1
|
Bighi B, Ragazzini G, Gallerani A, Mescola A, Scagliarini C, Zannini C, Marcuzzi M, Olivi E, Cavallini C, Tassinari R, Bianchi M, Corsi L, Ventura C, Alessandrini A. Cell stretching devices integrated with live cell imaging: a powerful approach to study how cells react to mechanical cues. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 7:012005. [PMID: 39655854 DOI: 10.1088/2516-1091/ad9699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
Mechanical stimuli have multiple effects on cell behavior, affecting a number of cellular processes including orientation, proliferation or apoptosis, migration and invasion, the production of extracellular matrix proteins, the activation and translocation of transcription factors, the expression of different genes such as those involved in inflammation and the reprogramming of cell fate. The recent development of cell stretching devices has paved the way for the study of cell reactions to stretching stimuliin-vitro, reproducing physiological situations that are experienced by cells in many tissues and related to functions such as breathing, heart beating and digestion. In this work, we review the highly-relevant contributions cell stretching devices can provide in the field of mechanobiology. We then provide the details for the in-house construction and operation of these devices, starting from the systems that we already developed and tested. We also review some examples where cell stretchers can supply meaningful insights into mechanobiology topics and we introduce new results from our exploitation of these devices.
Collapse
Affiliation(s)
- Beatrice Bighi
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, via Campi 213/A, 41125 Modena, Italy
- CNR-Nanoscience Institute-S3, via Campi 213/A, 41125 Modena, Italy
| | | | - Alessia Gallerani
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, via Campi 213/A, 41125 Modena, Italy
| | - Andrea Mescola
- CNR-Nanoscience Institute-S3, via Campi 213/A, 41125 Modena, Italy
| | - Chiara Scagliarini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, via Campi 213/A, 41125 Modena, Italy
| | - Chiara Zannini
- Eldor Lab, via di Corticella 183, 40128 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (I.N.B.B.), via di Corticella 183, 40128 Bologna, Italy
| | - Martina Marcuzzi
- Department of Medical and Surgical Sciences, University of Bologna, via G. Massarenti 9, Bologna 40138, Italy
| | - Elena Olivi
- Eldor Lab, via di Corticella 183, 40128 Bologna, Italy
| | - Claudia Cavallini
- Eldor Lab, via di Corticella 183, 40128 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (I.N.B.B.), via di Corticella 183, 40128 Bologna, Italy
| | | | - Michele Bianchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Lorenzo Corsi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Carlo Ventura
- Eldor Lab, via di Corticella 183, 40128 Bologna, Italy
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (I.N.B.B.), via di Corticella 183, 40128 Bologna, Italy
| | - Andrea Alessandrini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, via Campi 213/A, 41125 Modena, Italy
- CNR-Nanoscience Institute-S3, via Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
2
|
Fu S, Hu J, Wang G, Qian Z, Wang X. Androgen receptor regulates the differentiation of myoblasts under cyclic mechanical stretch and its upstream and downstream signals. Int J Biol Macromol 2024; 281:136257. [PMID: 39366623 DOI: 10.1016/j.ijbiomac.2024.136257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/30/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Our previous studies have demonstrated the important roles of androgen receptor (AR) in myoblast proliferation regulated by 15 % (mimic appropriate exercise) and 20 % (mimic excessive exercise) mechanical stretches. Except for myoblast proliferation, differentiation is also an important factor affecting muscle mass and strength. But the role of AR in stretch-regulated myoblast differentiation and AR's upstream and downstream signals remain unknown. In the present study, firstly the differences of myogenic differentiation between C2C12 (with AR expression) and L6 (without AR expression) myoblasts induced by 15 % and 20 % mechanical stretches were compared; secondly, AR antagonist flutamide and AR agonist GTx-007 were used in 15 % and 20 % stretched myoblasts respectively to confirm AR's roles in stretch-regulated myoblast differentiation; thirdly, RNA-seq, molecular dynamic simulation (MD) and co-immunoprecipitation were performed to screen the downstream and upstream molecules of AR during stretches. We found that (1) 15 % stretch increased while 20 % stretch decreased myotube number in differentiating C2C12 and L6 myoblasts, with more significant changes in C2C12 cells than L6 cells; (2) in stretched C2C12 myoblasts, AR antagonist flutamide inhibited 15 % stretch-promoted differentiation while AR agonist GTx-007 reversed 20 % stretch-inhibited differentiation (reflected by changes in myotube number, MHC contents of fast-twitch and slow-twitch fiber, and the levels of myogenic regulatory factors (MRFs) such as MyoD and myogenin); (3) KEGG analysis of RNA-seq showed that the differently expressed genes (DEGs) in C2C12 cells induced by 15 % stretch were enriched in FoxO and JAK-STAT signaling pathways, while DEGs by 20 % stretch were enriched in FoxO and MAPK signaling pathways; (4) MD and co-immunoprecipitation showed that β1 integrin could interact with AR and influence AR's activity in C2C12 cells. In conclusion, AR plays important roles in myoblast differentiation promoted by 15 % stretch while inhibited by 20 % stretch, which was fulfilled through FoxO-MRFs. In addition, α7β1 integrin may be a bridge linking mechanical stretch and AR. This study is beneficial to deeply understand the roles and mechanisms of AR in stretch-regulated muscle mass and strength; and reports firstly that myoblasts sense mechanical stimulus and transmit into intracellular AR via α7β1 integrin.
Collapse
Affiliation(s)
- Shaoting Fu
- School of Exercise and Health, Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China; Department of Kinesiology, College of Physical Education, Shanghai Normal University, Shanghai, China
| | - Jing Hu
- School of Exercise and Health, Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Gang Wang
- School of Exercise and Health, Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Zhenyu Qian
- School of Exercise and Health, Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China.
