1
|
Kasapi M, Xu K, Ebbels TMD, O’Regan DP, Ware JS, Posma JM. LAVASET: Latent Variable Stochastic Ensemble of Trees. An ensemble method for correlated datasets with spatial, spectral, and temporal dependencies. Bioinformatics 2024; 40:btae101. [PMID: 38383048 PMCID: PMC11212485 DOI: 10.1093/bioinformatics/btae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024] Open
Abstract
MOTIVATION Random forests (RFs) can deal with a large number of variables, achieve reasonable prediction scores, and yield highly interpretable feature importance values. As such, RFs are appropriate models for feature selection and further dimension reduction. However, RFs are often not appropriate for correlated datasets due to their mode of selecting individual features for splitting. Addressing correlation relationships in high-dimensional datasets is imperative for reducing the number of variables that are assigned high importance, hence making the dimension reduction most efficient. Here, we propose the LAtent VAriable Stochastic Ensemble of Trees (LAVASET) method that derives latent variables based on the distance characteristics of each feature and aims to incorporate the correlation factor in the splitting step. RESULTS Without compromising on performance in the majority of examples, LAVASET outperforms RF by accurately determining feature importance across all correlated variables and ensuring proper distribution of importance values. LAVASET yields mostly non-inferior prediction accuracies to traditional RFs when tested in simulated and real 1D datasets, as well as more complex and high-dimensional 3D datatypes. Unlike traditional RFs, LAVASET is unaffected by single 'important' noisy features (false positives), as it considers the local neighbourhood. LAVASET, therefore, highlights neighbourhoods of features, reflecting real signals that collectively impact the model's predictive ability. AVAILABILITY AND IMPLEMENTATION LAVASET is freely available as a standalone package from https://github.com/melkasapi/LAVASET.
Collapse
Affiliation(s)
- Melpomeni Kasapi
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London W12 0NN, United Kingdom
- MRC London Institute of Medical Sciences, Imperial College London, London W12 0HS, United Kingdom
| | - Kexin Xu
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Timothy M D Ebbels
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Declan P O’Regan
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London W12 0NN, United Kingdom
- MRC London Institute of Medical Sciences, Imperial College London, London W12 0HS, United Kingdom
| | - James S Ware
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London W12 0NN, United Kingdom
- MRC London Institute of Medical Sciences, Imperial College London, London W12 0HS, United Kingdom
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London SW3 6NP, United Kingdom
- Program in Medical & Population Genetics, Broad Institute of MIT & Harvard, Cambridge, MA 02142, United States
| | - Joram M Posma
- Section of Bioinformatics, Division of Systems Medicine, Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
2
|
Guthrie J, Ko¨stel Bal S, Lombardo SD, Mu¨ller F, Sin C, Hu¨tter CV, Menche J, Boztug K. AutoCore: A network-based definition of the core module of human autoimmunity and autoinflammation. SCIENCE ADVANCES 2023; 9:eadg6375. [PMID: 37656781 PMCID: PMC10848965 DOI: 10.1126/sciadv.adg6375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
Although research on rare autoimmune and autoinflammatory diseases has enabled definition of nonredundant regulators of homeostasis in human immunity, because of the single gene-single disease nature of many of these diseases, contributing factors were mostly unveiled in sequential and noncoordinated individual studies. We used a network-based approach for integrating a set of 186 inborn errors of immunity with predominant autoimmunity/autoinflammation into a comprehensive map of human immune dysregulation, which we termed "AutoCore." The AutoCore is located centrally within the interactome of all protein-protein interactions, connecting and pinpointing multidisease markers for a range of common, polygenic autoimmune/autoinflammatory diseases. The AutoCore can be subdivided into 19 endotypes that correspond to molecularly and phenotypically cohesive disease subgroups, providing a molecular mechanism-based disease classification and rationale toward systematic targeting for therapeutic purposes. Our study provides a proof of concept for using network-based methods to systematically investigate the molecular relationships between individual rare diseases and address a range of conceptual, diagnostic, and therapeutic challenges.
