1
|
Li B, Zhao X, Jin T, Wu Z, Yang H. Efficient isolation and purification of spermatogonia, spermatocytes, and spermatids from mice, piglets, and adult boars using an optimized STA-PUT method. Theriogenology 2024; 213:97-108. [PMID: 37820498 DOI: 10.1016/j.theriogenology.2023.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Spermatogenesis is a delicate and complex biological process in which spermatogonial stem cells continue to proliferate and differentiate into mature spermatozoa, maintaining sperm production in male mammals throughout the lifetime. To study the molecular mechanism of spermatogenesis, researchers had to isolate different germ cell subpopulations for in vitro culture and characterization. However, due to the existence of several stages of germ cells and a variety of populations of somatic cells in the testis of male mammals, it is a challenge for us to obtain high-purity germ cell subpopulations for further research. Here, we optimized the STA-PUT device and successfully applied it to isolate and purify spermatogonia populations in piglets, and multiple germ cell populations at different developmental stages in testes of adult mice and boars. This work provides a simple platform for germ cell fractionation to facilitate the molecular mechanistic study of animal spermatogenesis in vitro.
Collapse
Affiliation(s)
- Bin Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xin Zhao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Taili Jin
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Huaqiang Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Yang R, Zhang B, Zhu W, Zhu C, Chen L, Zhao Y, Wang Y, Zhang Y, Riaz A, Tang B, Zhang X. Expression of Phospholipase D Family Member 6 in Bovine Testes and Its Molecular Characteristics. Int J Mol Sci 2023; 24:12172. [PMID: 37569546 PMCID: PMC10418416 DOI: 10.3390/ijms241512172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Spermatogonial stem cells (SSCs) are the only primitive spermatogonial cells in males that can naturally transmit genetic information to their offspring and replicate throughout their lives. Phospholipase D family member 6 (PLD6) has recently been found to be a surface marker for SSCs in mice and boars; however, it has not been validated in cattle. The results of reversed transcription-polymerase chain reaction (RT-PCR) and quantitative real-time PCR (qRT-PCR) found that the relative expression of the PLD6 gene in the testicular tissues of two-year-old Simmental calves was significantly higher than that of six-month-old calves. Immunofluorescent staining further verified the expression of PLD6 protein in bovine spermatogenic cells like germ cell marker DEAD box helicase 4 (DDX4, also known as VASA). Based on multiple bioinformatic databases, PLD6 is a conservative protein which has high homology with mouse Q5SWZ9 protein. It is closely involved in the normal functioning of the reproductive system. Molecular dynamics simulation analyzed the binding of PLD6 as a phospholipase to cardiolipin (CL), and the PLD6-CL complex showed high stability. The protein interaction network analysis showed that there is a significant relationship between PLD6 and piwi-interacting RNA (piRNA) binding protein. PLD6 acts as an endonuclease and participates in piRNA production. In addition, PLD6 in bovine and mouse testes has a similar expression pattern with the spermatogonium-related genes VASA and piwi like RNA-mediated gene silencing 2 (PIWIL2). In conclusion, these analyses imply that PLD6 has a relatively high expression in bovine testes and could be used as a biomarker for spermatogenic cells including SSCs.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (R.Y.); (B.Z.); (W.Z.); (C.Z.); (B.T.)
| | - Boyang Zhang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (R.Y.); (B.Z.); (W.Z.); (C.Z.); (B.T.)
| | - Wenqian Zhu
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (R.Y.); (B.Z.); (W.Z.); (C.Z.); (B.T.)
| | - Chunling Zhu
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (R.Y.); (B.Z.); (W.Z.); (C.Z.); (B.T.)
| | - Lanxin Chen
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (R.Y.); (B.Z.); (W.Z.); (C.Z.); (B.T.)
| | - Yansen Zhao
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (R.Y.); (B.Z.); (W.Z.); (C.Z.); (B.T.)
| | - Yueqi Wang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (R.Y.); (B.Z.); (W.Z.); (C.Z.); (B.T.)
| | - Yan Zhang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (R.Y.); (B.Z.); (W.Z.); (C.Z.); (B.T.)