| | - Xiaohui Wang
- School of Exercise and Health, Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
3
|
Sicherer ST, Haque N, Parikh Y, Grasman J. Current methodologies for inducing aligned myofibers in tissue constructs for skeletal muscle tissue regeneration. Adv Wound Care (New Rochelle) 2024. [PMID: 39126403 DOI: 10.1089/wound.2024.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024] Open
Abstract
SIGNIFICANCE Volumetric muscle loss (VML) results in the loss of large amounts of tissue that inhibits muscle regeneration. Existing therapies, such as autologous muscle transfer and physical therapy, are incapable of returning full function and force production to injured muscle. RECENT ADVANCES Skeletal muscle tissue constructs may provide an alternative to existing therapies currently used to treat VML. Unlike autologous muscle transplants, muscle constructs can be cultured in vitro and are not reliant on intact muscle tissue. Skeletal muscle constructs can be generated from small muscle biopsies and could be used to generate skeletal muscle tissue constructs to replace injured tissues. CRITICAL ISSUES To serve as effective therapies, muscle constructs must be capable of generating contractile forces that can assist the function of host skeletal muscle. The contractile force of native muscle arises in part as a consequence of the highly aligned, bundled architecture of myofibers. Attempts to induce similar alignment include: applications of tension/strain across hydrogels, inducing aligned architectures within scaffolds, casting tissues in straited molds, and 3D printing. While all these methods have demonstrated efficacy towards inducing myofiber alignment, the extent of myofiber alignment, tissue formation, and force production varies. This manuscript critically reviews the advantages and limitations of these methods, and specifically discusses their ability to impart mechanical and architectural cues to induce alignment within constructs. FUTURE DIRECTIONS As tissue synthesizing techniques continue to improve, muscle constructs must include more cell types than simply myoblasts, such as the addition of neuronal and endothelial cells. Higher level tissue organization is critical to the success of these constructs. Many of these technologies have yet to be implanted into host tissue to understand engraftment and how they can contribute to traumatic injury, and as such continued collaboration between surgeons and tissue engineers is necessary to ultimately result in clinical translation.
Collapse
Affiliation(s)
- Sydnee T Sicherer
- New Jersey Institute of Technology, Biomedical Engineering, Newark, New Jersey, United States;
| | - Noor Haque
- New Jersey Institute of Technology, Biomedical Engineering, Newark, New Jersey, United States;
| | - Yash Parikh
- New Jersey Institute of Technology, Biomedical Engineering, Newark, New Jersey, United States;
| | - Jonathan Grasman
- New Jersey Institute of Technology, Biomedical Engineering, 323 Dr Martin Luther King Jr Blvd, Newark, New Jersey, United States, 07102;
| |
Collapse
|
4
|
Li P, Wang Y, Cao Y, Shi J, Jiang M, Han X, Jiang L, Bao Y, Wu W, Liu X. Exercise Attenuate Diaphragm Atrophy in COPD Mice via Inhibiting the RhoA/ROCK Signaling. Int J Chron Obstruct Pulmon Dis 2024; 19:1591-1601. [PMID: 39005647 PMCID: PMC11244622 DOI: 10.2147/copd.s460182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Background Exercise is an indispensable component of pulmonary rehabilitation with strong anti-inflammatory effects. However, the mechanisms by which exercise prevents diaphragmatic atrophy in COPD (chronic obstructive pulmonary disease) remain unclear. Methods Forty male C57BL/6 mice were assigned to the control (n=16) and smoke (n=24) groups. Mice in the smoke group were exposed to the cigarette smoke (CS) for six months. They were then divided into model and exercise training groups for 2 months. Histological changes were observed in lung and diaphragms. Subsequently, agonist U46639 and antagonist Y27632 of RhoA/ROCK were subjected to mechanical stretching in LPS-treated C2C12 myoblasts. The expression levels of Atrogin-1, MuRF-1, MyoD, Myf5, IL-1β, TNF-α, and RhoA/ROCK were determined by Western blotting. Results Diaphragmatic atrophy and increased RhoA/ROCK expression were observed in COPD mice. Exercise training attenuated diaphragmatic atrophy, decreased the expression of MuRF-1, and increased MyoD expression in COPD diaphragms. Exercise also affects the upregulation of RhoA/ROCK and inflammation-related proteins. In in vitro experiments with C2C12 myoblasts, LPS remarkably increased the level of inflammation and protein degradation, whereas Y27632 or combined with mechanical stretching prevented this phenomenon considerably. Conclusion RhoA/ROCK plays an important role in the prevention of diaphragmatic atrophy in COPD.
Collapse
Affiliation(s)
- Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Yingqi Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Yuanyuan Cao
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Jiacheng Shi
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Meiling Jiang
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Xiaoyu Han
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Linhong Jiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Yidie Bao
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Weibing Wu
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
- Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201203, People's Republic of China
| |
Collapse
|
5
|
Couturier N, Hörner SJ, Nürnberg E, Joazeiro C, Hafner M, Rudolf R. Aberrant evoked calcium signaling and nAChR cluster morphology in a SOD1 D90A hiPSC-derived neuromuscular model. Front Cell Dev Biol 2024; 12:1429759. [PMID: 38966427 PMCID: PMC11222430 DOI: 10.3389/fcell.2024.1429759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Familial amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disorder that is due to mutations in one of several target genes, including SOD1. So far, clinical records, rodent studies, and in vitro models have yielded arguments for either a primary motor neuron disease, or a pleiotropic pathogenesis of ALS. While mouse models lack the human origin, in vitro models using human induced pluripotent stem cells (hiPSC) have been recently developed for addressing ALS pathogenesis. In spite of improvements regarding the generation of muscle cells from hiPSC, the degree of maturation of muscle cells resulting from these protocols has remained limited. To fill these shortcomings, we here present a new protocol for an enhanced myotube differentiation from hiPSC with the option of further maturation upon coculture with hiPSC-derived motor neurons. The described model is the first to yield a combination of key myogenic maturation features that are consistent sarcomeric organization in association with complex nAChR clusters in myotubes derived from control hiPSC. In this model, myotubes derived from hiPSC carrying the SOD1 D90A mutation had reduced expression of myogenic markers, lack of sarcomeres, morphologically different nAChR clusters, and an altered nAChR-dependent Ca2+ response compared to control myotubes. Notably, trophic support provided by control hiPSC-derived motor neurons reduced nAChR cluster differences between control and SOD1 D90A myotubes. In summary, a novel hiPSC-derived neuromuscular model yields evidence for both muscle-intrinsic and nerve-dependent aspects of neuromuscular dysfunction in SOD1-based ALS.