Collapse
Affiliation(s)
- Julia Guthrie
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Zimmermannplatz 10, A-1090 Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, A-1090 Vienna, Austria
- Max Perutz Labs, Vienna BioCenter Campus, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- Department of Structural and Computational Biology, University of Vienna, Dr.-Bohr-Gasse 9, 1030, Vienna Austria
| | - Sevgi Ko¨stel Bal
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Zimmermannplatz 10, A-1090 Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, A-1090 Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Zimmermannplatz 10, A-1090 Vienna, Austria
| | - Salvo Danilo Lombardo
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, A-1090 Vienna, Austria
- Max Perutz Labs, Vienna BioCenter Campus, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- Department of Structural and Computational Biology, University of Vienna, Dr.-Bohr-Gasse 9, 1030, Vienna Austria
| | - Felix Mu¨ller
- Max Perutz Labs, Vienna BioCenter Campus, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- Department of Structural and Computational Biology, University of Vienna, Dr.-Bohr-Gasse 9, 1030, Vienna Austria
| | - Celine Sin
- Max Perutz Labs, Vienna BioCenter Campus, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- Department of Structural and Computational Biology, University of Vienna, Dr.-Bohr-Gasse 9, 1030, Vienna Austria
| | - Christiane V. R. Hu¨tter
- Max Perutz Labs, Vienna BioCenter Campus, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter, A-1030 Vienna, Austria
| | - Jo¨rg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, A-1090 Vienna, Austria
- Max Perutz Labs, Vienna BioCenter Campus, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- Department of Structural and Computational Biology, University of Vienna, Dr.-Bohr-Gasse 9, 1030, Vienna Austria
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Vienna, Austria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Zimmermannplatz 10, A-1090 Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, A-1090 Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Zimmermannplatz 10, A-1090 Vienna, Austria
- St. Anna Children’s Hospital, Kinderspitalgasse 6, A-1090, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| |
Collapse
|
3
|
Pandey AK, Loscalzo J. Network medicine: an approach to complex kidney disease phenotypes. Nat Rev Nephrol 2023:10.1038/s41581-023-00705-0. [PMID: 37041415 DOI: 10.1038/s41581-023-00705-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/13/2023]
Abstract
Scientific reductionism has been the basis of disease classification and understanding for more than a century. However, the reductionist approach of characterizing diseases from a limited set of clinical observations and laboratory evaluations has proven insufficient in the face of an exponential growth in data generated from transcriptomics, proteomics, metabolomics and deep phenotyping. A new systematic method is necessary to organize these datasets and build new definitions of what constitutes a disease that incorporates both biological and environmental factors to more precisely describe the ever-growing complexity of phenotypes and their underlying molecular determinants. Network medicine provides such a conceptual framework to bridge these vast quantities of data while providing an individualized understanding of disease. The modern application of network medicine principles is yielding new insights into the pathobiology of chronic kidney diseases and renovascular disorders by expanding the understanding of pathogenic mediators, novel biomarkers and new options for renal therapeutics. These efforts affirm network medicine as a robust paradigm for elucidating new advances in the diagnosis and treatment of kidney disorders.
Collapse
Affiliation(s)
- Arvind K Pandey
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Sadegh S, Skelton J, Anastasi E, Maier A, Adamowicz K, Möller A, Kriege NM, Kronberg J, Haller T, Kacprowski T, Wipat A, Baumbach J, Blumenthal DB. Lacking mechanistic disease definitions and corresponding association data hamper progress in network medicine and beyond. Nat Commun 2023; 14:1662. [PMID: 36966134 PMCID: PMC10039912 DOI: 10.1038/s41467-023-37349-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/13/2023] [Indexed: 03/27/2023] Open
Abstract
A long-term objective of network medicine is to replace our current, mainly phenotype-based disease definitions by subtypes of health conditions corresponding to distinct pathomechanisms. For this, molecular and health data are modeled as networks and are mined for pathomechanisms. However, many such studies rely on large-scale disease association data where diseases are annotated using the very phenotype-based disease definitions the network medicine field aims to overcome. This raises the question to which extent the biases mechanistically inadequate disease annotations introduce in disease association data distort the results of studies which use such data for pathomechanism mining. We address this question using global- and local-scale analyses of networks constructed from disease association data of various types. Our results indicate that large-scale disease association data should be used with care for pathomechanism mining and that analyses of such data should be accompanied by close-up analyses of molecular data for well-characterized patient cohorts.
