1
|
McDonough E, Barroso M, Ginty F, Corr DT. Modeling intratumor heterogeneity in breast cancer. Biofabrication 2024; 17:10.1088/1758-5090/ad9b50. [PMID: 39642392 PMCID: PMC11740194 DOI: 10.1088/1758-5090/ad9b50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/06/2024] [Indexed: 12/08/2024]
Abstract
Reduced therapy response in breast cancer has been correlated with heterogeneity in biomarker composition, expression level, and spatial distribution of cancer cells within a patient tumor. Thus, there is a need for models to replicate cell-cell, cell-stromal, and cell-microenvironment interactions during cancer progression. Traditional two-dimensional (2D) cell culture models are convenient but cannot adequately represent tumor microenvironment histological organization,in vivo3D spatial/cellular context, and physiological relevance. Recently, three-dimensional (3D)in vitrotumor models have been shown to provide an improved platform for incorporating compositional and spatial heterogeneity and to better mimic the biological characteristics of patient tumors to assess drug response. Advances in 3D bioprinting have allowed the creation of more complex models with improved physiologic representation while controlling for reproducibility and accuracy. This review aims to summarize the advantages and challenges of current 3Din vitromodels for evaluating therapy response in breast cancer, with a particular emphasis on 3D bioprinting, and addresses several key issues for future model development as well as their application to other cancers.
Collapse
Affiliation(s)
- Elizabeth McDonough
- Department of Biomedical Engineering, Rensselaer
Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
- GE HealthCare Technology & Innovation Center, 1
Research Circle, Niskayuna, New York 12309, United States
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany
Medical College, Albany, NY 12208, United States
| | - Fiona Ginty
- GE HealthCare Technology & Innovation Center, 1
Research Circle, Niskayuna, New York 12309, United States
| | - David T. Corr
- Department of Biomedical Engineering, Rensselaer
Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| |
Collapse
|
2
|
Salih T, Caputo M, Ghorbel MT. Recent Advances in Hydrogel-Based 3D Bioprinting and Its Potential Application in the Treatment of Congenital Heart Disease. Biomolecules 2024; 14:861. [PMID: 39062575 PMCID: PMC11274841 DOI: 10.3390/biom14070861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Congenital heart disease (CHD) is the most common birth defect, requiring invasive surgery often before a child's first birthday. Current materials used during CHD surgery lack the ability to grow, remodel, and regenerate. To solve those limitations, 3D bioprinting is an emerging tool with the capability to create tailored constructs based on patients' own imaging data with the ability to grow and remodel once implanted in children with CHD. It has the potential to integrate multiple bioinks with several cell types and biomolecules within 3D-bioprinted constructs that exhibit good structural fidelity, stability, and mechanical integrity. This review gives an overview of CHD and recent advancements in 3D bioprinting technologies with potential use in the treatment of CHD. Moreover, the selection of appropriate biomaterials based on their chemical, physical, and biological properties that are further manipulated to suit their application are also discussed. An introduction to bioink formulations composed of various biomaterials with emphasis on multiple cell types and biomolecules is briefly overviewed. Vasculogenesis and angiogenesis of prefabricated 3D-bioprinted structures and novel 4D printing technology are also summarized. Finally, we discuss several restrictions and our perspective on future directions in 3D bioprinting technologies in the treatment of CHD.
Collapse
Affiliation(s)
- Tasneem Salih
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK; (T.S.); (M.C.)
| | - Massimo Caputo
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK; (T.S.); (M.C.)
- Cardiac Surgery, University Hospitals Bristol, NHS Foundation Trust, Bristol BS2 8HW, UK
| | - Mohamed T. Ghorbel
- Bristol Heart Institute, Bristol Medical School, University of Bristol, Bristol BS2 8HW, UK; (T.S.); (M.C.)
| |
Collapse
|
3
|
Lipari S, Sacco P, Marsich E, Donati I. Silk Fibroin-Enriched Bioink Promotes Cell Proliferation in 3D-Bioprinted Constructs. Gels 2024; 10:469. [PMID: 39057492 PMCID: PMC11275288 DOI: 10.3390/gels10070469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Three-dimensional (3D) bioprinting technology enables the controlled deposition of cells and biomaterials (i.e., bioink) to easily create complex 3D biological microenvironments. Silk fibroin (SF) has recently emerged as a compelling bioink component due to its advantageous mechanical and biological properties. This study reports on the development and optimization of a novel bioink for extrusion-based 3D bioprinting and compares different bioink formulations based on mixtures of alginate methacrylate (ALMA), gelatin and SF. The rheological parameters of the bioink were investigated to predict printability and stability, and the optimal concentration of SF was selected. The bioink containing a low amount of SF (0.002% w/V) was found to be the best formulation. Light-assisted gelation of ALMA was exploited to obtain the final hydrogel matrix. Rheological analyses showed that SF-enriched hydrogels exhibited greater elasticity than SF-free hydrogels and were more tolerant to temperature fluctuations. Finally, MG-63 cells were successfully bioprinted and their viability and proliferation over time were analyzed. The SF-enriched bioink represents an excellent biomaterial in terms of printability and allows high cell proliferation over a period of up to 3 weeks. These data confirm the possibility of using the selected formulation for the successful bioprinting of cells into extracellular matrix-like microenvironments.
Collapse
Affiliation(s)
- Sara Lipari
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri, n.5, I-34127 Trieste, Italy; (S.L.); (P.S.)
| | - Pasquale Sacco
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri, n.5, I-34127 Trieste, Italy; (S.L.); (P.S.)
| | - Eleonora Marsich
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale, n.1, I-34129 Trieste, Italy;
| | - Ivan Donati
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri, n.5, I-34127 Trieste, Italy; (S.L.); (P.S.)