| | - Amjad Riaz
- Department of Theriogenolog and University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Bo Tang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (R.Y.); (B.Z.); (W.Z.); (C.Z.); (B.T.)
| | - Xueming Zhang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (R.Y.); (B.Z.); (W.Z.); (C.Z.); (B.T.)
| |
Collapse
|
3
|
Zhang W, Nie R, Cai Y, Xie W, Zou K. Progress in germline stem cell transplantation in mammals and the potential usage. Reprod Biol Endocrinol 2022; 20:59. [PMID: 35361229 PMCID: PMC8969385 DOI: 10.1186/s12958-022-00930-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/10/2022] [Indexed: 11/10/2022] Open
Abstract
Germline stem cells (GSCs) are germ cells with the capacities of self-renewal and differentiation into functional gametes, and are able to migrate to their niche and reconstitute the fertility of recipients after transplantation. Therefore, GSCs transplantation is a promising technique for fertility recovery in the clinic, protection of rare animals and livestock breeding. Though this novel technique faces tremendous challenges, numerous achievements have been made after several decades' endeavor. This review summarizes the current knowledge of GSCs transplantation and its utilization in mammals, and discusses the application prospect in reproductive medicine and animal science.
Collapse
Affiliation(s)
- Wen Zhang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruotian Nie
- College of Life Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yihui Cai
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenhai Xie
- School of Life Sciences, Shandong University of Technology, NO. 266 Xincun Road, Zibo, 255000, Shandong, China.
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Cellular and subcellular localization of endogenous phospholipase D6 in seminiferous tubules of mouse testes. Cell Tissue Res 2021; 385:191-205. [PMID: 33783608 DOI: 10.1007/s00441-021-03442-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
Phospholipase D6 (PLD6) plays pivotal roles in mitochondrial dynamics and spermatogenesis, but the cellular and subcellular localization of endogenous PLD6 in testis germ cells is poorly defined. We examined the distribution and subcellular localization of PLD6 in mouse testes using validated specific anti-PLD6 antibodies. Ectopically expressed PLD6 protein was detected in the mitochondria of PLD6-transfected cells, but endogenous PLD6 expression in mouse testes was localized to the perinuclear region of pachytene spermatocytes, and more prominently, to the round (Golgi and cap phases) and elongating spermatids (acrosomal phase); these results suggest that PLD6 is localized to the Golgi apparatus. The distribution of PLD6 in the round spermatids partially overlapped with that of the cis-Golgi marker GM130, indicating that the PLD6 expression corresponded to the GM130-positive subdomains of the Golgi apparatus. Correlative light and electron microscopy revealed that PLD6 expression in developing spermatids was localized almost exclusively to several flattened cisternae, and these structures might correspond to the medial Golgi subcompartment; neither the trans-Golgi networks nor the developing acrosomal system expressed PLD6. Further, we observed that PLD6 interacted with tesmin, a testis-specific transcript necessary for successful spermatogenesis in mouse testes. To our knowledge, these results provide the first evidence of PLD6 as a Golgi-localized protein of pachytene spermatocytes and developing spermatids and suggest that its subcompartment-specific distribution within the Golgi apparatus may be related to the specific functions of this organelle during spermatogenesis.