Collapse
Affiliation(s)
- Nathalie Couturier
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Sarah Janice Hörner
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Elina Nürnberg
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Claudio Joazeiro
- Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
| | - Mathias Hafner
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Medical Technology, Mannheim University of Applied Sciences and Heidelberg University, Mannheim, Germany
| | - Rüdiger Rudolf
- CeMOS, Mannheim University of Applied Sciences, Mannheim, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Sciences, Mannheim, Germany
- Institute of Medical Technology, Mannheim University of Applied Sciences and Heidelberg University, Mannheim, Germany
| |
Collapse
|
6
|
Shi N, Wang J, Tang S, Zhang H, Wei Z, Li A, Ma Y, Xu F. Matrix Nonlinear Viscoelasticity Regulates Skeletal Myogenesis through MRTF Nuclear Localization and Nuclear Mechanotransduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305218. [PMID: 37847903 DOI: 10.1002/smll.202305218] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/30/2023] [Indexed: 10/19/2023]
Abstract
Mechanically sensitive tissues (e.g., skeletal muscles) greatly need mechanical stimuli during the development and maturation. The extracellular matrix (ECM) mediates these signals through nonlinear viscoelasticity of collagen networks that are predominant components of the ECM. However, the interactions between cells and ECM form a feedback loop, and it has not yet been possible to determine the degree to which, if any, of the features of matrix nonlinear viscoelasticity affect skeletal muscle development and regeneration. In this study, a nonlinear viscoelastic feature (i.e., strain-enhanced stress relaxation (SESR)) in normal skeletal muscles is observed, which however is almost absent in diseased muscles from Duchenne muscular dystrophy mice. It is recapitulated such SESR feature in vitro and separated the effects of mechanical strain and ECM viscoelasticity on myoblast response by developing a collagen-based hydrogel platform. Both strain and stress relaxation induce myogenic differentiation and myotube formation by C2C12 myoblasts, and myogenesis is more promoted by applying SESR. This promotion can be explained by the effects of SESR on actin polymerization-mediated myocardin related transcription factor (MRTF) nuclear localization and nuclear mechanotransduction. This study represents the first attempt to investigate the SESR phenomenon in skeletal muscles and reveal underlying mechanobiology, which will provide new opportunities for the tissue injury treatments.
Collapse
Affiliation(s)
- Nianyuan Shi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jing Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Shaoxin Tang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
7
|
Elgaabari A, Imatomi N, Kido H, Nakashima T, Okuda S, Manabe Y, Sawano S, Mizunoya W, Kaneko R, Tanaka S, Maeno T, Matsuyoshi Y, Seki M, Kuwakado S, Zushi K, Daneshvar N, Nakamura M, Suzuki T, Sunagawa K, Anderson JE, Allen RE, Tatsumi R. Age-related nitration/dysfunction of myogenic stem cell activator HGF. Aging Cell 2024; 23:e14041. [PMID: 37985931 PMCID: PMC10861216 DOI: 10.1111/acel.14041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023] Open
Abstract
Mechanical perturbation triggers activation of resident myogenic stem cells to enter the cell cycle through a cascade of events including hepatocyte growth factor (HGF) release from its extracellular tethering and the subsequent presentation to signaling-receptor c-met. Here, we show that with aging, extracellular HGF undergoes tyrosine-residue (Y) nitration and loses c-met binding, thereby disturbing muscle homeostasis. Biochemical studies demonstrated that nitration/dysfunction is specific to HGF among other major growth factors and is characterized by its locations at Y198 and Y250 in c-met-binding domains. Direct-immunofluorescence microscopy of lower hind limb muscles from three age groups of rat, provided direct in vivo evidence for age-related increases in nitration of ECM-bound HGF, preferentially stained for anti-nitrated Y198 and Y250-HGF mAbs (raised in-house) in fast IIa and IIx myofibers. Overall, findings highlight inhibitory impacts of HGF nitration on myogenic stem cell dynamics, pioneering a cogent discussion for better understanding age-related muscle atrophy and impaired regeneration with fibrosis (including sarcopenia and frailty).
Collapse
Affiliation(s)
- Alaa Elgaabari
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
- Department of Physiology, Faculty of Veterinary MedicineKafrelsheikh UniversityKafrelsheikhEgypt
| | - Nana Imatomi
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Hirochika Kido
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Takashi Nakashima
- Department of Bioscience and Biotechnology, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Shoko Okuda
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Yoshitaka Manabe
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Shoko Sawano
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
- Present address:
Department of Food and Life Science, School of Life and Environmental ScienceAzabu UniversitySagamiharaJapan
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
- Present address:
Department of Animal Science and Biotechnology, School of Veterinary MedicineAzabu UniversitySagamiharaJapan
| | - Ryuki Kaneko
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Sakiho Tanaka
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Takahiro Maeno
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Yuji Matsuyoshi
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Miyumi Seki
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - So Kuwakado
- Department of Orthopaedic Surgery, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kahona Zushi
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Nasibeh Daneshvar
- Department of Biological Sciences, Faculty of ScienceUniversity of ManitobaWinnipegManitobaCanada
| | - Mako Nakamura
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Kenji Sunagawa
- Department of Cardiovascular Medicine, Graduate School of MedicineKyushu UniversityFukuokaJapan
| | - Judy E. Anderson
- Department of Biological Sciences, Faculty of ScienceUniversity of ManitobaWinnipegManitobaCanada
| | - Ronald E. Allen
- The School of Animal and Comparative Biomedical SciencesUniversity of ArizonaTucsonArizonaUSA
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| |
Collapse
|
8
|
Chan AHP, Jain I, Oropeza BP, Zhou T, Nelsen B, Geisse NA, Huang NF. Combinatorial extracellular matrix cues with mechanical strain induce differential effects on myogenesis in vitro. Biomater Sci 2023; 11:5893-5907. [PMID: 37477446 PMCID: PMC10443049 DOI: 10.1039/d3bm00448a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023]
Abstract
Skeletal muscle regeneration remains a clinical unmet need for volumetric muscle loss and atrophy where muscle function cannot be restored to prior capacity. Current experimental approaches do not account for the complex microenvironmental factors that modulate myogenesis. In this study we developed a biomimetic tissue chip platform to systematically study the combined effects of the extracellular matrix (ECM) microenvironment and mechanical strain on myogenesis of murine myoblasts. Using stretchable tissue chips composed of collagen I (C), fibronectin (F) and laminin (L), as well as their combinations thereof, we tested the addition of mechanical strain regimens on myogenesis at the transcriptomic and translational levels. Our results show that ECMs have a significant effect on myotube formation in C2C12 murine myoblasts. Under static conditions, laminin substrates induced the longest myotubes, whereas fibronectin produced the widest myotubes. Combinatorial ECMs showed non-intuitive effects on myotube formation. Genome-wide analysis revealed the upregulation in actin cytoskeletal related genes that are suggestive of myogenesis. When mechanical strain was introduced to C + F + L combinatorial ECM substrates in the form of constant or intermittent uniaxial strain at low (5%) and high (15%) levels, we observed synergistic enhancements in myotube width, along with transcriptomic upregulation in myosin heavy chain genes. Together, these studies highlight the complex role of microenvironmental factors such as ECM interactions and strain on myotube formation and the underlying signaling pathways.
