRNA expression in undifferentiated SSCs than that in differentiated SSCs, also in mESCs than in SSC-like cells. Bioinformatic analysis on POU5F1 shows its impressive connection with other genes involved in spermatogonia differentiation. These results support the advanced investigations of spermatogonia differentiation, both in vitro and in vivo. A better understanding of the POU5F1 gene and its function during differentiation will give the scientific community an open perspective for the development of direct differentiation of SSC to other male germline cells which is very important in infertility treatment.
Collapse
|
4
|
Agapito G, Milano M, Cannataro M. A statistical network pre-processing method to improve relevance and significance of gene lists in microarray gene expression studies. BMC Bioinformatics 2022; 23:393. [PMID: 36167506 PMCID: PMC9516794 DOI: 10.1186/s12859-022-04936-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Microarrays can perform large scale studies of differential expressed gene (DEGs) and even single nucleotide polymorphisms (SNPs), thereby screening thousands of genes for single experiment simultaneously. However, DEGs and SNPs are still just as enigmatic as the first sequence of the genome. Because they are independent from the affected biological context. Pathway enrichment analysis (PEA) can overcome this obstacle by linking both DEGs and SNPs to the affected biological pathways and consequently to the underlying biological functions and processes. RESULTS To improve the enrichment analysis results, we present a new statistical network pre-processing method by mapping DEGs and SNPs on a biological network that can improve the relevance and significance of the DEGs or SNPs of interest to incorporate pathway topology information into the PEA. The proposed methodology improves the statistical significance of the PEA analysis in terms of computed p value for each enriched pathways and limit the number of enriched pathways. This helps reduce the number of relevant biological pathways with respect to a non-specific list of genes. CONCLUSION The proposed method provides two-fold enhancements. Network analysis reveals fewer DEGs, by selecting only relevant DEGs and the detected DEGs improve the enriched pathways' statistical significance, rather than simply using a general list of genes.
Collapse
Affiliation(s)
- Giuseppe Agapito
- Department of Law, Economics and Sociology Sciences, University Magna Græcia, 88100 Catanzaro, Italy
- Data Analytics Research Center, University Magna Græcia, 88100 Catanzaro, Italy
| | - Marianna Milano
- Data Analytics Research Center, University Magna Græcia, 88100 Catanzaro, Italy
- Department of Medical and Surgical Sciences, University Magna Græcia, 88100 Catanzaro, Italy
| | - Mario Cannataro
- Data Analytics Research Center, University Magna Græcia, 88100 Catanzaro, Italy
- Department of Medical and Surgical Sciences, University Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
5
|
Feng J, Zhao D, Lv F, Yuan Z. Epigenetic Inheritance From Normal Origin Cells Can Determine the Aggressive Biology of Tumor-Initiating Cells and Tumor Heterogeneity. Cancer Control 2022; 29:10732748221078160. [PMID: 35213254 PMCID: PMC8891845 DOI: 10.1177/10732748221078160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The acquisition of genetic- and epigenetic-abnormalities during transformation has been recognized as the two fundamental factors that lead to tumorigenesis and determine the aggressive biology of tumor cells. However, there is a regularity that tumors derived from less-differentiated normal origin cells (NOCs) usually have a higher risk of vascular involvement, lymphatic and distant metastasis, which can be observed in both lymphohematopoietic malignancies and somatic cancers. Obviously, the hypothesis of genetic- and epigenetic-abnormalities is not sufficient to explain how the linear relationship between the cellular origin and the biological behavior of tumors is formed, because the cell origin of tumor is an independent factor related to tumor biology. In a given system, tumors can originate from multiple cell types, and tumor-initiating cells (TICs) can be mapped to different differentiation hierarchies of normal stem cells, suggesting that the heterogeneity of the origin of TICs is not completely chaotic. TIC’s epigenome includes not only genetic- and epigenetic-abnormalities, but also established epigenetic status of genes inherited from NOCs. In reviewing previous studies, we found much evidence supporting that the status of many tumor-related “epigenetic abnormalities” in TICs is consistent with that of the corresponding NOC of the same differentiation hierarchy, suggesting that they may not be true epigenetic abnormalities. So, we speculate that the established statuses of genes that control NOC’s migration, adhesion and colonization capabilities, cell-cycle quiescence, expression of drug transporters, induction of mesenchymal formation, overexpression of telomerase, and preference for glycolysis can be inherited to TICs through epigenetic memory and be manifested as their aggressive biology. TICs of different origins can maintain different degrees of innate stemness from NOC, which may explain why malignancies with stem cell phenotypes are usually more aggressive.