Collapse
|
5
|
Azizi H, Niazi Tabar A, Skutella T, Govahi M. In Vitro and In Vivo Determinations of The Anti-GDNF Family Receptor Alpha 1 Antibody in Mice by Immunochemistry and RT-PCR. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2020; 14:228-233. [PMID: 33098391 PMCID: PMC7604702 DOI: 10.22074/ijfs.2020.6051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/11/2020] [Indexed: 12/31/2022]
Abstract
Background The glial cell-derived neurotrophic factor (GDNF) family plays essential roles in the maintenance, growth, regulatory and signalling pathways of spermatogonial stem cells (SSCs). In this study, we analysed the expression of anti-GDNF family receptor alpha 1 antibody (GFRa1) by immunohistochemistry (IHC), immunocytochemistry (ICC), Fluidigm real-time polymerase chain reaction (RT-PCR) and flow cytometry analyses. Materials and Methods In this experiment study, ICC, IHC, Fluidigm RT-PCR and flow cytometry were used to analyse the expression of the germ cell marker GFRa1 in testis tissue and SSC culture. Results IHC analysis showed that there were two groups of GFRa1 positive cells in the seminiferous tubules based on their location and expression shape - a small round punctuated shape on the basal compartment donut shape and a C-shaped expression located between the basal and the luminal compartments of the seminiferous tubules. OCT4 and PLZF positive cells may have similar patterns of expression as the first group. Assessment of the seminiferous tubule sections demonstrated that about 27% of the SSCs were positive for GFRa1. Fluidigm RT-PCR confirmed the significant expression (P<0.001) of GFRa1 in the SSCs compared to testicular stromal cells (TSCs). Flow cytometry analysis demonstrated that about 75% of the isolated SSCs colonies were positive for GFRa1. Conclusion The results indicated that GFRa1 had a specific expression pattern both in vivo and in vitro. This finding could be helpful for understanding the proliferation, maintenance and signalling pathways of SSCs, and differentiation of meiotic and haploid germ cells.
Collapse
Affiliation(s)
- Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran. Electronic Address:
| | - Amirreza Niazi Tabar
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Mostafa Govahi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
6
|
Zhang P, Li F, Zhang L, Lei P, Zheng Y, Zeng W. Stage-specific embryonic antigen 4 is a membrane marker for enrichment of porcine spermatogonial stem cells. Andrology 2020; 8:1923-1934. [PMID: 32691968 DOI: 10.1111/andr.12870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/29/2020] [Accepted: 07/15/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Spermatogonial stem cells (SSCs), as tissue-specific stem cells, are capable of both self-renewal and differentiation and supporting the continual and robust spermatogenesis for male fertility. As a rare sub-fraction of undifferentiated spermatogonia, SSCs share most molecular markers with the progenitor spermatogonia. Thus, the heterogeneity of the progenitor cells often obscures the characteristics of stem cells. Distinguishing SSCs from the progenitors is of paramount importance to understand the regulatory mechanisms governing their actions. OBJECTIVES The present study was designed to reveal that SSEA4 can be a marker for putative porcine SSCs that distinguished it from the progenitors and to build a sorting program for efficient enrichment of porcine SSCs. METHODS To explore expression of SSEA4 within the undifferentiated spermatogonial population, we performed co-immunofluorescent staining for SSEA4 and common molecular markers (VASA, DBA, PLZF, c-KIT, and SOX9) in the 7-, 90-, and 150-day-old porcine testicular tissues. SSEA4-positive cells were isolated from the 90-day-old porcine testes by flow cytometry. Immunofluorescent, RNA-sequencing, and transplantation analysis were used to reveal that SSEA4-positive fraction holds the stem cell capacity. RESULTS We found that SSEA4 was expressed in a rare sub-fraction of porcine undifferentiated spermatogonia, and RNA-sequencing analysis revealed that the genes for stem cell maintenance and SSC-specific markers (ID4 and PAX7) were up-regulated in the SSEA4-sorted fraction, compared with undifferentiated spermatogonia. In addition, germ cell transplantation assay demonstrated that SSEA4-positive spermatogonia colonized in the recipient testicular tubules. Sorting of the undifferentiated spermatogonia with anti-SSEA4 antibody resulted in a 2.5-fold enrichment of SSCs compared with the germ cell gate group, and 21-fold enrichment of SSCs compared with the SSEA4-negative spermatogonia group. CONCLUSIONS Our findings revealed that SSEA4 is a new surface marker for porcine undifferentiated spermatogonia. This finding helps to elucidate the characteristics of porcine SSCs and facilitates the culture and manipulation of SSCs.
