1
|
Xie J, Ye Z, Xu X, Chang A, Yang Z, Wu Q, Pan Q, Wang Y, Chen Y, Ma X, Miao H. Microvesicles from quiescent and TGF-β1 stimulated hepatic stellate cells: Divergent impact on hepatic vascular injury. PLoS One 2024; 19:e0306775. [PMID: 38985836 PMCID: PMC11236151 DOI: 10.1371/journal.pone.0306775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND This study evaluated the effect of microvesicles(MVs) from quiescent and TGF-β1 stimulated hepatic stellate cells (HSC-MVs, TGF-β1HSC-MVs) on H2O2-induced human umbilical vein endothelial cells (HUVECs) injury and CCl4-induced rat hepatic vascular injury. METHODS HUVECs were exposed to hydrogen peroxide (H2O2) to establish a model for vascular endothelial cell injury. HSC-MVs or TGF-β1HSC-MVs were co-cultured with H2O2-treated HUVECs, respectively. Indicators including cell survival rate, apoptosis rate, oxidative stress, migration, invasion, and angiogenesis were measured. Simultaneously, the expression of proteins such as PI3K, AKT, MEK1+MEK2, ERK1+ERK2, VEGF, eNOS, and CXCR4 was assessed, along with activated caspase-3. SD rats were intraperitoneally injected with CCl4 twice a week for 10 weeks to induce liver injury models. HSC-MVs or TGF-β1HSC-MVs were injected into the tail vein of rats. Liver and hepatic vascular damage were also detected. RESULTS In H2O2-treated HUVECs, HSC-MVs increased cell viability, reduced cytotoxicity and apoptosis, improved oxidative stress, migration, and angiogenesis, and upregulated protein expression of PI3K, AKT, MEK1/2, ERK1/2, VEGF, eNOS, and CXCR4. Conversely, TGF-β1HSC-MVs exhibited opposite effects. CCl4- induced rat hepatic injury model, HSC-MVs reduced the release of ALT and AST, hepatic inflammation, fatty deformation, and liver fibrosis. HSC-MVs also downregulated the protein expression of CD31 and CD34. Conversely, TGF-β1HSC-MVs demonstrated opposite effects. CONCLUSION HSC-MVs demonstrated a protective effect on H2O2-treated HUVECs and CCl4-induced rat hepatic injury, while TGF-β1HSC-MVs had an aggravating effect. The effects of MVs involve PI3K/AKT/VEGF, CXCR4, and MEK/ERK/eNOS pathways.
Collapse
Affiliation(s)
- Jianlong Xie
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Department of Cardiothoracic Surgery Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhirong Ye
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiaobing Xu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Anzhi Chang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Ziyi Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qin Wu
- Department of Cardiothoracic Surgery Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qunwen Pan
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yanyu Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Key Laboratory of Liver Injury Diagnosis and Repair, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiaotang Ma
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Huilai Miao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Key Laboratory of Liver Injury Diagnosis and Repair, Guangdong Medical University, Zhanjiang, Guangdong, China
- General Surgery, Liaobu Hospital, Dongguan, Guangdong, China
| |
Collapse
|
2
|
Wang G, Qiao Y, Zhao Y, Song Y, Li M, Jin M, Yang D, Yin J, Li J, Liu W. Beauvericin exerts an anti-tumor effect on hepatocellular carcinoma by inducing PI3K/AKT-mediated apoptosis. Arch Biochem Biophys 2023; 745:109720. [PMID: 37611353 DOI: 10.1016/j.abb.2023.109720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Beauvericin is a world-spread mycotoxin isolated from the traditional Chinese medicine, Bombyx batryticatus (BB), which has been widely used to treat various neoplastic diseases. This study investigated the anti-hepatocellular carcinoma (HCC) activity of beauvericin and its potential mechanism. In this study, H22-bearing mice were intraperitoneally injected with 3, 5, 7 mg/kg of beauvericin once per-week over a three-week period. TUNEL staining determined the extent of tumor apoptosis induced by beauvericin. ELISA kits detected the level of IL-2, Perforin, and TNF-α, IFN-γ level in the serum. H22 hepatoma cells were exposed to beauvericin (5, 10, and 20 μmol/L) to investigate the underlying pathway. CCK-8 assay was used to observe the influence of beauvericin on the growth of H22 cells. Flow cytometry was used to detect the cell apoptosis and ROS level. Western blotting was performed to detect apoptotic and PI3K/AKT pathway protein production. The results showed that beauvericin could remarkably inhibit the growth of HCC in mice, combined with elevated TNF-α and IL-2. In vitro, beauvericin significantly promoted the generation of ROS, up-regulated Bax/Bcl-2 ratio and cleaved caspase-9, cleaved caspase-3 levels, down-regulated p-PI3K/PI3K ratio, p-AKT/AKT ratio, promoted the apoptosis of H22 cells, and inhibited the growth of H22 cells. Remarkably, treatment with PI3K/AKT activator (740Y-P and SC79) could prevent beauvericin-induced H22 cell apoptosis. These findings collectively indicate that beauvericin inhibits HCC growth by inducing apoptosis via the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Gui Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Yamei Qiao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Yunyan Zhao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Yuanyuan Song