Collapse
Affiliation(s)
- Jiliang Feng
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Dawei Zhao
- Medical Imaging Department, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Fudong Lv
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Zhongyu Yuan
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| |
Collapse
|
6
|
Maggi F, Morelli MB, Tomassoni D, Marinelli O, Aguzzi C, Zeppa L, Nabissi M, Santoni G, Amantini C. The effects of cannabidiol via TRPV2 channel in chronic myeloid leukemia cells and its combination with imatinib. Cancer Sci 2021; 113:1235-1249. [PMID: 34971020 PMCID: PMC8990867 DOI: 10.1111/cas.15257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by accumulation of immature cells in bone marrow and peripheral blood. Although successful results were obtained with tyrosine kinase inhibitors, several patients showed resistance. For this reason, the identification of new strategies and therapeutic biomarkers represents an attractive goal. The role of transient receptor potential (TRP) ion channels as possible drug targets has been elucidated in different types of cancer. Among natural compounds known to activate TRPs, cannabidiol (CBD) displays anticancer properties. By using FACS analysis, confocal microscopy, gene silencing, and cell growth assay, we demonstrated that CBD, through TRPV2, inhibits cell proliferation and cell cycle in CML cells. It promoted mitochondria dysfunction and mitophagy as shown by mitochondrial mass reduction and up‐regulation of several mitophagy markers. These effects were associated with changes in the expression of octamer‐binding transcription factor 4 and PU.1 markers regulated during cellular differentiation. Interestingly, a synergistic effect by combining CBD with the standard drug imatinib was found and imatinib‐resistant cells remain susceptible to CBD effects. Therefore, the targeting of TRPV2 by using CBD, through the activation of mitophagy and the reduction in stemness, could be a promising strategy to enhance conventional therapy and improve the prognosis of CML patients.
Collapse
Affiliation(s)
- Federica Maggi
- Department of Molecular Medicine, Sapienza University, Rome, Italy.,Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | | | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Oliviero Marinelli
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Cristina Aguzzi
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Laura Zeppa
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Massimo Nabissi
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Giorgio Santoni
- Immunopathology Laboratory, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
7
|
CD44 loss of function sensitizes AML cells to the BCL-2 inhibitor venetoclax by decreasing CXCL12-driven survival cues. Blood 2021; 138:1067-1080. [PMID: 34115113 DOI: 10.1182/blood.2020006343] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/17/2021] [Indexed: 11/20/2022] Open
Abstract
Acute myeloid leukemia (AML) has a poor prognosis under the current standard of care. In recent years, venetoclax, a BCL-2 inhibitor, was approved to treat patients, ineligible for intensive induction chemotherapy. Complete remission rates with venetoclax-based therapies are, however, hampered by minimal residual disease (MRD) in a proportion of patients, leading to relapse. MRD is due to leukemic stem cells retained in bone marrow protective environments; activation of the CXCL12/CXCR4 pathway was shown to be relevant to this process. An important role is also played by cell adhesion molecules such as CD44, which has been shown to be crucial for AML development. Here we show that CD44 is involved in CXCL12 promotion of resistance to venetoclax-induced apoptosis in human AML cell lines and AML patient samples which could be abrogated by CD44 knockdown, knockout or blocking with an anti-CD44 antibody. Split-Venus biomolecular fluorescence complementation showed that CD44 and CXCR4 physically associate at the cell membrane upon CXCL12 induction. In the venetoclax-resistant OCI-AML3 cell line, CXCL12 promoted an increase in the proportion of cells expressing high levels of embryonic-stem-cell core transcription factors (ESC-TFs: Sox2, Oct4, Nanog), abrogated by CD44 knockdown. This ESC-TF-expressing subpopulation which could be selected by venetoclax treatment, exhibited a basally-enhanced resistance to apoptosis, and expressed higher levels of CD44. Finally, we developed a novel AML xenograft model in zebrafish, showing that CD44 knockout sensitizes OCI-AML3 cells to venetoclax treatment in vivo. Our study shows that CD44 is a potential molecular target to sensitize AML cells to venetoclax-based therapies.