| |
Collapse
|
4
|
Peng H, Han B, Tong T, Jin X, Peng Y, Guo M, Li B, Ding J, Kong Q, Wang Q. 3D printing processes in precise drug delivery for personalized medicine. Biofabrication 2024; 16:10.1088/1758-5090/ad3a14. [PMID: 38569493 PMCID: PMC11164598 DOI: 10.1088/1758-5090/ad3a14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
With the advent of personalized medicine, the drug delivery system will be changed significantly. The development of personalized medicine needs the support of many technologies, among which three-dimensional printing (3DP) technology is a novel formulation-preparing process that creates 3D objects by depositing printing materials layer-by-layer based on the computer-aided design method. Compared with traditional pharmaceutical processes, 3DP produces complex drug combinations, personalized dosage, and flexible shape and structure of dosage forms (DFs) on demand. In the future, personalized 3DP drugs may supplement and even replace their traditional counterpart. We systematically introduce the applications of 3DP technologies in the pharmaceutical industry and summarize the virtues and shortcomings of each technique. The release behaviors and control mechanisms of the pharmaceutical DFs with desired structures are also analyzed. Finally, the benefits, challenges, and prospects of 3DP technology to the pharmaceutical industry are discussed.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
- These authors contributed equally
| | - Bo Han
- Department of Pharmacy, Daqing Branch, Harbin Medical University, Daqing, People’s Republic of China
- These authors contributed equally
| | - Tianjian Tong
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| | - Xin Jin
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Yanbo Peng
- Department of Pharmaceutical Engineering, China Pharmaceutical University, 639 Longmian Rd, Nanjing 211198, People’s Republic of China
| | - Meitong Guo
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Bian Li
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Jiaxin Ding
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing, People’s Republic of China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang 150086, People’s Republic of China
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, United States of America
| |
Collapse
|
5
|
Herzog J, Franke L, Lai Y, Gomez Rossi P, Sachtleben J, Weuster-Botz D. 3D bioprinting of microorganisms: principles and applications. Bioprocess Biosyst Eng 2024; 47:443-461. [PMID: 38296889 PMCID: PMC11003907 DOI: 10.1007/s00449-023-02965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/24/2023] [Indexed: 02/02/2024]
Abstract
In recent years, the ability to create intricate, live tissues and organs has been made possible thanks to three-dimensional (3D) bioprinting. Although tissue engineering has received a lot of attention, there is growing interest in the use of 3D bioprinting for microorganisms. Microorganisms like bacteria, fungi, and algae, are essential to many industrial bioprocesses, such as bioremediation as well as the manufacture of chemicals, biomaterials, and pharmaceuticals. This review covers current developments in 3D bioprinting methods for microorganisms. We go over the bioink compositions designed to promote microbial viability and growth, taking into account factors like nutrient delivery, oxygen supply, and waste elimination. Additionally, we investigate the most important bioprinting techniques, including extrusion-based, inkjet, and laser-assisted approaches, as well as their suitability with various kinds of microorganisms. We also investigate the possible applications of 3D bioprinted microbes. These range from constructing synthetic microbial consortia for improved metabolic pathway combinations to designing spatially patterned microbial communities for enhanced bioremediation and bioprocessing. We also look at the potential for 3D bioprinting to advance microbial research, including the creation of defined microenvironments to observe microbial behavior. In conclusion, the 3D bioprinting of microorganisms marks a paradigm leap in microbial bioprocess engineering and has the potential to transform many application areas. The ability to design the spatial arrangement of various microorganisms in functional structures offers unprecedented possibilities and ultimately will drive innovation.
Collapse
Affiliation(s)
- Josha Herzog
- Department of Energy and Process Engineering, TUM School of Engineering and Design, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany
| | - Lea Franke
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, 94315, Straubing, Germany
| | - Yingyao Lai
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, 94315, Straubing, Germany
| | - Pablo Gomez Rossi
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, 94315, Straubing, Germany
| | - Janina Sachtleben
- TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Petersgasse 5, 94315, Straubing, Germany
| | - Dirk Weuster-Botz
- Department of Energy and Process Engineering, TUM School of Engineering and Design, Chair of Biochemical Engineering, Technical University of Munich, Boltzmannstraße 15, 85748, Garching, Germany.
| |
Collapse
|
6
|
Makode S, Maurya S, Niknam SA, Mollocana-Lara E, Jaberi K, Faramarzi N, Tamayol A, Mortazavi M. Three dimensional (bio)printing of blood vessels: from vascularized tissues to functional arteries. Biofabrication 2024; 16:022005. [PMID: 38277671 DOI: 10.1088/1758-5090/ad22ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
Tissue engineering has emerged as a strategy for producing functional tissues and organs to treat diseases and injuries. Many chronic conditions directly or indirectly affect normal blood vessel functioning, necessary for material exchange and transport through the body and within tissue-engineered constructs. The interest in vascular tissue engineering is due to two reasons: (1) functional grafts can be used to replace diseased blood vessels, and (2) engineering effective vasculature within other engineered tissues enables connection with the host's circulatory system, supporting their survival. Among various practices, (bio)printing has emerged as a powerful tool to engineer biomimetic constructs. This has been made possible with precise control of cell deposition and matrix environment along with the advancements in biomaterials. (Bio)printing has been used for both engineering stand-alone vascular grafts as well as vasculature within engineered tissues for regenerative applications. In this review article, we discuss various conditions associated with blood vessels, the need for artificial blood vessels, the anatomy and physiology of different blood vessels, available 3D (bio)printing techniques to fabricate tissue-engineered vascular grafts and vasculature in scaffolds, and the comparison among the different techniques. We conclude our review with a brief discussion about future opportunities in the area of blood vessel tissue engineering.
Collapse
Affiliation(s)
- Shubham Makode
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Satyajit Maurya
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Seyed A Niknam
- Department of Industrial Engineering, Western New England University, Springfield, MA, United States of America
| | - Evelyn Mollocana-Lara
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| | - Kiana Jaberi
- Department of Nutritional Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Faramarzi
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, United States of America
| | - Mehdi Mortazavi
- Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America
| |
Collapse
|
7
|
Carou-Senra P, Rodríguez-Pombo L, Awad A, Basit AW, Alvarez-Lorenzo C, Goyanes A. Inkjet Printing of Pharmaceuticals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309164. [PMID: 37946604 DOI: 10.1002/adma.202309164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Inkjet printing (IJP) is an additive manufacturing process that selectively deposits ink materials, layer-by-layer, to create 3D objects or 2D patterns with precise control over their structure and composition. This technology has emerged as an attractive and versatile approach to address the ever-evolving demands of personalized medicine in the healthcare industry. Although originally developed for nonhealthcare applications, IJP harnesses the potential of pharma-inks, which are meticulously formulated inks containing drugs and pharmaceutical excipients. Delving into the formulation and components of pharma-inks, the key to precise and adaptable material deposition enabled by IJP is unraveled. The review extends its focus to substrate materials, including paper, films, foams, lenses, and 3D-printed materials, showcasing their diverse advantages, while exploring a wide spectrum of therapeutic applications. Additionally, the potential benefits of hardware and software improvements, along with artificial intelligence integration, are discussed to enhance IJP's precision and efficiency. Embracing these advancements, IJP holds immense potential to reshape traditional medicine manufacturing processes, ushering in an era of medical precision. However, further exploration and optimization are needed to fully utilize IJP's healthcare capabilities. As researchers push the boundaries of IJP, the vision of patient-specific treatment is on the horizon of becoming a tangible reality.