Collapse
Affiliation(s)
- Sepideh Sadegh
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - James Skelton
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Elisa Anastasi
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Andreas Maier
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Klaudia Adamowicz
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Anna Möller
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nils M Kriege
- Faculty of Computer Science, University of Vienna, Vienna, Austria
- Research Network Data Science, University of Vienna, Vienna, Austria
| | - Jaanika Kronberg
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Toomas Haller
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of Technische Universität Braunschweig and Hannover Medical School, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Braunschweig, Germany
| | - Anil Wipat
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Computational Biomedicine Lab, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - David B Blumenthal
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
5
|
Galindez G, Sadegh S, Baumbach J, Kacprowski T, List M. Network-based approaches for modeling disease regulation and progression. Comput Struct Biotechnol J 2022; 21:780-795. [PMID: 36698974 PMCID: PMC9841310 DOI: 10.1016/j.csbj.2022.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Molecular interaction networks lay the foundation for studying how biological functions are controlled by the complex interplay of genes and proteins. Investigating perturbed processes using biological networks has been instrumental in uncovering mechanisms that underlie complex disease phenotypes. Rapid advances in omics technologies have prompted the generation of high-throughput datasets, enabling large-scale, network-based analyses. Consequently, various modeling techniques, including network enrichment, differential network extraction, and network inference, have proven to be useful for gaining new mechanistic insights. We provide an overview of recent network-based methods and their core ideas to facilitate the discovery of disease modules or candidate mechanisms. Knowledge generated from these computational efforts will benefit biomedical research, especially drug development and precision medicine. We further discuss current challenges and provide perspectives in the field, highlighting the need for more integrative and dynamic network approaches to model disease development and progression.
Collapse
Affiliation(s)
- Gihanna Galindez
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of Technische Universität Braunschweig and Hannover Medical School, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Braunschweig, Germany
| | - Sepideh Sadegh
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Tim Kacprowski
- Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics of Technische Universität Braunschweig and Hannover Medical School, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, Braunschweig, Germany
| | - Markus List
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
6
|
Bernett J, Krupke D, Sadegh S, Baumbach J, Fekete SP, Kacprowski T, List M, Blumenthal DB. Robust disease module mining via enumeration of diverse prize-collecting Steiner trees. Bioinformatics 2022; 38:1600-1606. [PMID: 34984440 DOI: 10.1093/bioinformatics/btab876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/29/2021] [Accepted: 12/31/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Disease module mining methods (DMMMs) extract subgraphs that constitute candidate disease mechanisms from molecular interaction networks such as protein-protein interaction (PPI) networks. Irrespective of the employed models, DMMMs typically include non-robust steps in their workflows, i.e. the computed subnetworks vary when running the DMMMs multiple times on equivalent input. This lack of robustness has a negative effect on the trustworthiness of the obtained subnetworks and is hence detrimental for the widespread adoption of DMMMs in the biomedical sciences. RESULTS To overcome this problem, we present a new DMMM called ROBUST (robust disease module mining via enumeration of diverse prize-collecting Steiner trees). In a large-scale empirical evaluation, we show that ROBUST outperforms competing methods in terms of robustness, scalability and, in most settings, functional relevance of the produced modules, measured via KEGG (Kyoto Encyclopedia of Genes and Genomes) gene set enrichment scores and overlap with DisGeNET disease genes. AVAILABILITY AND IMPLEMENTATION A Python 3 implementation and scripts to reproduce the results reported in this article are available on GitHub: https://github.com/bionetslab/robust, https://github.com/bionetslab/robust-eval. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Judith Bernett
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Dominik Krupke
- Department of Computer Science, TU Braunschweig, 38106 Braunschweig, Germany
| | - Sepideh Sadegh
