1
|
Tan YL, Al-Masawa ME, Eng SP, Shafiee MN, Law JX, Ng MH. Therapeutic Efficacy of Interferon-Gamma and Hypoxia-Primed Mesenchymal Stromal Cells and Their Extracellular Vesicles: Underlying Mechanisms and Potentials in Clinical Translation. Biomedicines 2024; 12:1369. [PMID: 38927577 PMCID: PMC11201753 DOI: 10.3390/biomedicines12061369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) hold promises for cell therapy and tissue engineering due to their self-renewal and differentiation abilities, along with immunomodulatory properties and trophic factor secretion. Extracellular vesicles (EVs) from MSCs offer similar therapeutic effects. However, MSCs are heterogeneous and lead to variable outcomes. In vitro priming enhances MSC performance, improving immunomodulation, angiogenesis, proliferation, and tissue regeneration. Various stimuli, such as cytokines, growth factors, and oxygen tension, can prime MSCs. Two classical priming methods, interferon-gamma (IFN-γ) and hypoxia, enhance MSC immunomodulation, although standardized protocols are lacking. This review discusses priming protocols, highlighting the most commonly used concentrations and durations, along with mechanisms and in vivo therapeutics effects of primed MSCs and their EVs. The feasibility of up-scaling their production was also discussed. The review concluded that priming with IFN-γ or hypoxia (alone or in combination with other factors) boosted the immunomodulation capability of MSCs and their EVs, primarily via the JAK/STAT and PI3K/AKT and Leptin/JAK/STAT and TGF-β/Smad signalling pathways, respectively. Incorporating priming in MSC and EV production enables translation into cell-based or cell-free therapies for various disorders.
Collapse
Affiliation(s)
- Yu Ling Tan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| | - Sue Ping Eng
- NK Biocell Sdn. Bhd, Unit 1-22A, 1st Floor Pusat Perdagangan Berpadu (United Point), No.10, Jalan Lang Emas, Kuala Lumpur 51200, Malaysia;
| | - Mohamad Nasir Shafiee
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (Y.L.T.); (M.E.A.-M.); (J.X.L.)
| |
Collapse
|
2
|
Xing J, Wang R, Cui F, Song L, Ma Q, Xu H. Role of the regulation of mesenchymal stem cells on macrophages in sepsis. Int J Immunopathol Pharmacol 2023; 37:3946320221150722. [PMID: 36840553 PMCID: PMC9969469 DOI: 10.1177/03946320221150722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Sepsis is a common clinical critical disease with high mortality. The excessive release of cytokines from macrophages is the main cause of out-of-control immune response in sepsis. Mesenchymal stem cells (MSCs) are thought to be useful in adjunctive therapy of sepsis and related diseases, due to their function in immune regulation, anti-inflammatory, antibacterial, and tissue regeneration. Also there have been several successful cases in clinical treatment. Some previous studies have shown that MSCs regulate the function of macrophages through secreting cytokines and extracellular vesicles, or transferring mitochondria directly to target cells, which affects the progress of sepsis. Here, we review the regulation of MSCs on macrophages in sepsis, mainly focus on the regulation ways. We hope that will help to understand the immunological mechanism and also provide some clues for the clinical application of MSCs in the biotherapy of sepsis.
Collapse
Affiliation(s)
- Jie Xing
- Fenyang Hospital of Shanxi
Province, Fenyang, China
| | - Rui Wang
- School of Life Sciences, Northwestern Polytechnical
University, Xi’an, China
| | - Fengqi Cui
- School of Life Sciences, Northwestern Polytechnical
University, Xi’an, China
| | - Linlin Song
- Fenyang Hospital of Shanxi
Province, Fenyang, China
| | - Quanlin Ma
- Fenyang Hospital of Shanxi
Province, Fenyang, China,Quanlin Ma, Department of Cardiothoracic
Surgery, Fenyang Hospital of Shanxi Province, 186 Shengli Street, Fenyang
032200, China.