Collapse
Affiliation(s)
- Paola Carou-Senra
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Atheer Awad
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent, TN24 8DH, UK
- FABRX Artificial Intelligence, Carretera de Escairón 14, Currelos (O Saviñao), CP 27543, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent, TN24 8DH, UK
- FABRX Artificial Intelligence, Carretera de Escairón 14, Currelos (O Saviñao), CP 27543, Spain
| |
Collapse
|
8
|
Kalogeropoulou M, Díaz-Payno PJ, Mirzaali MJ, van Osch GJVM, Fratila-Apachitei LE, Zadpoor AA. 4D printed shape-shifting biomaterials for tissue engineering and regenerative medicine applications. Biofabrication 2024; 16:022002. [PMID: 38224616 DOI: 10.1088/1758-5090/ad1e6f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
The existing 3D printing methods exhibit certain fabrication-dependent limitations for printing curved constructs that are relevant for many tissues. Four-dimensional (4D) printing is an emerging technology that is expected to revolutionize the field of tissue engineering and regenerative medicine (TERM). 4D printing is based on 3D printing, featuring the introduction of time as the fourth dimension, in which there is a transition from a 3D printed scaffold to a new, distinct, and stable state, upon the application of one or more stimuli. Here, we present an overview of the current developments of the 4D printing technology for TERM, with a focus on approaches to achieve temporal changes of the shape of the printed constructs that would enable biofabrication of highly complex structures. To this aim, the printing methods, types of stimuli, shape-shifting mechanisms, and cell-incorporation strategies are critically reviewed. Furthermore, the challenges of this very recent biofabrication technology as well as the future research directions are discussed. Our findings show that the most common printing methods so far are stereolithography (SLA) and extrusion bioprinting, followed by fused deposition modelling, while the shape-shifting mechanisms used for TERM applications are shape-memory and differential swelling for 4D printing and 4D bioprinting, respectively. For shape-memory mechanism, there is a high prevalence of synthetic materials, such as polylactic acid (PLA), poly(glycerol dodecanoate) acrylate (PGDA), or polyurethanes. On the other hand, different acrylate combinations of alginate, hyaluronan, or gelatin have been used for differential swelling-based 4D transformations. TERM applications include bone, vascular, and cardiac tissues as the main target of the 4D (bio)printing technology. The field has great potential for further development by considering the combination of multiple stimuli, the use of a wider range of 4D techniques, and the implementation of computational-assisted strategies.
Collapse
Affiliation(s)
- Maria Kalogeropoulou
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, CD 2628, The Netherlands
| | - Pedro J Díaz-Payno
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, CD 2628, The Netherlands
- Department of Orthopedics and Sports Medicine, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Mohammad J Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, CD 2628, The Netherlands
| | - Gerjo J V M van Osch
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, CD 2628, The Netherlands
- Department of Orthopedics and Sports Medicine, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC University Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Lidy E Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, CD 2628, The Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, CD 2628, The Netherlands
- Department of Orthopedics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Hajam MI, Khan MM. Microfluidics: a concise review of the history, principles, design, applications, and future outlook. Biomater Sci 2024; 12:218-251. [PMID: 38108438 DOI: 10.1039/d3bm01463k] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Microfluidic technologies have garnered significant attention due to their ability to rapidly process samples and precisely manipulate fluids in assays, making them an attractive alternative to conventional experimental methods. With the potential for revolutionary capabilities in the future, this concise review provides readers with insights into the fascinating world of microfluidics. It begins by introducing the subject's historical background, allowing readers to familiarize themselves with the basics. The review then delves into the fundamental principles, discussing the underlying phenomena at play. Additionally, it highlights the different aspects of microfluidic device design, classification, and fabrication. Furthermore, the paper explores various applications, the global market, recent advancements, and challenges in the field. Finally, the review presents a positive outlook on trends and draws lessons to support the future flourishing of microfluidic technologies.
Collapse
Affiliation(s)
- Mohammad Irfan Hajam
- Department of Mechanical Engineering, National Institute of Technology Srinagar, India.
| | - Mohammad Mohsin Khan
- Department of Mechanical Engineering, National Institute of Technology Srinagar, India.
| |
Collapse
|
10
|
Choi J, Lee EJ, Jang WB, Kwon SM. Development of Biocompatible 3D-Printed Artificial Blood Vessels through Multidimensional Approaches. J Funct Biomater 2023; 14:497. [PMID: 37888162 PMCID: PMC10607080 DOI: 10.3390/jfb14100497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Within the human body, the intricate network of blood vessels plays a pivotal role in transporting nutrients and oxygen and maintaining homeostasis. Bioprinting is an innovative technology with the potential to revolutionize this field by constructing complex multicellular structures. This technique offers the advantage of depositing individual cells, growth factors, and biochemical signals, thereby facilitating the growth of functional blood vessels. Despite the challenges in fabricating vascularized constructs, bioprinting has emerged as an advance in organ engineering. The continuous evolution of bioprinting technology and biomaterial knowledge provides an avenue to overcome the hurdles associated with vascularized tissue fabrication. This article provides an overview of the biofabrication process used to create vascular and vascularized constructs. It delves into the various techniques used in vascular engineering, including extrusion-, droplet-, and laser-based bioprinting methods. Integrating these techniques offers the prospect of crafting artificial blood vessels with remarkable precision and functionality. Therefore, the potential impact of bioprinting in vascular engineering is significant. With technological advances, it holds promise in revolutionizing organ transplantation, tissue engineering, and regenerative medicine. By mimicking the natural complexity of blood vessels, bioprinting brings us one step closer to engineering organs with functional vasculature, ushering in a new era of medical advancement.