Collapse
Affiliation(s)
- Alex H P Chan
- Stanford Cardiovascular Institute, Stanford, CA, USA.
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Ishita Jain
- Stanford Cardiovascular Institute, Stanford, CA, USA.
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Beu P Oropeza
- Stanford Cardiovascular Institute, Stanford, CA, USA.
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Tony Zhou
- Stanford Cardiovascular Institute, Stanford, CA, USA.
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | | | | | - Ngan F Huang
- Stanford Cardiovascular Institute, Stanford, CA, USA.
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Constantinou I, Bastounis EE. Cell-stretching devices: advances and challenges in biomedical research and live-cell imaging. Trends Biotechnol 2023; 41:939-950. [PMID: 36604290 DOI: 10.1016/j.tibtech.2022.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023]
Abstract
Basic human functions such as breathing and digestion require mechanical stretching of cells and tissues. However, when it comes to laboratory experiments, the mechanical stretching that cells experience in the body is not often replicated, limiting the biomimetic nature of the studies and the relevance of results. Herein, we establish the importance of mechanical stretching during in vitro investigations by reviewing seminal works performed using cell-stretching platforms, highlighting important outcomes of these works as well as the engineering characteristics of the platforms used. Emphasis is placed on the compatibility of cell-stretching devices (CSDs) with live-cell imaging as well as their limitations and on the research advancements that could arise from live-cell imaging performed during cell stretching.
Collapse
Affiliation(s)
- Iordania Constantinou
- Institute of Microtechnology (IMT), Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Effie E Bastounis
- Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" EXC 2124, Eberhard Karls University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
10
|
McNamara SL, Seo BR, Freedman BR, Roloson EB, Alvarez JT, O'Neill CT, Vandenburgh HH, Walsh CJ, Mooney DJ. Anti-inflammatory therapy enables robot-actuated regeneration of aged muscle. Sci Robot 2023; 8:eadd9369. [PMID: 36947599 DOI: 10.1126/scirobotics.add9369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Robot-actuated mechanical loading (ML)-based therapies ("mechanotherapies") can promote regeneration after severe skeletal muscle injury, but the effectiveness of such approaches during aging is unknown and may be influenced by age-associated decline in the healing capacity of skeletal muscle. To address this knowledge gap, this work used a noninvasive, load-controlled robotic device to impose highly defined tissue stresses to evaluate the age dependence of ML on muscle repair after injury. The response of injured muscle to robot-actuated cyclic compressive loading was found to be age sensitive, revealing not only a lack of reparative benefit of ML on injured aged muscles but also exacerbation of tissue inflammation. ML alone also disrupted the normal regenerative processes of aged muscle stem cells. However, these negative effects could be reversed by introducing anti-inflammatory therapy alongside ML application, leading to enhanced skeletal muscle regeneration even in aged mice.
Collapse
Affiliation(s)
- S L McNamara
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - B R Seo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - B R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - E B Roloson
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - J T Alvarez
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - C T O'Neill
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - H H Vandenburgh
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - C J Walsh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - D J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
11
|
Rojas-Rojas L, Espinoza-Álvarez ML, Castro-Piedra S, Ulloa-Fernández A, Vargas-Segura W, Guillén-Girón T. Muscle-like Scaffolds for Biomechanical Stimulation in a Custom-Built Bioreactor. Polymers (Basel) 2022; 14:polym14245427. [PMID: 36559794 PMCID: PMC9781371 DOI: 10.3390/polym14245427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Tissue engineering aims to develop in-vitro substitutes of native tissues. One approach of tissue engineering relies on using bioreactors combined with biomimetic scaffolds to produce study models or in-vitro substitutes. Bioreactors provide control over environmental parameters, place and hold a scaffold under desired characteristics, and apply mechanical stimulation to scaffolds. Polymers are often used for fabricating tissue-engineering scaffolds. In this study, polycaprolactone (PCL) collagen-coated microfilament scaffolds were cell-seeded with C2C12 myoblasts; then, these were grown inside a custom-built bioreactor. Cell attachment and proliferation on the scaffolds were investigated. A loading pattern was used for mechanical stimulation of the cell-seeded scaffolds. Results showed that the microfilaments provided a suitable scaffold for myoblast anchorage and that the custom-built bioreactor provided a qualified environment for the survival of the myoblasts on the polymeric scaffold. This PCL-based microfilament scaffold located inside the bioreactor proved to be a promising structure for the study of skeletal muscle models and can be used for mechanical stimulation studies in tissue engineering applications.
Collapse
Affiliation(s)
- Laura Rojas-Rojas
- Materials Science and Engineering School, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
- Physics School, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
- Correspondence: ; Tel.: +506-25502284
| | - María Laura Espinoza-Álvarez
- Materials Science and Engineering School, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
- Biology School, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | | | | | | | - Teodolito Guillén-Girón
- Materials Science and Engineering School, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| |
Collapse
|
12
|
A preliminary study on the role of Piezo1 channels in myokine release from cultured mouse myotubes. Biochem Biophys Res Commun 2022; 623:148-153. [DOI: 10.1016/j.bbrc.2022.07.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022]
|
13
|
Hinkle ER, Blue RE, Tsai YH, Combs M, Davi J, Coffey AR, Boriek AM, Taylor JM, Parker JS, Giudice J. Stretching muscle cells induces transcriptional and splicing transitions and changes in SR proteins. Commun Biol 2022; 5:987. [PMID: 36123433 PMCID: PMC9485123 DOI: 10.1038/s42003-022-03915-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
Alternative splicing is an RNA processing mechanism involved in skeletal muscle development and pathology. Muscular diseases exhibit splicing alterations and changes in mechanobiology leading us to investigate the interconnection between mechanical forces and RNA processing. We performed deep RNA-sequencing after stretching muscle cells. First, we uncovered transcriptional changes in genes encoding proteins involved in muscle function and transcription. Second, we observed that numerous mechanosensitive genes were part of the MAPK pathway which was activated in response to stretching. Third, we revealed that stretching skeletal muscle cells increased the proportion of alternatively spliced cassette exons and their inclusion. Fourth, we demonstrated that the serine and arginine-rich proteins exhibited stronger transcriptional changes than other RNA-binding proteins and that SRSF4 phosphorylation is mechanosensitive. Identifying SRSF4 as a mechanosensitive RNA-binding protein that might contribute to crosstalk between mechanotransduction, transcription, and splicing could potentially reveal novel insights into muscular diseases, particularly those with unknown etiologies.