| | - Huiyun Xu
- School of Life Sciences, Northwestern Polytechnical
University, Xi’an, China,Huiyun Xu, School of Life Sciences,
Northwestern Polytechnical University, 127 Youyi Xilu, Xi’an 710072, China.
| |
Collapse
|
3
|
Abdolmohammadi K, Mahmoudi T, Alimohammadi M, Tahmasebi S, Zavvar M, Hashemi SM. Mesenchymal stem cell-based therapy as a new therapeutic approach for acute inflammation. Life Sci 2022; 312:121206. [PMID: 36403645 DOI: 10.1016/j.lfs.2022.121206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Acute inflammatory diseases such as acute colitis, kidney injury, liver failure, lung injury, myocardial infarction, pancreatitis, septic shock, and spinal cord injury are significant causes of death worldwide. Despite advances in the understanding of its pathophysiology, there are many restrictions in the treatment of these diseases, and new therapeutic approaches are required. Mesenchymal stem cell-based therapy due to immunomodulatory and regenerative properties is a promising candidate for acute inflammatory disease management. Based on preclinical results, mesenchymal stem cells and their-derived secretome improved immunological and clinical parameters. Furthermore, many clinical trials of acute kidney, liver, lung, myocardial, and spinal cord injury have yielded promising results. In this review, we try to provide a comprehensive view of mesenchymal stem cell-based therapy in acute inflammatory diseases as a new treatment approach.
Collapse
Affiliation(s)
- Kamal Abdolmohammadi
- Department of Immunology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Tayebeh Mahmoudi
- 17 Shahrivar Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Zavvar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanothechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Lyu Y, Han T, Liu M, Cui K, Wang D. The Prediction of Surgery Outcomes in Abdominal Tumor Patients with Sepsis by Pcv-aCO2/Ca-cvO2. Ther Clin Risk Manag 2022; 18:989-997. [PMID: 36238956 PMCID: PMC9552675 DOI: 10.2147/tcrm.s374414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/13/2022] [Indexed: 11/07/2022] Open
Abstract
Background To determine whether Pcv-aCO2/Ca-cvO2 combined with Pcv-aCO2 could predict the outcomes in patients complicated with abdominal infection and sepsis after abdominal tumor operation. Methods Total 92 patients admitted to our hospital from January 2017 to December 2020 who underwent abdominal tumor operation were enrolled. Blood gas analysis of artery and central vein, various laboratory indexes, SOFA score, hemodynamic parameters at different time points and treatment outcome were recorded. Results ROC curve analysis showed that hemodynamic parameter alone could not predict ICU treatment outcome and mortality of patients, but 72-hour SOFA score could predict treatment outcome of patients (AUC = 0.930, 95% CI: 0.803–1.000, p = 0.019). The significant hemodynamic parameter for evaluating treatment outcome and prognosis of patients was Pcv-aCO2 + Ratio of T3. Kaplan–Meier univariate survival curve and Log-rank suggested that patients who had higher combined predictive parameter of T3 Ratio + T3 Pcv-aCO2 still had ischemia and hypoxia of tissues and organs after standard fluid resuscitation, and treatment outcome was not good. In subgroup analysis, patients with higher Ratio had higher lactate, higher T72 SOFA score, and poor treatment outcome. Conclusion The combination of Ratio and Pcv-aCO2 could evaluate clinical treatment outcome of patients complicated with abdominal infection and sepsis after abdominal tumor operation.