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Mengyang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Min Jin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Dong Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Jing Yin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Junwen Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Weili Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
3
|
Wang H, Liang W, Wang X, Zhan Y, Wang W, Yang L, Zhu Y. Notch mediates the glycolytic switch via PI3K/Akt signaling to support embryonic development. Cell Mol Biol Lett 2023; 28:50. [PMID: 37365491 DOI: 10.1186/s11658-023-00459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/05/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Energy metabolism disorder or insufficient energy supply during incubation will affect the development and survival of avian embryos. Especially, β-oxidation could not provide the continuous necessary energy for avian embryonic development due to the increasing energy demand under hypoxic conditions during the mid-late embryonic stages. The role and mechanism of hypoxic glycolysis replacing β-oxidation as the main source of energy supply for avian embryonic development in the mid-late stages is unclear. RESULTS Here, we found that in ovo injection with glycolysis inhibitor or γ-secretase inhibitor both decreased the hepatic glycolysis level and impaired goose embryonic development. Intriguingly, the blockade of Notch signaling is also accompanied by the inhibition of PI3K/Akt signaling in the embryonic primary hepatocytes and embryonic liver. Notably, the decreased glycolysis and impaired embryonic growth induced by the blockade of Notch signaling were restored by activation of PI3K/Akt signaling. CONCLUSIONS Notch signaling regulates a key glycolytic switch in a PI3K/Akt-dependent manner to supply energy for avian embryonic growth. Our study is the first to demonstrate the role of Notch signaling-induced glycolytic switching in embryonic development, and presents new insight into the energy supply patterns in embryogenesis under hypoxic conditions. In addition, it may also provide a natural hypoxia model for developmental biology studies such as immunology, genetics, virology, cancer, etc.
Collapse
Affiliation(s)
- Heng Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000, China
| | - Wenqi Liang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000, China
| | - Xuyang Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000, China
| | - Yuchun Zhan
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000, China.
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000, China.
| |
Collapse
|
4
|
Xia S, Wang Z, Chen L, Zhou Y, Li Y, Wang S, Chen A, Xu X, Shao J, Zhang Z, Tan S, Zhang F, Zheng S. Dihydroartemisinin regulates lipid droplet metabolism in hepatic stellate cells by inhibiting lncRNA-H19-induced AMPK signal. Biochem Pharmacol 2021; 192:114730. [PMID: 34400125 DOI: 10.1016/j.bcp.2021.114730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022]
Abstract
Activation of hepatic stellate cells (HSCs) is a central event in the pathogenesis of liver fibrosis and is often accompanied by the disappearance of lipid droplets (LDs). Although interference with LD metabolism can effectively reverse the activation of HSCs, there is currently no effective therapy for liver fibrosis. Our previous evidence indicates that long non-coding RNA (lncRNA)-H19 plays an essential role in LD metabolism of HSC. In this study, we investigated the potential molecular mechanism of dihydroartemisinin (DHA) inhibits LD metabolism and liver fibrosis by regulating H19-AMPK pathway. We found that DHA restores LDs content in activated HSCs via reducing the transcription of H19 driven by hypoxia inducible factor 1 subunit alpha (HIF1α) and inhibiting the lipid oxidation signal mediated by AMP-activated protein kinase (AMPK) phosphorylation. In vivo experiments, we have proved that DHA reduced the deposition of extracellular matrix (ECM) and reduce the level of liver fibrosis in CCl4-induced liver fibrosis of mice. In summary, our results emphasize the importance of H19 in liver fibrosis and the potential of DHA to regulate H19 to treat liver fibrosis, providing a new direction for the prevention and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Siwei Xia
- Jangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhimin Wang
- Jiangsu Provincial Xuzhou Pharmaceutical Vocational College, Xuzhou 221116, China
| | - Li Chen
- Jangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuanyuan Zhou
- Jangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Li
- Jangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shijun Wang
- Shandong University of Traditional Chinese Medicine, Jinan 250035, China
| | - Anping Chen
- Department of Pathology, School of Medicine, Saint Louis University, MO 63104, USA
| | - Xuefen Xu
- Jangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiangjuan Shao
- Jangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zili Zhang
- Jangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shanzhong Tan
- Department of Integrated TCM and Western Medicine, Nanjing Hospital Affiliated to Nanjing University of Traditional Chinese Medicine, Nanjing, China.