Collapse
Affiliation(s)
- Emma R Hinkle
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - R Eric Blue
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Matthew Combs
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Jacquelyn Davi
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Alisha R Coffey
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Aladin M Boriek
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Joan M Taylor
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Joel S Parker
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA.
- Curriculum in Genetics and Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA.
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA.
| |
Collapse
|
14
|
Cho HJ, Lee YS, Kim DA, Moon SA, Lee SE, Lee SH, Koh JM. Lumican, an Exerkine, Protects against Skeletal Muscle Loss. Int J Mol Sci 2022; 23:ijms231710031. [PMID: 36077426 PMCID: PMC9456076 DOI: 10.3390/ijms231710031] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Exerkines are soluble factors secreted by exercised muscles, mimicking the effects of exercise in various organs, including the muscle itself. Lumican is reportedly secreted from muscles; however, its roles in skeletal muscle remain unknown. Herein, we found that lumican mRNA expression in the extensor digitorum longus was significantly higher in exercised mice than in unloading mice, and lumican stimulated myogenesis in vitro. Additionally, lumican knockdown significantly decreased muscle mass and cross-sectional area (CSA) of the muscle fiber in the gastrocnemius muscle of exercised mice. Lumican upregulated phosphorylation of p38 mitogen-activated protein kinase (MAPK) and a p38 inhibitor near completely blocked lumican-stimulated myogenesis. Inhibitors for integrin α2β1 and integrin ανβ3 also prevented lumican-stimulated myogenesis. Systemic lumican treatment, administered via the tail vein for 4 weeks, significantly increased relative muscle masses by 36.1% in ovariectomized mice. In addition, intramuscular lumican injection into unloaded muscles for 2 weeks significantly increased muscle mass by 8.5%. Both intravenous and intramuscular lumican treatment significantly increased muscle CSA. Our in vitro and in vivo experiments indicate that lumican is a muscle-secreted exerkine that affords protection against muscle loss by activating p38 MAPK via integrin receptors.
Collapse
Affiliation(s)
- Han Jin Cho
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Young-Sun Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Da Ae Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Sung Ah Moon
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea
| | - Seung Eun Lee
- Virus Facility, Research Animal Resource Center, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Seung Hun Lee
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jung-Min Koh
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Correspondence: ; Tel.: +82-2-3010-3247
| |
Collapse
|
15
|
Ren D, Liu R, Yan X, Zhang Q, Zeng X, Yuan X. Intensive stretch-activated CRT-PMCA1 feedback loop promoted apoptosis of myoblasts through Ca 2+ overloading. Apoptosis 2022; 27:929-945. [PMID: 35976579 DOI: 10.1007/s10495-022-01759-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 11/29/2022]
Abstract
Mechanical stretch exerted pro-apoptotic effect on myoblasts, the mechanism of which is currently unknown. Intracellular Ca2+ accumulation has been implicated in stretch-induced apoptosis. calreticulin (CRT) and plasma membrane Ca2+ transporting ATPase 1 (PMCA1) are two critical components of Ca2+ signaling system participating in intracellular Ca2+ homeostasis. In this study, we explored the contribution of CRT and PMCA1 in mediating stretch-induced Ca2+ accumulation and apoptosis of myoblasts. Stretching stimuli elevated level of CRT while inhibited activity of PMCA1. Moreover, there were bidirectional regulations between CRT and PMCA1, which formed the positive feedback loop leading to continuous increment of CRT level and repression of PMCA1 activity, in stretched myoblasts. Specifically, increased CRT level inhibited PMCA1 activity via suppressing Calmodulin (CaM), while reduced PMCA1 activity promoted CRT expression through activating p38MAPK pathway. Thus, the CRT-CaM-PMCA1 and PMCA1-p38MAPK-CRT pathways constituted a close cycle comprising CRT, PMCA1, CaM and p38MAPK. Inhibition of both CaM and p38MAPK affected the other three factors in stretched myoblasts. Circulation of the vicious cycle resulted in escalated Ca2+ overloading in myoblasts under continuous stretching stimuli. CRT knock-down, PMCA1 overexpression, and p38MAPK inhibition all attenuated the raised intracellular Ca2+ level and ameliorated myoblast apoptosis in the stretching environment. Conversely, CRT overexpression, PMCA1 knock-down, and CaM inhibition all aggravated stretch-induced Ca2+ overloading and myoblast apoptosis. A positive feedback loop between CRT and PMCA1 was activated in stretched myoblasts, which contributed to intracellular Ca2+ accumulation and resultant myoblast apoptosis.
Collapse
Affiliation(s)
- Dapeng Ren
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| | - Ran Liu
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiao Yan
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| | - Qiang Zhang
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| | - Xuemin Zeng
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China
| | - Xiao Yuan
- Department of Stomatology Medical Center, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China. .,Central Laboratory of Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China. .,Department of Orthodontics, School of Stomatology, Qingdao University, Qingdao, China.
| |
Collapse
|
16
|
Bernareggi A, Bosutti A, Massaria G, Giniatullin R, Malm T, Sciancalepore M, Lorenzon P. The State of the Art of Piezo1 Channels in Skeletal Muscle Regeneration. Int J Mol Sci 2022; 23:ijms23126616. [PMID: 35743058 PMCID: PMC9224226 DOI: 10.3390/ijms23126616] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 02/07/2023] Open
Abstract
Piezo1 channels are highly mechanically-activated cation channels that can sense and transduce the mechanical stimuli into physiological signals in different tissues including skeletal muscle. In this focused review, we summarize the emerging evidence of Piezo1 channel-mediated effects in the physiology of skeletal muscle, with a particular focus on the role of Piezo1 in controlling myogenic precursor activity and skeletal muscle regeneration and vascularization. The disclosed effects reported by pharmacological activation of Piezo1 channels with the selective agonist Yoda1 indicate a potential impact of Piezo1 channel activity in skeletal muscle regeneration, which is disrupted in various muscular pathological states. All findings reported so far agree with the idea that Piezo1 channels represent a novel, powerful molecular target to develop new therapeutic strategies for preventing or ameliorating skeletal muscle disorders characterized by an impairment of tissue regenerative potential.
Collapse
Affiliation(s)
- Annalisa Bernareggi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (G.M.); (M.S.); (P.L.)
- Correspondence:
| | - Alessandra Bosutti
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (G.M.); (M.S.); (P.L.)
| | - Gabriele Massaria
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (G.M.); (M.S.); (P.L.)
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (R.G.); (T.M.)