Collapse
Affiliation(s)
- Yang Lyu
- Department of Intensive Care Unit, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Tao Han
- Department of Intensive Care Unit, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Meirong Liu
- Department of Infectious Diseases, Tianjin Hospital, Tianjin, People’s Republic of China
| | - Keliang Cui
- Department of Intensive Care Unit, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China
| | - Donghao Wang
- Department of Intensive Care Unit, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China,Correspondence: Donghao Wang, Department of Intensive Care Unit, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, People’s Republic of China, Email
| |
Collapse
|
5
|
Foo JB, Looi QH, How CW, Lee SH, Al-Masawa ME, Chong PP, Law JX. Mesenchymal Stem Cell-Derived Exosomes and MicroRNAs in Cartilage Regeneration: Biogenesis, Efficacy, miRNA Enrichment and Delivery. Pharmaceuticals (Basel) 2021; 14:1093. [PMID: 34832875 PMCID: PMC8618513 DOI: 10.3390/ph14111093] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are the small extracellular vesicles secreted by cells for intercellular communication. Exosomes are rich in therapeutic cargos such as microRNA (miRNA), long non-coding RNA (lncRNA), small interfering RNA (siRNA), DNA, protein, and lipids. Recently, many studies have focused on miRNAs as a promising therapeutic factor to support cartilage regeneration. Exosomes are known to contain a substantial amount of a variety of miRNAs. miRNAs regulate the post-transcriptional gene expression by base-pairing with the target messenger RNA (mRNA), leading to gene silencing. Several exosomal miRNAs have been found to play a role in cartilage regeneration by promoting chondrocyte proliferation and matrix secretion, reducing scar tissue formation, and subsiding inflammation. The exosomal miRNA cargo can be modulated using techniques such as cell transfection and priming as well as post-secretion modifications to upregulate specific miRNAs to enhance the therapeutic effect. Exosomes are delivered to the joints through direct injection or via encapsulation within a scaffold for sustained release. To date, exosome therapy for cartilage injuries has yet to be optimized as the ideal cell source for exosomes, and the dose and method of delivery have yet to be identified. More importantly, a deeper understanding of the role of exosomal miRNAs in cartilage repair is paramount for the development of more effective exosome therapy.
Collapse
Affiliation(s)
- Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Qi Hao Looi
- My Cytohealth Sdn. Bhd., D353a, Menara Suezcap 1, KL Gateway, no. 2, Jalan Kerinchi, Gerbang Kerinchi Lestari, Kuala Lumpur 59200, Malaysia;
- National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
| | - Sau Har Lee
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
- Faculty of Health and Medical Sciences, School of Biosciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia;
| | - Pei Pei Chong
- Faculty of Health and Medical Sciences, School of Biosciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
6
|
Miao J, Ren Z, Zhong Z, Yan L, Xia X, Wang J, Yang J. Mesenchymal Stem Cells: Potential Therapeutic Prospect of Paracrine Pathways in Neonatal Infection. J Interferon Cytokine Res 2021; 41:365-374. [PMID: 34672801 DOI: 10.1089/jir.2021.0094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Infection is the leading cause of admission and mortality in neonatal intensive care units. Immature immune function and antibiotic resistance make the treatment more difficult. However, there is no effective prevention for it. Recently, more and more researches are focusing on stem cell therapy, especially mesenchymal stem cells (MSCs); their potential paracrine effect confer MSCs with a major advantage to treat the immune and inflammatory disorders associated with neonatal infection. In this review, we summarize the basal properties and preclinical evidence of MSCs and explore the potential mechanisms of paracrine factors of MSCs for neonatal infection.