Collapse
Affiliation(s)
- Jaewoo Choi
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Eun Ji Lee
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woong Bi Jang
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
11
|
Größbacher G, Bartolf-Kopp M, Gergely C, Bernal PN, Florczak S, de Ruijter M, Rodriguez NG, Groll J, Malda J, Jungst T, Levato R. Volumetric Printing Across Melt Electrowritten Scaffolds Fabricates Multi-Material Living Constructs with Tunable Architecture and Mechanics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300756. [PMID: 37099802 DOI: 10.1002/adma.202300756] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Major challenges in biofabrication revolve around capturing the complex, hierarchical composition of native tissues. However, individual 3D printing techniques have limited capacity to produce composite biomaterials with multi-scale resolution. Volumetric bioprinting recently emerged as a paradigm-shift in biofabrication. This ultrafast, light-based technique sculpts cell-laden hydrogel bioresins into 3D structures in a layerless fashion, providing enhanced design freedom over conventional bioprinting. However, it yields prints with low mechanical stability, since soft, cell-friendly hydrogels are used. Herein, the possibility to converge volumetric bioprinting with melt electrowriting, which excels at patterning microfibers, is shown for the fabrication of tubular hydrogel-based composites with enhanced mechanical behavior. Despite including non-transparent melt electrowritten scaffolds in the volumetric printing process, high-resolution bioprinted structures are successfully achieved. Tensile, burst, and bending mechanical properties of printed tubes are tuned altering the electrowritten mesh design, resulting in complex, multi-material tubular constructs with customizable, anisotropic geometries that better mimic intricate biological tubular structures. As a proof-of-concept, engineered tubular structures are obtained by building trilayered cell-laden vessels, and features (valves, branches, fenestrations) that can be rapidly printed using this hybrid approach. This multi-technology convergence offers a new toolbox for manufacturing hierarchical and mechanically tunable multi-material living structures.
Collapse
Affiliation(s)
- Gabriel Größbacher
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Michael Bartolf-Kopp
- Department of Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication (IFB), KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Csaba Gergely
- Department of Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication (IFB), KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Paulina Núñez Bernal
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Sammy Florczak
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Mylène de Ruijter
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Núria Ginés Rodriguez
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication (IFB), KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CT, The Netherlands
| | - Tomasz Jungst
- Department of Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication (IFB), KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CT, The Netherlands
| |
Collapse
|
12
|
Parodi I, Di Lisa D, Pastorino L, Scaglione S, Fato MM. 3D Bioprinting as a Powerful Technique for Recreating the Tumor Microenvironment. Gels 2023; 9:482. [PMID: 37367152 DOI: 10.3390/gels9060482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023] Open
Abstract
In vitro three-dimensional models aim to reduce and replace animal testing and establish new tools for oncology research and the development and testing of new anticancer therapies. Among the various techniques to produce more complex and realistic cancer models is bioprinting, which allows the realization of spatially controlled hydrogel-based scaffolds, easily incorporating different types of cells in order to recreate the crosstalk between cancer and stromal components. Bioprinting exhibits other advantages, such as the production of large constructs, the repeatability and high resolution of the process, as well as the possibility of vascularization of the models through different approaches. Moreover, bioprinting allows the incorporation of multiple biomaterials and the creation of gradient structures to mimic the heterogeneity of the tumor microenvironment. The aim of this review is to report the main strategies and biomaterials used in cancer bioprinting. Moreover, the review discusses several bioprinted models of the most diffused and/or malignant tumors, highlighting the importance of this technique in establishing reliable biomimetic tissues aimed at improving disease biology understanding and high-throughput drug screening.
Collapse
Affiliation(s)
- Ilaria Parodi
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16126 Genoa, Italy
- National Research Council of Italy, Institute of Electronic, Computer and Telecommunications Engineering (IEIIT), 16149 Genoa, Italy
| | - Donatella Di Lisa
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16126 Genoa, Italy
| | - Laura Pastorino
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16126 Genoa, Italy
| | - Silvia Scaglione
- National Research Council of Italy, Institute of Electronic, Computer and Telecommunications Engineering (IEIIT), 16149 Genoa, Italy
- React4life S.p.A., 16152 Genova, Italy
| | - Marco Massimo Fato
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16126 Genoa, Italy
- National Research Council of Italy, Institute of Electronic, Computer and Telecommunications Engineering (IEIIT), 16149 Genoa, Italy
| |
Collapse
|
13
|
Huang L, Chen L, Chen H, Wang M, Jin L, Zhou S, Gao L, Li R, Li Q, Wang H, Zhang C, Wang J. Biomimetic Scaffolds for Tendon Tissue Regeneration. Biomimetics (Basel) 2023; 8:246. [PMID: 37366841 DOI: 10.3390/biomimetics8020246] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Tendon tissue connects muscle to bone and plays crucial roles in stress transfer. Tendon injury remains a significant clinical challenge due to its complicated biological structure and poor self-healing capacity. The treatments for tendon injury have advanced significantly with the development of technology, including the use of sophisticated biomaterials, bioactive growth factors, and numerous stem cells. Among these, biomaterials that the mimic extracellular matrix (ECM) of tendon tissue would provide a resembling microenvironment to improve efficacy in tendon repair and regeneration. In this review, we will begin with a description of the constituents and structural features of tendon tissue, followed by a focus on the available biomimetic scaffolds of natural or synthetic origin for tendon tissue engineering. Finally, we will discuss novel strategies and present challenges in tendon regeneration and repair.