Collapse
Affiliation(s)
- Pengfei Zhang
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fuyuan Li
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lingkai Zhang
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Peipei Lei
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yi Zheng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wenxian Zeng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Zheng Y, Feng T, Zhang P, Lei P, Li F, Zeng W. Establishment of cell lines with porcine spermatogonial stem cell properties. J Anim Sci Biotechnol 2020; 11:33. [PMID: 32308978 PMCID: PMC7146966 DOI: 10.1186/s40104-020-00439-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Background Spermatogonial stem cells (SSCs) are capable of both self-renewal and differentiation to mature functional spermatozoa, being the only adult stem cells in the males that can transmit genetic information to the next generation. Porcine SSCs hold great value in transgenic pig production and in establishment of porcine models for regenerative medicine. However, studies and applications of porcine SSCs have been greatly hampered by the low number of SSCs in the testis as well as the lack of an ideal stable long-term culture system to propagate porcine SSCs perpetually. Results In the present study, by lentiviral transduction of plasmids expressing the simian virus 40 (SV40) large T antigen into porcine primary SSCs, we developed two immortalized cell lines with porcine SSC attributes. The established cell lines, with the expression of porcine SSC and germ cell markers UCHL1, PLZF, THY1, VASA and DAZL, could respond to retinoic acid (RA), and could colonize the recipient mouse testis without tumor formation after transplantation. The cell lines displayed infinite proliferation potential, and have now been cultured for more than 7 months and passaged for over 35 times without morphological abnormalities. Conclusions We have for the first time established porcine SSC lines that could provide abundant cell sources for mechanistic studies on porcine SSC self-renewal and differentiation, thereby facilitating development of an optimal long-term culture system for porcine primary SSCs and their application to animal husbandry and medicine.
Collapse
Affiliation(s)
- Yi Zheng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Tongying Feng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Pengfei Zhang
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Peipei Lei
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Fuyuan Li
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Wenxian Zeng
- Key Laboratory for Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
8
|
Chen M, Yang W, Liu N, Zhang X, Dong W, Lan X, Pan C. Pig Hsd17b3: Alternative splice variants expression, insertion/deletion (indel) in promoter region and their associations with male reproductive traits. J Steroid Biochem Mol Biol 2019; 195:105483. [PMID: 31550505 DOI: 10.1016/j.jsbmb.2019.105483] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 02/05/2023]
Abstract
Hydroxysteroid 17-Beta Dehydrogenase 3 (Hsd17b3), primarily expressed in Leydig cells (LCs) of the mammalian testes, is essential for testosterone biosynthesis and male fertility. The aim of our study was to profile the expression, splice variants (SV) and novel insertion/deletion (indel) of Hsd17b3 in boars. Quantitative analysis showed that the expression level of Hsd17b3 in the testis was significantly highest. Among different testicular cell types, the Hsd17b3 mRNA expression level of LCs was significantly higher than that of SSCs (spermatogonial stem cells) and SCs (Sertoli cells). Furthermore, the SV was firstly identified in pigs and it was highly expressed in LCs comparing with SSCs and SCs. In addition, two mutations were identified in pig Hsd17b3 gene promotor and intron, respectively, which were associated with male reproductive traits (P < 0.05). In conclusion, both transcripts of Hsd17b3 gene were highly expressed in pig testes and LCs; the two novel indel variants of Hsd17b3 gene can be used as potential DNA makers for the marker-assisted selection in pigs. All these findings would enrich the study of Hsd17b3 gene in pig genetic breeding.
Collapse
Affiliation(s)
- Mingyue Chen
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Wenjing Yang
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Nuan Liu
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Xuelian Zhang
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
9
|
Wang Q, He Y, Li J. Conjoint Analysis of SMRT- and Illumina-Based RNA-Sequencing Data of Fenneropenaeus chinensis Provides Insight Into Sex-Biased Expression Genes Involved in Sexual Dimorphism. Front Genet 2019; 10:1175. [PMID: 31803244 PMCID: PMC6872642 DOI: 10.3389/fgene.2019.01175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022] Open
Abstract
Fenneropenaeus chinensis (F. chinensis) is one of the most commercially important cultured shrimps in China. The adult F. chinensis exhibit sexual dimorphism in growth and body color. In this research, we profiled the whole transcriptome of F. chinensis by using single molecule real-time-based full-length transcriptome sequencing. We further performed Illumina-based short reads RNA-seq on muscle and gonad of two sexes to detect the sex-biased expression genes. In muscle, we observed significantly more female-biased transcripts. With the differentially expressed transcripts (DETs) in muscle, some pathways related to the energy metabolism were enriched, which may be responsible for the difference of growth. We also digged out a pathway named porphyrin and chlorophyll metabolism. It was speculated to relevant to the difference of body color between the two sexes of shrimp. Interestingly, almost all DETs in these pathways were female-biased expression in muscle, which could explain the phenomenon of better growth performance and darker body color in female. In gonad, several pathways involved in reproduction were enriched. For instance, some female-biased DETs participated in the arachidonic acid metabolism, which was reported crucial in female reproduction. In conclusion, our studies identified abundant sex-biased expression transcripts and important pathways involved in sexual dimorphism by using the RNA-seq method. It provided a basis for future researches on the sexual dimorphism of F. chinensis.