Collapse
Affiliation(s)
- Jiayu Miao
- Department of Pediatrics, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhuxiao Ren
- Department of Neonatology, and Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhicheng Zhong
- Department of Prenatal Diagnosis Center, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Longli Yan
- Department of Neonatology, and Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xin Xia
- Department of Neonatology, and Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jianlan Wang
- Department of Neonatology, and Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jie Yang
- Department of Neonatology, and Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
7
|
Tian C, He J, An Y, Yang Z, Yan D, Pan H, Lv G, Li Y, Wang Y, Yang Y, Zhu G, He Z, Zhu X, Pan X. Bone marrow mesenchymal stem cells derived from juvenile macaques reversed ovarian ageing in elderly macaques. Stem Cell Res Ther 2021; 12:460. [PMID: 34407863 PMCID: PMC8371769 DOI: 10.1186/s13287-021-02486-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/01/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Female sex hormone secretion and reproductive ability decrease with ageing. Bone marrow mesenchymal stem cells (BMMSCs) have been postulated to play a key role in treating ovarian ageing. METHODS We used macaque ovarian ageing models to observe the structural and functional changes after juvenile BMMSC treatment. Moreover, RNA-seq was used to analyse the ovarian transcriptional expression profile and key pathways through which BMMSCs reverse ovarian ageing. RESULTS In the elderly macaque models, the ovaries were atrophied, the regulation ability of sex hormones was reduced, the ovarian structure was destroyed, and only local atretic follicles were observed, in contrast with young rhesus monkeys. Intravenous infusion of BMMSCs in elderly macaques increased ovarian volume, strengthened the regulation ability of sex hormones, reduced the degree of pulmonary fibrosis, inhibited apoptosis, increased density of blood vessels, and promoted follicular regeneration. In addition, the ovarian expression characteristics of ageing-related genes of the elderly treatment group reverted to that of the young control group, 1258 genes that were differentially expressed, among which 415 genes upregulated with age were downregulated, 843 genes downregulated with age were upregulated after BMMSC treatment, and the top 20 differentially expressed genes (DEGs) in the protein-protein interaction (PPI) network were significantly enriched in oocyte meiosis and progesterone-mediated oocyte maturation pathways. CONCLUSION The BMMSCs derived from juvenile macaques can reverse ovarian ageing in elderly macaques.
Collapse
Affiliation(s)
- Chuan Tian
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
- Guizhou Medical University, Tissue Engineering and Stem Cell Experimental Center, Guizhou Provinc, Guiyang, 550004, China
| | - Jie He
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
- Kunming Medical University, Guizhou Province, Kunming, 650032, China
| | - Yuanyuan An
- Kunming Medical University, Guizhou Province, Kunming, 650032, China
| | - Zailing Yang
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
- Guizhou Medical University, Tissue Engineering and Stem Cell Experimental Center, Guizhou Provinc, Guiyang, 550004, China
| | - Donghai Yan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Hang Pan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
- Guizhou Medical University, Tissue Engineering and Stem Cell Experimental Center, Guizhou Provinc, Guiyang, 550004, China
| | - Guanke Lv
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
- Kunming Medical University, Guizhou Province, Kunming, 650032, China
| | - Ye Li
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
- Kunming Medical University, Guizhou Province, Kunming, 650032, China
| | - Yanying Wang
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Yukun Yang
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China
| | - Gaohong Zhu
- Kunming Medical University, Guizhou Province, Kunming, 650032, China
| | - Zhixu He
- Guizhou Medical University, Tissue Engineering and Stem Cell Experimental Center, Guizhou Provinc, Guiyang, 550004, China
| | - Xiangqing Zhu
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China.
| | - Xinghua Pan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming, 650032, Yunnan Province, China.
- Guizhou Medical University, Tissue Engineering and Stem Cell Experimental Center, Guizhou Provinc, Guiyang, 550004, China.
- Kunming Medical University, Guizhou Province, Kunming, 650032, China.
| |
Collapse
|
8
|
Peltzer J, Lund K, Goriot ME, Grosbot M, Lataillade JJ, Mauduit P, Banzet S. Interferon-γ and Hypoxia Priming Have Limited Effect on the miRNA Landscape of Human Mesenchymal Stromal Cells-Derived Extracellular Vesicles. Front Cell Dev Biol 2020; 8:581436. [PMID: 33384991 PMCID: PMC7769832 DOI: 10.3389/fcell.2020.581436] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cell (MSC)-based cell therapy has received great interest in regenerative medicine. Priming the cells during the culture phase can improve their efficacy and/or survival after injection. The literature suggests that MSC extracellular vesicles (EV) can recapitulate a substantial part of the beneficial effects of the cells they originate from, and that micro-RNAs (miRNAs) are important players in EV biological action. Here, our aim was to determine if two classical priming methods of MSC, interferon-gamma (IFNγ) and hypoxia (HYP), could modify their EV miRNA content. Human bone marrow MSCs (BM-MSCs) from five healthy donors were cultured with IFNγ or in HYP or in control (CONT) conditions. The conditioned media were collected after 48 h in serum-free condition and EV were isolated by ultracentrifugation. Total RNA was isolated, pools of CONT, IFN, and HYP cDNA were prepared, and a miRNA profiling was performed using RT-qPCR. Then, miRNAs were selected based on their detectability and measured on each individual EV sample. Priming had no effect on EV amount or size distribution. A set of 81 miRNAs was detected in at least one of the pools of EVs. They were measured on each individual sample; 41 miRNAs were detected in all samples. The principal component analysis (PCA) failed to discriminate the groups. HYP induced a significant decrease in EV hsa-miR-34a-3p content and IFN induced a significant increase in five miRNAs (hsa-miR-25-3p, hsa-miR-106a-5p, hsa-miR-126-3p, hsa-miR-451a, and hsa-miR-665). Taken together, we found only limited alterations in the miRNA landscape of MSC EV with a high inter-individual variability.