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (R.G.); (T.M.)
| | - Marina Sciancalepore
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (G.M.); (M.S.); (P.L.)
| | - Paola Lorenzon
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (G.M.); (M.S.); (P.L.)
| |
Collapse
|
17
|
Hu CF, Chen CPC, Tsui PH, Chen CN, Hsu CC. Stretch-Induced Healing of Injured Muscles Is Associated With Myogenesis and Decreased Fibrosis. Am J Sports Med 2022; 50:1679-1686. [PMID: 35315294 DOI: 10.1177/03635465221083995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Alghouth therapeutic stretching exercise has been applied to accelerate the healing of injured skeletal muscles, mechanisms behind the mechanical stretch-induced muscle recovery remain unclear. PURPOSE To examine stretch-associated antifibrotic and myogenic responses in injured muscles and to evaluate the feasibility of the ultrasonic Nakagami parametric index (NPI) in assessing muscle morphology during recovery. STUDY DESIGN Controlled laboratory study. METHODS Skeletal muscle fibrosis was induced in the right hind legs of 48 rats by making a posterior transverse incision in the gastrocnemius muscle; the left hind legs remained intact as a comparative normal reference. After surgery, the 48 rats were randomly divided into the stretch (S) and control (C) groups. The S group received stretching interventions on the injured hind leg from week 3 to week 7 after surgery, while the C group did not receive stretching throughout the study period. The muscle fibrosis percentage and the ultrasonic NPI were examined sequentially after surgery. Relative expressions of myogenesis-related proteins, including myoblast determination protein 1 (MyoD), myogenin, and embryonic myosin heavy chain (MHCemb), were also evaluated during the follow-up. RESULTS Mean fibrosis percentages in the injured hind leg were approximately 25% at week 3 in both groups, but they were significantly decreased by approximately 20% from week 4 to the end of the follow-up in the S group only (all, P < .05). Upon injury, the NPI values of injured hind legs in both groups dramatically dropped. Within the S group, stretching increased the NPI values of injured hind legs, which approached those of control hind legs at weeks 6 and 7. The highest MyoD, myogenin, and MHCemb levels were observed at week 6 in both groups. The NPI values corresponded to the MyoD expression in the S group during the follow-up. CONCLUSION Stretching induced a decrease in muscle fibrosis and an increase in myogenesis in injured muscles. The NPI values correspond to the myogenesis process. CLINICAL RELEVANCE The NPI may be capable of continuously monitoring the injured skeletal muscle morphology during the healing process in clinical settings.
Collapse
Affiliation(s)
- Ching-Fang Hu
- Department of Physical Medicine and Rehabilitation, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Carl Pai-Chu Chen
- Department of Physical Medicine and Rehabilitation, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Hsiang Tsui
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chiao-Nan Chen
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Chin Hsu
- Department of Physical Medicine and Rehabilitation, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
18
|
Customized bioreactor enables the production of 3D diaphragmatic constructs influencing matrix remodeling and fibroblast overgrowth. NPJ Regen Med 2022; 7:25. [PMID: 35468920 PMCID: PMC9038738 DOI: 10.1038/s41536-022-00222-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
The production of skeletal muscle constructs useful for replacing large defects in vivo, such as in congenital diaphragmatic hernia (CDH), is still considered a challenge. The standard application of prosthetic material presents major limitations, such as hernia recurrences in a remarkable number of CDH patients. With this work, we developed a tissue engineering approach based on decellularized diaphragmatic muscle and human cells for the in vitro generation of diaphragmatic-like tissues as a proof-of-concept of a new option for the surgical treatment of large diaphragm defects. A customized bioreactor for diaphragmatic muscle was designed to control mechanical stimulation and promote radial stretching during the construct engineering. In vitro tests demonstrated that both ECM remodeling and fibroblast overgrowth were positively influenced by the bioreactor culture. Mechanically stimulated constructs also increased tissue maturation, with the formation of new oriented and aligned muscle fibers. Moreover, after in vivo orthotopic implantation in a surgical CDH mouse model, mechanically stimulated muscles maintained the presence of human cells within myofibers and hernia recurrence did not occur, suggesting the value of this approach for treating diaphragm defects.
Collapse
|
19
|
Iberite F, Gruppioni E, Ricotti L. Skeletal muscle differentiation of human iPSCs meets bioengineering strategies: perspectives and challenges. NPJ Regen Med 2022; 7:23. [PMID: 35393412 PMCID: PMC8991236 DOI: 10.1038/s41536-022-00216-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 03/01/2022] [Indexed: 12/31/2022] Open
Abstract
Although skeletal muscle repairs itself following small injuries, genetic diseases or severe damages may hamper its ability to do so. Induced pluripotent stem cells (iPSCs) can generate myogenic progenitors, but their use in combination with bioengineering strategies to modulate their phenotype has not been sufficiently investigated. This review highlights the potential of this combination aimed at pushing the boundaries of skeletal muscle tissue engineering. First, the overall organization and the key steps in the myogenic process occurring in vivo are described. Second, transgenic and non-transgenic approaches for the myogenic induction of human iPSCs are compared. Third, technologies to provide cells with biophysical stimuli, biomaterial cues, and biofabrication strategies are discussed in terms of recreating a biomimetic environment and thus helping to engineer a myogenic phenotype. The embryonic development process and the pro-myogenic role of the muscle-resident cell populations in co-cultures are also described, highlighting the possible clinical applications of iPSCs in the skeletal muscle tissue engineering field.
Collapse
Affiliation(s)
- Federica Iberite
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127, Pisa (PI), Italy. .,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127, Pisa (PI), Italy.