Collapse
Affiliation(s)
- Qiong Wang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuying He
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jian Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
10
|
Sun YZ, Liu ST, Li XM, Zou K. Progress in in vitro culture and gene editing of porcine spermatogonial stem cells. Zool Res 2019; 40:343-348. [PMID: 31393095 PMCID: PMC6755112 DOI: 10.24272/j.issn.2095-8137.2019.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022] Open
Abstract
Research on in vitro culture and gene editing of domestic spermatogonial stem cells (SSCs) is of considerable interest but remains a challenging issue in animal science. In recent years, some progress on the isolation, purification, and genetic manipulation of porcine SSCs has been reported. Here, we summarize the characteristics of porcine SSCs as well current advances in their in vitro culture, potential usage, and genetic manipulation. Furthermore, we discuss the current application of gene editing in pig cloning technology. Collectively, this commentary aims to summarize the progress made and obstacles encountered in porcine SSC research to better serve animal husbandry, improve livestock fecundity, and enhance potential clinical use.
Collapse
Affiliation(s)
- Yi-Zhuo Sun
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing Jiangsu 210095, China
| | - Si-Tong Liu
- College of Life Sciences, Jilin University, Changchun Jilin 130012, China
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun Jilin 130024, China
| | - Xiao-Meng Li
- Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun Jilin 130024, China; E-mail:
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing Jiangsu 210095, China; E-mail:
| |
Collapse
|
11
|
Park HJ, Lee WY, Park C, Hong K, Song H. CD14 is a unique membrane marker of porcine spermatogonial stem cells, regulating their differentiation. Sci Rep 2019; 9:9980. [PMID: 31292454 PMCID: PMC6620343 DOI: 10.1038/s41598-019-46000-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/20/2019] [Indexed: 01/15/2023] Open
Abstract
Molecular markers of spermatogonia are necessary for studies on spermatogonial stem cells (SSCs) and improving our understanding of molecular and cellular biology of spermatogenesis. Although studies of germ cell surface marker have been extensively conducted in the testes of rodents, these markers have not been well studied in domestic animals. We aimed to determine the expression pattern of cluster of differentiation 14 (CD14) in developing porcine testes and cultured porcine SSCs (pSSCs), as well as its role in pSSC colony formation. Interestingly, expression of CD14 was observed in porcine testes with PGP9.5-positive undifferentiated spermatogonia at all developmental stages. In addition, in vitro cultured pSSCs expressed CD14 and showed successful colony formation, as determined by fluorescence-activated cell sorting and flow cytometry. PKH26 dye-stained CD14-positive cells transplants were performed into the testes of recipient mice, which were depleted of both testicular germ and somatic cells from immunodeficiency mice and were shown to colonise the recipient testes. Moreover, a colony-forming assay showed that the development of pSSC colonies was disrupted by a high concentration of lipopolysaccharide. These studies indicated that CD14 is surface marker of early spermatogonia in developing porcine testes and in pSSCs, suggesting a role for CD14 in porcine spermatogenesis.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Department of Stem Cell and Regenerative Technology, KIT, Konkuk University, 120 Neungdongro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Won-Young Lee
- Department of Beef Science, Korea National College of Agricultures and Fisheries, Jeonju-si, Jeonbuk, 54874, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Technology, KIT, Konkuk University, 120 Neungdongro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Technology, KIT, Konkuk University, 120 Neungdongro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Technology, KIT, Konkuk University, 120 Neungdongro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|