Collapse
Affiliation(s)
- Lvxing Huang
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Le Chen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| | - Hengyi Chen
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Manju Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310000, China
| | - Letian Jin
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Shenghai Zhou
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Lexin Gao
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Ruwei Li
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Quan Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| | - Hanchang Wang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Can Zhang
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Junjuan Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| |
Collapse
|
14
|
Harding A, Pramanik A, Basak A, Prakash C, Shankar S. Application of additive manufacturing in the biomedical field- A review. ANNALS OF 3D PRINTED MEDICINE 2023. [DOI: 10.1016/j.stlm.2023.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|
15
|
Lee H, Kim SH, Lee JS, Lee YJ, Lee OJ, Ajiteru O, Sultan MT, Lee SW, Park CH. Functional Skeletal Muscle Regeneration Using Muscle Mimetic Tissue Fabricated by Microvalve-Assisted Coaxial 3D Bioprinting. Adv Healthc Mater 2023; 12:e2202664. [PMID: 36469728 DOI: 10.1002/adhm.202202664] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/23/2022] [Indexed: 12/12/2022]
Abstract
3D-printed artificial skeletal muscle, which mimics the structural and functional characteristics of native skeletal muscle, is a promising treatment method for muscle reconstruction. Although various fabrication techniques for skeletal muscle using 3D bio-printers are studied, it is still challenging to build a functional muscle structure. A strategy using microvalve-assisted coaxial 3D bioprinting in consideration of functional skeletal muscle fabrication is reported. The unit (artificial muscle fascicle: AMF) of muscle mimetic tissue is composed of a core filled with medium-based C2C12 myoblast aggregates as a role of muscle fibers and a photo cross-linkable hydrogel-based shell as a role of connective tissue in muscles that enhances printability and cell adhesion and proliferation. Especially, a microvalve system is applied for the core part with even cell distribution and strong cell-cell interaction. This system enhances myotube formation and consequently shows spontaneous contraction. A multi-printed AMF (artificial muscle tissue: AMT) as a piece of muscle is implanted into the anterior tibia (TA) muscle defect site of immunocompromised rats. As a result, the TA-implanted AMT responds to electrical stimulation and represents histologically regenerated muscle tissue. This microvalve-assisted coaxial 3D bioprinting shows a significant step forward to mimicking native skeletal muscle tissue.
Collapse
Affiliation(s)
- Hanna Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Soon Hee Kim
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Ji Seung Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Young Jin Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Ok Joo Lee
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Olatunji Ajiteru
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Md Tipu Sultan
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Suk Woo Lee
- Department of Obstetrics and Gynecology, Hallym University Sacred Heart Hospital, Anyang, 14068, Republic of Korea
| | - Chan Hum Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do, 24252, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, School of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| |
Collapse
|
16
|
Introduction to three-dimensional printing in medicine. 3D Print Med 2023. [DOI: 10.1016/b978-0-323-89831-7.00008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
17
|
Schot M, Araújo-Gomes N, van Loo B, Kamperman T, Leijten J. Scalable fabrication, compartmentalization and applications of living microtissues. Bioact Mater 2023; 19:392-405. [PMID: 35574053 PMCID: PMC9062422 DOI: 10.1016/j.bioactmat.2022.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/18/2022] [Accepted: 04/06/2022] [Indexed: 10/27/2022] Open
Abstract
Living microtissues are used in a multitude of applications as they more closely resemble native tissue physiology, as compared to 2D cultures. Microtissues are typically composed of a combination of cells and materials in varying combinations, which are dictated by the applications' design requirements. Their applications range wide, from fundamental biological research such as differentiation studies to industrial applications such as cruelty-free meat production. However, their translation to industrial and clinical settings has been hindered due to the lack of scalability of microtissue production techniques. Continuous microfluidic processes provide an opportunity to overcome this limitation as they offer higher throughput production rates as compared to traditional batch techniques, while maintaining reproducible control over microtissue composition and size. In this review, we provide a comprehensive overview of the current approaches to engineer microtissues with a focus on the advantages of, and need for, the use of continuous processes to produce microtissues in large quantities. Finally, an outlook is provided that outlines the required developments to enable large-scale microtissue fabrication using continuous processes.
Collapse
Affiliation(s)
- Maik Schot
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| | - Nuno Araújo-Gomes
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| | - Bas van Loo
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| | - Tom Kamperman
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| | - Jeroen Leijten
- Department of Developmental Bioengineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522NB, Enschede, the Netherlands
| |
Collapse
|
18
|
Dadhich P, Kumar P, Roy A, Bitar KN. Advances in 3D Printing Technology for Tissue Engineering. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
19
|
Pourmasoumi P, Moghaddam A, Nemati Mahand S, Heidari F, Salehi Moghaddam Z, Arjmand M, Kühnert I, Kruppke B, Wiesmann HP, Khonakdar HA. A review on the recent progress, opportunities, and challenges of 4D printing and bioprinting in regenerative medicine. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:108-146. [PMID: 35924585 DOI: 10.1080/09205063.2022.2110480] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Four-dimensional (4 D) printing is a novel emerging technology, which can be defined as the ability of 3 D printed materials to change their form and functions. The term 'time' is added to 3 D printing as the fourth dimension, in which materials can respond to a stimulus after finishing the manufacturing process. 4 D printing provides more versatility in terms of size, shape, and structure after printing the construct. Complex material programmability, multi-material printing, and precise structure design are the essential requirements of 4 D printing systems. The utilization of stimuli-responsive polymers has increasingly taken the place of cell traction force-dependent methods and manual folding, offering a more advanced technique to affect a construct's adjusted shape transformation. The present review highlights the concept of 4 D printing and the responsive bioinks used in 4 D printing, such as water-responsive, pH-responsive, thermo-responsive, and light-responsive materials used in tissue regeneration. Cell traction force methods are described as well. Finally, this paper aims to introduce the limitations and future trends of 4 D printing in biomedical applications based on selected key references from the last decade.
Collapse
Affiliation(s)
| | | | | | - Fatemeh Heidari
- Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
| | - Zahra Salehi Moghaddam
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Ines Kühnert
- Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Hans-Peter Wiesmann
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran.,Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| |
Collapse
|
20
|
Thangavel M, Elsen Selvam R. Review of Physical, Mechanical, and Biological Characteristics of 3D-Printed Bioceramic Scaffolds for Bone Tissue Engineering Applications. ACS Biomater Sci Eng 2022; 8:5060-5093. [PMID: 36415173 DOI: 10.1021/acsbiomaterials.2c00793] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This review focuses on the advancements in additive manufacturing techniques that are utilized for fabricating bioceramic scaffolds and their characterizations leading to bone tissue regeneration. Bioscaffolds are made by mimicking the human bone structure, material composition, and properties. Calcium phosphate apatite materials are the most commonly used scaffold materials as they closely resemble live bone in their inorganic composition. The functionally graded scaffolds are fabricated by utilizing the right choice of the 3D printing method and material combinations to achieve the requirement of the bioscaffold. To tailor the physical, mechanical, and biological properties of the scaffold, certain materials are reinforced, doped, or coated to incorporate the functionality. The biomechanical loading conditions that involve flexion, torsion, and tension exerted on the implanted scaffold are discussed. The finite element analysis (FEA) technique is used to investigate the mechanical property of the scaffold before fabrication. This helps in reducing the actual number of samples used for testing. The FEA simulated results and the experimental result are compared. This review also highlights some of the challenges associated while processing the scaffold such as shrinkage, mechanical instability, cytotoxicity, and printability. In the end, the new materials that are evolved for tissue engineering applications are compiled and discussed.