| | - Feng Zhang
- Jangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Shizhong Zheng
- Jangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
5
|
Chang Y, Chen X, Tian Y, Gao X, Liu Z, Dong X, Wang L, He F, Zhou J. Downregulation of microRNA-155-5p prevents immune thrombocytopenia by promoting macrophage M2 polarization via the SOCS1-dependent PD1/PDL1 pathway. Life Sci 2020; 257:118057. [PMID: 32634427 DOI: 10.1016/j.lfs.2020.118057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022]
Abstract
AIMS We set about to investigate the potential role of microRNA-155-5p (miR-155-5p) in the development of immune thrombocytopenia (ITP), an idiopathic deficiency of blood platelets. MAIN METHODS Initially, RT-qPCR and Western blot analyses were carried out to determine the expression of miR-155-5p and SOCS1 in peripheral blood mononuclear cells (PBMCs) and macrophages from ITP patients. We undertook gain- and loss- function methods by transfection of macrophages and PBMCs with treated plasmids. The expression patterns of platelet-related factors were measured by ELISA, and the expressions of PD1, PDL1, and macrophage M2 marker CD206 and CD86 were also measured. The relationship between miR-155-5p and SOCS1 was determined using the dual-luciferase reporter gene assay. We also established an ITP mouse model to explore the roles of miR-155-5p and SOCS1 in vivo. KEY FINDINGS miR-155-5p was up-regulated, while SOCS1 was down-regulated in PBMCs and macrophages from ITP patients. SOCS1 was indicated as a target of miR-155-5p. Inhibition of miR-155-5p or up-regulation of SOCS1 facilitated macrophage M2 polarization as demonstrated by an increased M2/M1 ratio and suppressed expression of platelet-related factors. Furthermore, silencing of SOCS1 promoted ITP progression through blocking the PD1/PDL1 pathway, whilst upregulation of miR-155-5p remarkably increased the platelet abundance and suppressed SOCS1 expression in ITP model mice. SIGNIFICANCE Silencing of miR-155-5p could promote PD1/PDL1 pathway-mediated macrophage M2 polarization and prevent ITP via up-regulation of SOCS1, thus relieving ITP.
Collapse
Affiliation(s)
- Yuying Chang
- Department of Hematology, the 2(nd) Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Xi Chen
- Department of Hematology, the 2(nd) Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Yaoyao Tian
- Department of Hematology, the 2(nd) Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Xinyu Gao
- Department of Hematology, the 2(nd) Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Zhiyu Liu
- Flow Laboratory, the First Affiliated Hospital of Harbin Medical University, Harbin 150007, PR China
| | - Xiushuai Dong
- Department of Hematology, the 2(nd) Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Lianjie Wang
- Department of Hematology, the 2(nd) Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Fei He
- Department of Hematology, the 2(nd) Affiliated Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Jin Zhou
- Department of Hematology, the First Affiliated Hospital of Harbin Medical University, Harbin 150007, PR China.
| |
Collapse
|
6
|
Abstract
Extracellular vesicles (EVs) are membrane-defined nanoparticles released by most cell types. The EVs released by cells may differ quantitatively and qualitatively from physiological states to disease states. There are several unique properties of EVs, including their proteins, lipids and nucleic acid cargoes, stability in circulation, and presence in biofluids, which make them a critical vector for cell-to-cell communication and impart utility as a biomarker. EVs may also serve as a vehicle for selective cargo secretion. Similarly, EV cargo may be selectively manipulated for targeted therapeutic delivery. In this review an overview is provided on the EV classification, biogenesis, and secretion pathways, which are conserved across cell types. Next, cargo characterization and effector cell responses are discussed in the context of nonalcoholic steatohepatitis, alcoholic hepatitis, and acetaminophen-induced liver injury. The review also discusses the potential biomarker and therapeutic uses of circulating EVs.
Collapse
Affiliation(s)
- Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|