Collapse
Affiliation(s)
- Juliette Peltzer
- Institut de Recherche Biomédicale des Armées, Clamart, France.,UMR-MD-1197, INSERM, Université Paris 11, Ministère de la défense, Villejuif, France
| | - Kyle Lund
- Institut de Recherche Biomédicale des Armées, Clamart, France
| | - Marie-Emmanuelle Goriot
- Institut de Recherche Biomédicale des Armées, Clamart, France.,UMR-MD-1197, INSERM, Université Paris 11, Ministère de la défense, Villejuif, France
| | - Marion Grosbot
- Institut de Recherche Biomédicale des Armées, Clamart, France.,UMR-MD-1197, INSERM, Université Paris 11, Ministère de la défense, Villejuif, France
| | - Jean-Jacques Lataillade
- Institut de Recherche Biomédicale des Armées, Clamart, France.,UMR-MD-1197, INSERM, Université Paris 11, Ministère de la défense, Villejuif, France
| | - Philippe Mauduit
- UMR-MD-1197, INSERM, Université Paris 11, Ministère de la défense, Villejuif, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées, Clamart, France.,UMR-MD-1197, INSERM, Université Paris 11, Ministère de la défense, Villejuif, France
| |
Collapse
|
9
|
Gorman E, Millar J, McAuley D, O'Kane C. Mesenchymal stromal cells for acute respiratory distress syndrome (ARDS), sepsis, and COVID-19 infection: optimizing the therapeutic potential. Expert Rev Respir Med 2020; 15:301-324. [PMID: 33172313 DOI: 10.1080/17476348.2021.1848555] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Mesenchymal stromal (stem) cell (MSC) therapies are emerging as a promising therapeutic intervention in patients with Acute Respiratory Distress Syndrome (ARDS) and sepsis due to their reparative, immunomodulatory, and antimicrobial properties.Areas covered: This review provides an overview of Mesenchymal stromal cells (MSCs) and their mechanisms of effect in ARDS and sepsis. The preclinical and clinical evidence to support MSC therapy in ARDS and sepsis is discussed. The potential for MSC therapy in COVID-19 ARDS is discussed with insights from respiratory viral models and early clinical reports of MSC therapy in COVID-19. Strategies to optimize the therapeutic potential of MSCs in ARDS and sepsis are considered including preconditioning, altered gene expression, and alternative cell-free MSC-derived products, such as extracellular vesicles and conditioned medium.Expert opinion: MSC products present considerable therapeutic promise for ARDS and sepsis. Preclinical investigations report significant benefits and early phase clinical studies have not highlighted safety concerns. Optimization of MSC function in preclinical models of ARDS and sepsis has enhanced their beneficial effects. MSC-derived products, as cell-free alternatives, may provide further advantages in this field. These strategies present opportunity for the clinical development of MSCs and MSC-derived products with enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Ellen Gorman
- School of Medicine Dentistry and Biomedical Science, Queen's University Belfast, UK
| | - Jonathan Millar
- Division of Functional Genetics and Development, Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Danny McAuley
- School of Medicine Dentistry and Biomedical Science, Queen's University Belfast, UK
| | - Cecilia O'Kane
- School of Medicine Dentistry and Biomedical Science, Queen's University Belfast, UK
| |
Collapse
|