Collapse
|
8
|
Fang W, Ni M, Zhang M, Chen H. Prognostic value of OCT4 in colorectal cancer: analysis using immunohistochemistry and bioinformatics validation. Biomark Med 2020; 14:1473-1484. [PMID: 33185466 DOI: 10.2217/bmm-2020-0069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aim: This study was first performed to investigate the role of octamer-binding transcription factor 4 (OCT4) in colorectal cancer (CRC). Methods: The electronic databases were searched for the eligible studies. Odds ratios and hazard ratios were calculated. Functional analysis of OCT4 was examined. Results: Eight studies with 1480 CRC cases were identified. OCT4 expression was correlated with advanced clinical stage, tumor grade, lymph node metastasis, lymphatic invasion, and distal metastasis. OCT4 was an independent prognostic biomarker for predicting worse disease-specific survival and overall survival in CRC. The functional analyses demonstrated that OCT4 was involved in multiple functions, such as cell adhesion, phosphoinositide 3-kinase/Akt signaling, and regulating pluripotency of stem cells. Conclusion: OCT4 may be correlated with disease progression and metastasis, and could predict prognosis in CRC.
Collapse
Affiliation(s)
- Wenjia Fang
- Department of Gastroenterology, Ningbo Yinzhou no. 2 Hospital, Ningbo, Zhejiang 315100, China
| | - Meilin Ni
- Ningbo Customs District Technology Center, Ningbo, Zhejiang 315000, China
| | - Mingming Zhang
- Department of Gastroenterology, Ningbo Yinzhou no. 2 Hospital, Ningbo, Zhejiang 315100, China
| | - Hanqing Chen
- Department of Gastroenterology, Ningbo Yinzhou no. 2 Hospital, Ningbo, Zhejiang 315100, China
| |
Collapse
|
9
|
Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauß A, Blaudszun AR, Yevsa T, Fricke S, Kossatz-Boehlert U. Cancer Stem Cells-Origins and Biomarkers: Perspectives for Targeted Personalized Therapies. Front Immunol 2020; 11:1280. [PMID: 32849491 PMCID: PMC7426526 DOI: 10.3389/fimmu.2020.01280] [Citation(s) in RCA: 546] [Impact Index Per Article: 109.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
The use of biomarkers in diagnosis, therapy and prognosis has gained increasing interest over the last decades. In particular, the analysis of biomarkers in cancer patients within the pre- and post-therapeutic period is required to identify several types of cells, which carry a risk for a disease progression and subsequent post-therapeutic relapse. Cancer stem cells (CSCs) are a subpopulation of tumor cells that can drive tumor initiation and can cause relapses. At the time point of tumor initiation, CSCs originate from either differentiated cells or adult tissue resident stem cells. Due to their importance, several biomarkers that characterize CSCs have been identified and correlated to diagnosis, therapy and prognosis. However, CSCs have been shown to display a high plasticity, which changes their phenotypic and functional appearance. Such changes are induced by chemo- and radiotherapeutics as well as senescent tumor cells, which cause alterations in the tumor microenvironment. Induction of senescence causes tumor shrinkage by modulating an anti-tumorigenic environment in which tumor cells undergo growth arrest and immune cells are attracted. Besides these positive effects after therapy, senescence can also have negative effects displayed post-therapeutically. These unfavorable effects can directly promote cancer stemness by increasing CSC plasticity phenotypes, by activating stemness pathways in non-CSCs, as well as by promoting senescence escape and subsequent activation of stemness pathways. At the end, all these effects can lead to tumor relapse and metastasis. This review provides an overview of the most frequently used CSC markers and their implementation as biomarkers by focussing on deadliest solid (lung, stomach, liver, breast and colorectal cancers) and hematological (acute myeloid leukemia, chronic myeloid leukemia) cancers. Furthermore, it gives examples on how the CSC markers might be influenced by therapeutics, such as chemo- and radiotherapy, and the tumor microenvironment. It points out, that it is crucial to identify and monitor residual CSCs, senescent tumor cells, and the pro-tumorigenic senescence-associated secretory phenotype in a therapy follow-up using specific biomarkers. As a future perspective, a targeted immune-mediated strategy using chimeric antigen receptor based approaches for the removal of remaining chemotherapy-resistant cells as well as CSCs in a personalized therapeutic approach are discussed.