| | - Emanuele Gruppioni
- Centro Protesi INAIL, Istituto Nazionale per l'Assicurazione contro gli Infortuni sul Lavoro, 40054, Vigorso di Budrio (BO), Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127, Pisa (PI), Italy.,Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127, Pisa (PI), Italy
| |
Collapse
|
20
|
Peng Y, Du J, Günther S, Guo X, Wang S, Schneider A, Zhu L, Braun T. Mechano-signaling via Piezo1 prevents activation and p53-mediated senescence of muscle stem cells. Redox Biol 2022; 52:102309. [PMID: 35395625 PMCID: PMC9005960 DOI: 10.1016/j.redox.2022.102309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle stem cells (MuSCs), also called satellite cells, are instrumental for postnatal muscle growth and skeletal muscle regeneration. Numerous signaling cascades regulate the fate of MuSCs during muscle regeneration but the molecular mechanism by which MuSCs sense mechanical stimuli remain unclear. Here, we describe that Piezo1, a mechanosensitive ion channel, keeps MuSCs in a quiescent state and prevents senescence. Absence of Piezo1 induces precocious activation of MuSCs, attenuates proliferation, and impairs differentiation, essentially abolishing efficient skeletal muscle regeneration and replenishment of the MuSC pool. Furthermore, we discovered that inactivation of Piezo1 results in compensatory up-regulation of T-type voltage-gated Ca2+ channels, leading to increased Ca2+ influx, which strongly induces NOX4 expression via cPKC. Elevated NOX4 expression in Piezo1-deficient MuSCs increases ROS levels and DNA damage, causing P53-dependent cellular senescence and cell death. The importance of the P53/P21-axis for mediating Piezo1-dependent cellular defects was confirmed by pharmacological inhibition of P53 in Piezo1-deficient mice, which abrogates increased senescence of muscle cells and normalizes muscle regeneration. Our findings uncover an essential role of Piezo1-mediated mechano-signaling in MuSCs for maintaining quiescence and preventing senescence. Reduced mechano-signaling due to decreased physical activity during aging may contribute to the increase of senescent cells and the decline of MuSC numbers in geriatric mice and humans. Piezo1 is highly expressed in skeletal MuSCs and prevents their precocious activation. Loss of Piezo1 increases Ca2+ influx into MuSCs, which induces NOX4 expression via PKC, leading to enhanced ROS generation. Inactivation of Piezo1 depletes the MuSC pool and causes P53-dependent senescence of MuSCs. ROS scavenging in Piezo1-deficient MuSCs prevents P53 accumulation. Inhibition of P53 mitigates skeletal muscle regeneration defects in mice with Piezo1-deficient MuSCs.
Collapse
Affiliation(s)
- Yundong Peng
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, 61231, Bad Nauheim, Germany
| | - Jingjing Du
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, 61231, Bad Nauheim, Germany; College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Stefan Günther
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, 61231, Bad Nauheim, Germany
| | - Xinyue Guo
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, 61231, Bad Nauheim, Germany
| | - Shengpeng Wang
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, No.76 West Yanta Road, Yanta District, Xi'an, China
| | - Andre Schneider
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, 61231, Bad Nauheim, Germany
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Thomas Braun
- Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, 61231, Bad Nauheim, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Frankfurt am Main, Germany.
| |
Collapse
|
21
|
Raffa P, Easler M, Urciuolo A. Three-dimensional in vitro models of neuromuscular tissue. Neural Regen Res 2022; 17:759-766. [PMID: 34472462 PMCID: PMC8530117 DOI: 10.4103/1673-5374.322447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/08/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle is a dynamic tissue in which homeostasis and function are guaranteed by a very defined three-dimensional organization of myofibers in respect to other non-muscular components, including the extracellular matrix and the nervous network. In particular, communication between myofibers and the nervous system is essential for the overall correct development and function of the skeletal muscle. A wide range of chronic, acute and genetic-based human pathologies that lead to the alteration of muscle function are associated with modified preservation of the fine interaction between motor neurons and myofibers at the neuromuscular junction. Recent advancements in the development of in vitro models for human skeletal muscle have shown that three-dimensionality and integration of multiple cell types are both key parameters required to unveil pathophysiological relevant phenotypes. Here, we describe recent achievement reached in skeletal muscle modeling which used biomaterials for the generation of three-dimensional constructs of myotubes integrated with motor neurons.
Collapse
Affiliation(s)
- Paolo Raffa
- Institute of Pediatric Research IRP, Padova, Italy
| | - Maria Easler
- Institute of Pediatric Research IRP, Padova, Italy
| | - Anna Urciuolo
- Institute of Pediatric Research IRP, Padova, Italy
- Molecular Medicine Department, University of Padova, Padova, Italy
| |
Collapse
|
22
|
Seo BR, Mooney DJ. Recent and Future Strategies of Mechanotherapy for Tissue Regenerative Rehabilitation. ACS Biomater Sci Eng 2022; 8:4639-4642. [PMID: 35133789 DOI: 10.1021/acsbiomaterials.1c01477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mechanotherapy, the application of various mechanical forces on injured or diseased tissue, is a viable option for tissue regenerative rehabilitation. Recent advances in tissue engineering (i.e., engineered materials and 3D printing) and soft-robotic technologies have enabled systematic and controlled studies to demonstrate the therapeutic impacts of mechanical stimulation on severely injured tissue. Along with innovation in actuation systems, improvements in analysis methods uncovering cellular and molecular landscapes during tissue regeneration under mechanical loading expand our understanding of how mechanical cues are translated into specific biological responses (i.e., stem cell self-renewal and differentiation, immune responses, etc.). Moving forward, the development of diversified actuation systems that are mechanically tissue friendly, easily scalable, and capable of delivering various modes of loading and monitoring functional biomarkers will facilitate systematic and controlled preclinical and clinical studies. Combining these future actuation systems with single-cell resolution analysis of cellular and molecular markers will enable detailed knowledge of underlying biological responses, and optimization of mechanotherapy protocols for specific tissues/injuries. These advancements will enable diverse mechanotherapy therapies in the future.
Collapse
Affiliation(s)
- Bo Ri Seo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.,Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
23
|
Seo BR, Payne CJ, McNamara SL, Freedman BR, Kwee BJ, Nam S, de Lázaro I, Darnell M, Alvarez JT, Dellacherie MO, Vandenburgh HH, Walsh CJ, Mooney DJ. Skeletal muscle regeneration with robotic actuation-mediated clearance of neutrophils. Sci Transl Med 2021; 13:eabe8868. [PMID: 34613813 DOI: 10.1126/scitranslmed.abe8868] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Bo Ri Seo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Christopher J Payne
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.,Viam Inc., New York, NY 10023, USA
| | - Stephanie L McNamara
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Brian J Kwee
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Sungmin Nam
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Irene de Lázaro
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Max Darnell
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jonathan T Alvarez
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Maxence O Dellacherie
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Herman H Vandenburgh
- Department of Pathology and Lab Medicine, Brown University, Providence, RI 02912, USA
| | - Conor J Walsh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
24
|
Ren D, Song J, Liu R, Zeng X, Yan X, Zhang Q, Yuan X. Molecular and Biomechanical Adaptations to Mechanical Stretch in Cultured Myotubes. Front Physiol 2021; 12:689492. [PMID: 34408658 PMCID: PMC8365838 DOI: 10.3389/fphys.2021.689492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Myotubes are mature muscle cells that form the basic structural element of skeletal muscle. When stretching skeletal muscles, myotubes are subjected to passive tension as well. This lead to alterations in myotube cytophysiology, which could be related with muscular biomechanics. During the past decades, much progresses have been made in exploring biomechanical properties of myotubes in vitro. In this review, we integrated the studies focusing on cultured myotubes being mechanically stretched, and classified these studies into several categories: amino acid and glucose uptake, protein turnover, myotube hypertrophy and atrophy, maturation, alignment, secretion of cytokines, cytoskeleton adaption, myotube damage, ion channel activation, and oxidative stress in myotubes. These biomechanical adaptions do not occur independently, but interconnect with each other as part of the systematic mechanoresponse of myotubes. The purpose of this review is to broaden our comprehensions of stretch-induced muscular alterations in cellular and molecular scales, and to point out future challenges and directions in investigating myotube biomechanical manifestations.