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany.,Institute for Computational Systems Biology, University of Hamburg, 22607 Hamburg, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, 22607 Hamburg, Germany.,Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark
| | - Sándor P Fekete
- Department of Computer Science, TU Braunschweig, 38106 Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), 38106 Braunschweig, Germany
| | - Tim Kacprowski
- Braunschweig Integrated Centre of Systems Biology (BRICS), 38106 Braunschweig, Germany.,Division Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics, Technical University of Braunschweig and Hannover Medical School, 38106 Braunschweig, Germany
| | - Markus List
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - David B Blumenthal
- Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany
| |
Collapse
|
7
|
Prieto Santamaría L, García Del Valle EP, Zanin M, Hernández Chan GS, Pérez Gallardo Y, Rodríguez-González A. Classifying diseases by using biological features to identify potential nosological models. Sci Rep 2021; 11:21096. [PMID: 34702888 PMCID: PMC8548311 DOI: 10.1038/s41598-021-00554-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 10/14/2021] [Indexed: 11/25/2022] Open
Abstract
Established nosological models have provided physicians an adequate enough classification of diseases so far. Such systems are important to correctly identify diseases and treat them successfully. However, these taxonomies tend to be based on phenotypical observations, lacking a molecular or biological foundation. Therefore, there is an urgent need to modernize them in order to include the heterogeneous information that is produced in the present, as could be genomic, proteomic, transcriptomic and metabolic data, leading this way to more comprehensive and robust structures. For that purpose, we have developed an extensive methodology to analyse the possibilities when it comes to generate new nosological models from biological features. Different datasets of diseases have been considered, and distinct features related to diseases, namely genes, proteins, metabolic pathways and genetical variants, have been represented as binary and numerical vectors. From those vectors, diseases distances have been computed on the basis of several metrics. Clustering algorithms have been implemented to group diseases, generating different models, each of them corresponding to the distinct combinations of the previous parameters. They have been evaluated by means of intrinsic metrics, proving that some of them are highly suitable to cover new nosologies. One of the clustering configurations has been deeply analysed, demonstrating its quality and validity in the research context, and further biological interpretations have been made. Such model was particularly generated by OPTICS clustering algorithm, by studying the distance between diseases based on gene sharedness and following cosine index metric. 729 clusters were formed in this model, which obtained a Silhouette coefficient of 0.43.
Collapse
Affiliation(s)
- Lucía Prieto Santamaría
- ETS Ingenieros Informáticos, Universidad Politécnica de Madrid, 28660 Boadilla del Monte, Madrid, Spain. .,Ezeris Networks Global Services S.L., 28028, Madrid, Spain.
| | | | - Massimiliano Zanin
- Instituto de Física Interdisciplinar y Sistemas Complejos, CSIC-UIB, 07122, Palma de Mallorca, Spain
| | | | | | | |
Collapse
|
8
|
Lazareva O, Baumbach J, List M, Blumenthal DB. On the limits of active module identification. Brief Bioinform 2021; 22:6189770. [PMID: 33782690 DOI: 10.1093/bib/bbab066] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
In network and systems medicine, active module identification methods (AMIMs) are widely used for discovering candidate molecular disease mechanisms. To this end, AMIMs combine network analysis algorithms with molecular profiling data, most commonly, by projecting gene expression data onto generic protein-protein interaction (PPI) networks. Although active module identification has led to various novel insights into complex diseases, there is increasing awareness in the field that the combination of gene expression data and PPI network is problematic because up-to-date PPI networks have a very small diameter and are subject to both technical and literature bias. In this paper, we report the results of an extensive study where we analyzed for the first time whether widely used AMIMs really benefit from using PPI networks. Our results clearly show that, except for the recently proposed AMIM DOMINO, the tested AMIMs do not produce biologically more meaningful candidate disease modules on widely used PPI networks than on random networks with the same node degrees. AMIMs hence mainly learn from the node degrees and mostly fail to exploit the biological knowledge encoded in the edges of the PPI networks. This has far-reaching consequences for the field of active module identification. In particular, we suggest that novel algorithms are needed which overcome the degree bias of most existing AMIMs and/or work with customized, context-specific networks instead of generic PPI networks.