Collapse
Affiliation(s)
- Lia Walcher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Ann-Kathrin Kistenmacher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Huizhen Suo
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Reni Kitte
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Sarah Dluczek
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Alexander Strauß
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - André-René Blaudszun
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Tetyana Yevsa
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Stephan Fricke
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Uta Kossatz-Boehlert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
10
|
FAK Deficiency in Bone Marrow Stromal Cells Alters Their Homeostasis and Drives Abnormal Proliferation and Differentiation of Haematopoietic Stem Cells. Cells 2020; 9:cells9030646. [PMID: 32155953 PMCID: PMC7140540 DOI: 10.3390/cells9030646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022] Open
Abstract
Emerging evidence indicates that in myelodysplastic syndromes (MDS), the bone marrow (BM) microenvironment may also contribute to the ineffective, malignant haematopoiesis in addition to the intrinsic abnormalities of haematopoietic stem precursor cells (HSPCs). The BM microenvironment influences malignant haematopoiesis through indirect mechanisms, but the processes by which the BM microenvironment directly contributes to MDS initiation and progression have not yet been elucidated. Our previous data showed that BM-derived stromal cells (BMSCs) from MDS patients have an abnormal expression of focal adhesion kinase (FAK). In this study, we characterise the morpho-phenotypic features and the functional alterations of BMSCs from MDS patients and in FAK knock-downed HS-5 cells. The decreased expression of FAK or its phosphorylated form in BMSCs from low-risk (LR) MDS directly correlates with BMSCs' functional deficiency and is associated with a reduced level of haemoglobin. The downregulation of FAK in HS-5 cells alters their morphology, proliferation, and differentiation capabilities and impairs the expression of several adhesion molecules. In addition, we examine the CD34+ healthy donor (HD)-derived HSPCs' properties when co-cultured with FAK-deficient BMSCs. Both abnormal proliferation and the impaired erythroid differentiation capacity of HD-HSPCs were observed. Together, these results demonstrate that stromal adhesion mechanisms mediated by FAK are crucial for regulating HSPCs' homeostasis.
Collapse
|
11
|
Bhartiya D, Patel H, Ganguly R, Shaikh A, Shukla Y, Sharma D, Singh P. Novel Insights into Adult and Cancer Stem Cell Biology. Stem Cells Dev 2018; 27:1527-1539. [PMID: 30051749 DOI: 10.1089/scd.2018.0118] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Adult tissues are thought to harbor two populations of "dormant" and "actively dividing" stem cells. Quiescent stem cells undergo rare asymmetric cell divisions (ACDs) through which they self-renew and give rise to tissue-committed "progenitors" of distinct fate and "progenitors" in turn undergo symmetric cell divisions (SCDs) and clonal expansion. However, quiescent stem cells have not been demonstrated in adult tissues such as skin, testis, liver, and brain. After surgical removal of part of liver and pancreas-adult differentiated cells divide and regenerate and a possible role of stem cells remains doubtful. Long-term repopulating hematopoietic stem cells are quiescent in nature but ACD has not been convincingly demonstrated even among them. Attempts by various groups to identify a common stemness program that ensures self-renewal among different kinds of stem cells have also remained futile. Uncontrolled self-renewal and compromised differentiation of stem cells possibly initiate leukemia/cancer, but the identity of leukemic stem cells and whether cancer stem cells arise by epithelial-mesenchymal transition (EMT) in solid tumors are all open-ended questions that need greater clarity. Acceptance of the presence of very small embryonic-like stem cells (VSELs) in adult tissues could clarify several of these existing dilemmas in the field. Data are compiled showing that VSELs undergo ACD in the hematopoietic system, testis, ovary, uterus, and pancreas, whereas tissue-committed progenitors undergo SCD and clonal expansion. VSELs possess similar overlapping stemness program as in embryonic stem cells, embryonic carcinoma cells, embryonic germ cells, induced pluripotent stem cells, and primordial germ cells. VSELs and leukemic and cancer cells express overlapping embryonic markers. Uncontrolled proliferation of VSELs and compromised differentiation possibly initiate leukemia. Process of EMT and initiation of solid tumor from VSELs (located among the epithelial cells) are indeed two distinct and parallel events. To conclude, VSELs provide explanation to several confounding aspects of adult stem cell biology.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health , Mumbai, India
| | - Hiren Patel
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health , Mumbai, India
| | - Ranita Ganguly
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health , Mumbai, India
| | - Ambreen Shaikh
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health , Mumbai, India
| | - Yashvi Shukla
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health , Mumbai, India
| | - Diksha Sharma
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health , Mumbai, India
| | - Pushpa Singh
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health , Mumbai, India
| |
Collapse
|