Collapse
Affiliation(s)
- Dapeng Ren
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China.,College of Dentistry, Qingdao University, Qingdao, China
| | - Jing Song
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ran Liu
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuemin Zeng
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China.,College of Dentistry, Qingdao University, Qingdao, China
| | - Xiao Yan
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Zhang
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Yuan
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
25
|
Chiang MY, Lo YC, Lai YH, Yong YYA, Chang SJ, Chen WL, Chen SY. Protein-based soft actuator with high photo-response and easy modulation for anisotropic cell alignment and proliferation in a liquid environment. J Mater Chem B 2021; 9:6634-6645. [PMID: 34365493 DOI: 10.1039/d1tb01198g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cell alignment and elongation, which are critical factors correlated with differentiation and maturation in cell biology and tissue engineering, have been widely studied in organisms. Several strategies such as external mechanical strain, geometric topography, micropatterning approaches, and microfabricated substrates have been developed to guide cell alignment, but these methodologies cannot be used for easily denatured natural proteins to modulate the cell behaviour. Herein, for the first time, a novel biocompatible light-controlled protein-based bilayer soft actuator composed of elastin-like polypeptides (ELPs), silk fibroin (SF), graphene oxide (GO), and reduced graphene oxide (rGO), named ESGRG, is developed for efficiently driving cellular orientation and elongation with anisotropic features on soft actuator via remote NIR laser exposure. The actuation of ESGRG could be manipulated by modulating the intensity of NIR and the relative ratio of GO to rGO for promoting myoblasts alignment and nucleus elongation to generate different motions. The results indicate that the YAP and MHC protein expression of C2C12 skeletal muscle cells on ESGRG can be rapidly induced and enhanced by controlling the relative ratio of rGO/GO = 1/4 at a multiple-cycle stimulation with a very low power intensity of 1.2 W cm-2 in friendly liquid environments. This study demonstrates that the ESGRG hydrogel actuator system can modulate the cell-level behaviors via light-driven cyclic bending-motions and can be utilized in applications of soft robotic and tissue engineering such as artificial muscle and maturation of cardiomyocytes.
Collapse
Affiliation(s)
- Min-Yu Chiang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, No. 1001 Ta-Hsueh Rd, Hsinchu, Taiwan 300, Republic of China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Halle JL, Counts-Franch BR, Prince RM, Carson JA. The Effect of Mechanical Stretch on Myotube Growth Suppression by Colon-26 Tumor-Derived Factors. Front Cell Dev Biol 2021; 9:690452. [PMID: 34395422 PMCID: PMC8363303 DOI: 10.3389/fcell.2021.690452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
Preclinical models and in vitro experiments have provided valuable insight into the regulation of cancer-induced muscle wasting. Colon-26 (C26) tumor cells induce cachexia in mice, and conditioned media (CM) from these cells promotes myotube atrophy and catabolic signaling. While mechanical stimuli can prevent some effects of tumor-derived factors on myotubes, the impact of mechanical signaling on tumor-derived factor regulation of myosin heavy chain (MyHC) expression is not well understood. Therefore, we examined the effects of stretch-induced mechanical signaling on C2C12 myotube growth and MyHC expression after C26 CM exposure. C26 CM was administered to myotubes on day 5 of differentiation for 48 h. During the last 4 or 24 h of C26 CM exposure, 5% static uniaxial stretch was administered. C26 CM suppressed myotube growth and MyHC protein and mRNA expression. Stretch for 24 h increased myotube size and prevented the C26 CM suppression of MyHC-Fast protein expression. Stretch did not change suppressed MyHC mRNA expression. Stretch for 24 h reduced Atrogin-1/MAFbx, MuRF-1, and LC3B II/I ratio and increased integrin β1D protein expression and the myogenin-to-MyoD protein ratio. Stretch in the last 4 h of CM increased ERK1/2 phosphorylation but did not alter the CM induction of STAT3 or p38 phosphorylation. These results provide evidence that in myotubes pre-incubated with CM, the induction of mechanical signaling can still provide a growth stimulus and preserve MyHC-Fast protein expression independent of changes in mRNA expression.
Collapse
Affiliation(s)
| | | | | | - James A. Carson
- Integrative Muscle Biology Laboratory, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
27
|
Kimura Y, Aoyama S, Ueda N, Katayama T, Ono K, Nagahama K. Covalent Cell‐Loading Injectable Hydrogel Scaffold Significantly Promotes Tissue Regeneration In Vivo Compared with a Conventional Physical Cell‐Loading Hydrogel Scaffold. Adv Biol (Weinh) 2021. [DOI: 10.1002/adbi.202000106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuka Kimura
- Department of Nanobiochemistry Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) Konan University 7‐1‐20 Minatojima‐Minamimachi Kobe 650‐0047 Japan
| | - Seika Aoyama
- Department of Nanobiochemistry Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) Konan University 7‐1‐20 Minatojima‐Minamimachi Kobe 650‐0047 Japan
| | - Natsumi Ueda
- Department of Nanobiochemistry Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) Konan University 7‐1‐20 Minatojima‐Minamimachi Kobe 650‐0047 Japan
| | - Tokitaka Katayama
- Department of Nanobiochemistry Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) Konan University 7‐1‐20 Minatojima‐Minamimachi Kobe 650‐0047 Japan
| | - Kimika Ono
- Department of Nanobiochemistry Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) Konan University 7‐1‐20 Minatojima‐Minamimachi Kobe 650‐0047 Japan
| | - Koji Nagahama
- Department of Nanobiochemistry Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) Konan University 7‐1‐20 Minatojima‐Minamimachi Kobe 650‐0047 Japan
| |
Collapse
|