Collapse
Affiliation(s)
- Olga Lazareva
- Chair of Experimental Bioinformatics, Technical University of Munich, Freising, Germany
| | - Jan Baumbach
- Chair of Experimental Bioinformatics, Technical University of Munich, Freising, Germany.,Chair of Computational Systems Biology, University of Hamburg, Hamburg, Germany.,Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Markus List
- Chair of Experimental Bioinformatics, Technical University of Munich, Freising, Germany
| | - David B Blumenthal
- Chair of Experimental Bioinformatics, Technical University of Munich, Freising, Germany
| |
Collapse
|
9
|
Silverman EK, Schmidt HHHW, Anastasiadou E, Altucci L, Angelini M, Badimon L, Balligand JL, Benincasa G, Capasso G, Conte F, Di Costanzo A, Farina L, Fiscon G, Gatto L, Gentili M, Loscalzo J, Marchese C, Napoli C, Paci P, Petti M, Quackenbush J, Tieri P, Viggiano D, Vilahur G, Glass K, Baumbach J. Molecular networks in Network Medicine: Development and applications. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1489. [PMID: 32307915 DOI: 10.1002/wsbm.1489] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/29/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022]
Abstract
Network Medicine applies network science approaches to investigate disease pathogenesis. Many different analytical methods have been used to infer relevant molecular networks, including protein-protein interaction networks, correlation-based networks, gene regulatory networks, and Bayesian networks. Network Medicine applies these integrated approaches to Omics Big Data (including genetics, epigenetics, transcriptomics, metabolomics, and proteomics) using computational biology tools and, thereby, has the potential to provide improvements in the diagnosis, prognosis, and treatment of complex diseases. We discuss briefly the types of molecular data that are used in molecular network analyses, survey the analytical methods for inferring molecular networks, and review efforts to validate and visualize molecular networks. Successful applications of molecular network analysis have been reported in pulmonary arterial hypertension, coronary heart disease, diabetes mellitus, chronic lung diseases, and drug development. Important knowledge gaps in Network Medicine include incompleteness of the molecular interactome, challenges in identifying key genes within genetic association regions, and limited applications to human diseases. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Translational, Genomic, and Systems Medicine > Translational Medicine Analytical and Computational Methods > Analytical Methods Analytical and Computational Methods > Computational Methods.
Collapse
Affiliation(s)
- Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalized Medicine, School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Science, Maastricht University, Maastricht, The Netherlands
| | - Eleni Anastasiadou
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Marco Angelini
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
| | - Lina Badimon
- Cardiovascular Program-ICCC, IR-Hospital de la Santa Creu i Sant Pau, CiberCV, IIB-Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institute for Clinical and Experimental Research (IREC), UCLouvain, Brussels, Belgium
| | - Giuditta Benincasa
- Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania "L. Vanvitelli", Naples, Italy.,BIOGEM, Ariano Irpino, Italy
| | - Federica Conte
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Antonella Di Costanzo
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Lorenzo Farina
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
| | - Giulia Fiscon
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Laurent Gatto
- de Duve Institute, Brussels, Belgium.,Institute for Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Michele Gentili
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
| | - Joseph Loscalzo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudio Napoli
- Department of Advanced Clinical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paola Paci
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
| | - Manuela Petti
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
| | - John Quackenbush
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Paolo Tieri
- CNR National Research Council of Italy, IAC Institute for Applied Computing, Rome, Italy
| | - Davide Viggiano
- BIOGEM, Ariano Irpino, Italy.,Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Gemma Vilahur
- Cardiovascular Program-ICCC, IR-Hospital de la Santa Creu i Sant Pau, CiberCV, IIB-Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Kimberly Glass
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jan Baumbach
- Department of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Maximus-von-Imhof-Forum 3, Freising, Germany.,Institute of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| |
Collapse
|