Collapse
Affiliation(s)
- Mahendran Thangavel
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Renold Elsen Selvam
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
21
|
Mayfield CK, Ayad M, Lechtholz-Zey E, Chen Y, Lieberman JR. 3D-Printing for Critical Sized Bone Defects: Current Concepts and Future Directions. Bioengineering (Basel) 2022; 9:680. [PMID: 36421080 PMCID: PMC9687148 DOI: 10.3390/bioengineering9110680] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2023] Open
Abstract
The management and definitive treatment of segmental bone defects in the setting of acute trauma, fracture non-union, revision joint arthroplasty, and tumor surgery are challenging clinical problems with no consistently satisfactory solution. Orthopaedic surgeons are developing novel strategies to treat these problems, including three-dimensional (3D) printing combined with growth factors and/or cells. This article reviews the current strategies for management of segmental bone loss in orthopaedic surgery, including graft selection, bone graft substitutes, and operative techniques. Furthermore, we highlight 3D printing as a technology that may serve a major role in the management of segmental defects. The optimization of a 3D-printed scaffold design through printing technique, material selection, and scaffold geometry, as well as biologic additives to enhance bone regeneration and incorporation could change the treatment paradigm for these difficult bone repair problems.
Collapse
Affiliation(s)
- Cory K. Mayfield
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Mina Ayad
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Elizabeth Lechtholz-Zey
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Yong Chen
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angleles, CA 90089, USA
| | - Jay R. Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| |
Collapse
|
22
|
Temirel M, Dabbagh SR, Tasoglu S. Shape Fidelity Evaluation of Alginate-Based Hydrogels through Extrusion-Based Bioprinting. J Funct Biomater 2022; 13:jfb13040225. [PMID: 36412866 PMCID: PMC9680455 DOI: 10.3390/jfb13040225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Extrusion-based 3D bioprinting is a promising technique for fabricating multi-layered, complex biostructures, as it enables multi-material dispersion of bioinks with a straightforward procedure (particularly for users with limited additive manufacturing skills). Nonetheless, this method faces challenges in retaining the shape fidelity of the 3D-bioprinted structure, i.e., the collapse of filament (bioink) due to gravity and/or spreading of the bioink owing to the low viscosity, ultimately complicating the fabrication of multi-layered designs that can maintain the desired pore structure. While low viscosity is required to ensure a continuous flow of material (without clogging), a bioink should be viscous enough to retain its shape post-printing, highlighting the importance of bioink properties optimization. Here, two quantitative analyses are performed to evaluate shape fidelity. First, the filament collapse deformation is evaluated by printing different concentrations of alginate and its crosslinker (calcium chloride) by a co-axial nozzle over a platform to observe the overhanging deformation over time at two different ambient temperatures. In addition, a mathematical model is developed to estimate Young’s modulus and filament collapse over time. Second, the printability of alginate is improved by optimizing gelatin concentrations and analyzing the pore size area. In addition, the biocompatibility of proposed bioinks is evaluated with a cell viability test. The proposed bioink (3% w/v gelatin in 4% alginate) yielded a 98% normalized pore number (high shape fidelity) while maintaining >90% cell viability five days after being bioprinted. Integration of quantitative analysis/simulations and 3D printing facilitate the determination of the optimum composition and concentration of different elements of a bioink to prevent filament collapse or bioink spreading (post-printing), ultimately resulting in high shape fidelity (i.e., retaining the shape) and printing quality.
Collapse
Affiliation(s)
- Mikail Temirel
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Mechanical Engineering Department, School of Engineering, Abdullah Gul University, Kayseri 38080, Turkey
| | | | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul 34450, Turkey
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Turkey
- Correspondence:
| |
Collapse
|
23
|
Singh G, Singh S, Kumar R, Parkash C, Pruncu C, Ramakrishna S. Tissues and organ printing: An evolution of technology and materials. Proc Inst Mech Eng H 2022; 236:1695-1710. [DOI: 10.1177/09544119221125084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since its beginnings, three-dimensional printing (3DP) technology has been successful because of ongoing advances in operating principles, the range of materials and cost-saving measures. However, the 3DP technological progressions in the biomedical sector have majorly taken place in the last decade after the evolution of novel 3DP systems, generally categorised as bioprinters and biomaterials to provide a replacement, transplantation or regeneration of the damaged organs and tissue constructs of the human body. There is now substantial scientific literature accessible to support the benefits of digital healthcare procedures with the help of bioprinters. It is of the highest significance to know the fundamental principles of the available printers and the compatibility of biomaterials as their feedstock, notwithstanding the huge potential of bioprinting systems to manufacture organs and other human body components. This paper provides a precise and helpful reading of the different categories of bioprinters, suitable biomaterials, numerical simulations and modelling and examples of much acknowledged clinical practices. The paper will also cite the prominent issues that still have not received desired solutions. Overall, the article will be of great use for all the professionals, scholars and engineers concerned with the 3DP, bioprinting and biomaterials.
Collapse
Affiliation(s)
- Gurminder Singh
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sunpreet Singh
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
- Mechanical Engineering Department, Chandigarh University, Punjab
| | - Raman Kumar
- Mechanical Engineering, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India
| | - Chander Parkash
- School of Mechanical Engineering, Lovely Professional University, Phagwara, Punjab, India
| | - Catalin Pruncu
- Departimento di Meccanica, Matematica e Management, Politecnico di Bari, 70125 Bari, Italy
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
24
|
Assessment of Angiogenesis and Cell Survivability of an Inkjet Bioprinted Biological Implant in an Animal Model. MATERIALS 2022; 15:ma15134468. [PMID: 35806588 PMCID: PMC9267737 DOI: 10.3390/ma15134468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/01/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023]
Abstract
The rapidly growing field of tissue engineering hopes to soon address the shortage of transplantable tissues, allowing for precise control and fabrication that could be made for each specific patient. The protocols currently in place to print large-scale tissues have yet to address the main challenge of nutritional deficiencies in the central areas of the engineered tissue, causing necrosis deep within and rendering it ineffective. Bioprinted microvasculature has been proposed to encourage angiogenesis and facilitate the mobility of oxygen and nutrients throughout the engineered tissue. An implant made via an inkjet printing process containing human microvascular endothelial cells was placed in both B17-SCID and NSG-SGM3 animal models to determine the rate of angiogenesis and degree of cell survival. The implantable tissues were made using a combination of alginate and gelatin type B; all implants were printed via previously published procedures using a modified HP inkjet printer. Histopathological results show a dramatic increase in the average microvasculature formation for mice that received the printed constructs within the implant area when compared to the manual and control implants, indicating inkjet bioprinting technology can be effectively used for vascularization of engineered tissues.
Collapse
|
25
|
Advanced Biomaterials, Coatings, and Techniques: Applications in Medicine and Dentistry. COATINGS 2022. [DOI: 10.3390/coatings12060797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The field of biomaterials is very extensive, encompassing both the materials themselves and the manufacturing methods, which are constantly developing [...]
Collapse
|
26
|
Investigation of Cell Concentration Change and Cell Aggregation Due to Cell Sedimentation during Inkjet-Based Bioprinting of Cell-Laden Bioink. MACHINES 2022. [DOI: 10.3390/machines10050315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recently, even though 3D bioprinting has made it possible to fabricate 3D artificial tissues/organs, it still faces several significant challenges such as cell sedimentation and aggregation. As the essential element of 3D bioprinting, bioink is usually composed of biological materials and living cells. Guided by the initially dominant gravitational force, cells sediment, resulting in the non-uniformity of the bioink and the decrease in the printing reliability. This study primarily focuses on the quantification of cell sedimentation-induced cell concentration change and cell aggregation within the bioink reservoir during inkjet-based bioprinting. The major conclusions are summarized as follows: (1) with 0.5% (w/v) sodium alginate, after around 40-min printing time, almost all the cells have sedimented from the top region. The cell concentration at the bottom is measured to be more than doubled after 60-min printing time. On the contrary, due to the slow cell sedimentation velocity with 1.5% and 3% (w/v) sodium alginate, the uniformity of the bioink is still highly maintained after 60-min printing; and (2) more cell aggregates are observed at the bottom with the printing time, and severe cell aggregation phenomenon has been observed at the bottom using 0.5% (w/v) sodium alginate starting from 40-min printing time. With the highest cell concentration 2 × 106 cells/mL, 60.9% of the cells have formed cell aggregates at 40-min printing time. However, cell aggregation is dramatically suppressed by increasing the polymer concentration.
Collapse
|
27
|
Yuan TY, Zhang J, Yu T, Wu JP, Liu QY. 3D Bioprinting for Spinal Cord Injury Repair. Front Bioeng Biotechnol 2022; 10:847344. [PMID: 35519617 PMCID: PMC9065470 DOI: 10.3389/fbioe.2022.847344] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury (SCI) is considered to be one of the most challenging central nervous system injuries. The poor regeneration of nerve cells and the formation of scar tissue after injury make it difficult to recover the function of the nervous system. With the development of tissue engineering, three-dimensional (3D) bioprinting has attracted extensive attention because it can accurately print complex structures. At the same time, the technology of blending and printing cells and related cytokines has gradually been matured. Using this technology, complex biological scaffolds with accurate cell localization can be manufactured. Therefore, this technology has a certain potential in the repair of the nervous system, especially the spinal cord. So far, this review focuses on the progress of tissue engineering of the spinal cord, landmark 3D bioprinting methods, and landmark 3D bioprinting applications of the spinal cord in recent years.
Collapse
|
28
|
Cao Y, Sang S, An Y, Xiang C, Li Y, Zhen Y. Progress of 3D Printing Techniques for Nasal Cartilage Regeneration. Aesthetic Plast Surg 2022; 46:947-964. [PMID: 34312695 DOI: 10.1007/s00266-021-02472-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
Once cartilage is damaged, its self-repair capacity is very limited. The strategy of tissue engineering has brought a new idea for repairing cartilage defect and cartilage regeneration. In particular, nasal cartilage regeneration is a challenge because of the steady increase in nasal reconstruction after oncologic resection, trauma, or rhinoplasty. From this perspective, three-dimensional (3D) printing has emerged as a promising technology to address the complexity of nasal cartilage regeneration, using patient's image data and computer-aided deposition of cells and biomaterials to precisely fabricate complex, personalized tissue-engineered constructs. In this review, we summarized the major progress of three prevalent 3D printing approaches, including inkjet-based printing, extrusion-based printing and laser-assisted printing. Examples are highlighted to illustrate 3D printing for nasal cartilage regeneration, with special focus on the selection of seeded cell, scaffolds and growth factors. The purpose of this paper is to systematically review recent research about the challenges and progress and look forward to the future of 3D printing techniques for nasal cartilage regeneration.Level of Evidence III This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors https://www.springer.com/00266 .
Collapse
Affiliation(s)
- Yanyan Cao
- MicroNano System Research Center, College of Information and Computer, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
- College of Information Science and Engineering, Hebei North University, Zhangjiakou, 075000, China
| | - Shengbo Sang
- MicroNano System Research Center, College of Information and Computer, Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Chuan Xiang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yanping Li
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075061, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
29
|
Reinten H, Jethani Y, Fraters A, Jeurissen R, Lohse D, Versluis M, Segers T. Resonance behavior of a compliant piezo-driven inkjet channel with an entrained microbubble. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:2545. [PMID: 35461477 DOI: 10.1121/10.0009784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Microbubbles entrained in a piezo-driven drop-on-demand printhead disturb the acoustics of the microfluidic ink channel and, thereby, the jetting behavior. Here, the resonance behavior of an ink channel as a function of the microbubble size and number of bubbles is studied through theoretical modeling and experiments. The system is modeled as a set of two coupled harmonic oscillators: one corresponds to the compliant ink channel and the other corresponds to the microbubble. The predicted and measured eigenfrequencies are in excellent agreement. It was found that the resonance frequency is independent of the bubble size as long as the compliance of the bubble dominates over that of the piezo actuator. An accurate description of the eigenfrequency of the coupled system requires the inclusion of the increased inertance of the entrained microbubble due to confinement. It is shown that the inertance of a confined bubble can be accurately obtained by using a simple potential flow approach. The model is further validated by the excellent agreement between the modeled and measured microbubble resonance curves. The present work, therefore, provides physical insight into the coupled dynamics of a compliant ink channel with an entrained microbubble.
Collapse
Affiliation(s)
- Hans Reinten
- Canon Production Printing Netherlands B.V., P.O. Box 101, 5900 MA Venlo, Netherlands
| | - Yogesh Jethani
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Arjan Fraters
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Roger Jeurissen
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - Detlef Lohse
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Michel Versluis
- Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Tim Segers
- BIOS/Lab-on-a-Chip Group, Max Planck Center Twente for Complex Fluid Dynamics, MESA+ Institute for Nanotechnology, University of Twente, Enschede, Netherlands
| |
Collapse
|
30
|
Pan C, Gao Q, Kim BS, Han Y, Gao G. The Biofabrication of Diseased Artery In Vitro Models. MICROMACHINES 2022; 13:mi13020326. [PMID: 35208450 PMCID: PMC8874977 DOI: 10.3390/mi13020326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
As the leading causes of global death, cardiovascular diseases are generally initiated by artery-related disorders such as atherosclerosis, thrombosis, and aneurysm. Although clinical treatments have been developed to rescue patients suffering from artery-related disorders, the underlying pathologies of these arterial abnormalities are not fully understood. Biofabrication techniques pave the way to constructing diseased artery in vitro models using human vascular cells, biomaterials, and biomolecules, which are capable of recapitulating arterial pathophysiology with superior performance compared with conventional planar cell culture and experimental animal models. This review discusses the critical elements in the arterial microenvironment which are important considerations for recreating biomimetic human arteries with the desired disorders in vitro. Afterward, conventionally biofabricated platforms for the investigation of arterial diseases are summarized, along with their merits and shortcomings, followed by a comprehensive review of advanced biofabrication techniques and the progress of their applications in establishing diseased artery models.
Collapse
Affiliation(s)
- Chen Pan
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (C.P.); (Q.G.)
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;
| | - Qiqi Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (C.P.); (Q.G.)
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Byoung-Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 626841, Korea
- Correspondence: (B.-S.K.); (G.G.)
| | - Yafeng Han
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;
| | - Ge Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (C.P.); (Q.G.)
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- Correspondence: (B.-S.K.); (G.G.)
| |
Collapse
|
31
|
|
32
|
Mani MP, Sadia M, Jaganathan SK, Khudzari AZ, Supriyanto E, Saidin S, Ramakrishna S, Ismail AF, Faudzi AAM. A review on 3D printing in tissue engineering applications. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2021-0059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
In tissue engineering, 3D printing is an important tool that uses biocompatible materials, cells, and supporting components to fabricate complex 3D printed constructs. This review focuses on the cytocompatibility characteristics of 3D printed constructs, made from different synthetic and natural materials. From the overview of this article, inkjet and extrusion-based 3D printing are widely used methods for fabricating 3D printed scaffolds for tissue engineering. This review highlights that scaffold prepared by both inkjet and extrusion-based 3D printing techniques showed significant impact on cell adherence, proliferation, and differentiation as evidenced by in vitro and in vivo studies. 3D printed constructs with growth factors (FGF-2, TGF-β1, or FGF-2/TGF-β1) enhance extracellular matrix (ECM), collagen I content, and high glycosaminoglycan (GAG) content for cell growth and bone formation. Similarly, the utilization of 3D printing in other tissue engineering applications cannot be belittled. In conclusion, it would be interesting to combine different 3D printing techniques to fabricate future 3D printed constructs for several tissue engineering applications.
Collapse
Affiliation(s)
- Mohan Prasath Mani
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering , Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
| | - Madeeha Sadia
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering , Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
- Department of Biomedical Engineering, Faculty of Electrical and Computer Engineering , NED University of Engineering and Technology , Karachi , Pakistan
| | - Saravana Kumar Jaganathan
- Department of Engineering, Faculty of Science and Engineering , University of Hull , Hull HU6 7RX , UK
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia , Kuala Lumpur 54100 , Malaysia
- School of Electrical Engineering, Faculty of Engineering , Universiti Teknologi Malaysia , Johor Bahru 81310 , Malaysia
| | - Ahmad Zahran Khudzari
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering , Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
- IJN-UTM Cardiovascular Engineering Center, Institute of Human Centered Engineering, Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
| | - Eko Supriyanto
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering , Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
- IJN-UTM Cardiovascular Engineering Center, Institute of Human Centered Engineering, Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
| | - Syafiqah Saidin
- School of Biomedical Engineering and Health Sciences, Faculty of Engineering , Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
- IJN-UTM Cardiovascular Engineering Center, Institute of Human Centered Engineering, Universiti Teknologi Malaysia , Skudai 81310 , Malaysia
| | - Seeram Ramakrishna
- Department of Mechanical Engineering , Center for Nanofibers & Nanotechnology Initiative, National University of Singapore , Singapore , Singapore
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia , Johor Bahru 81310 , Malaysia
| | - Ahmad Athif Mohd Faudzi
- Centre for Artificial Intelligence and Robotics, Universiti Teknologi Malaysia , Kuala Lumpur 54100 , Malaysia
- School of Electrical Engineering, Faculty of Engineering , Universiti Teknologi Malaysia , Johor Bahru 81310 , Malaysia
| |
Collapse
|
33
|
Vrana NE, Gupta S, Mitra K, Rizvanov AA, Solovyeva VV, Antmen E, Salehi M, Ehterami A, Pourchet L, Barthes J, Marquette CA, von Unge M, Wang CY, Lai PL, Bit A. From 3D printing to 3D bioprinting: the material properties of polymeric material and its derived bioink for achieving tissue specific architectures. Cell Tissue Bank 2022; 23:417-440. [PMID: 35000046 DOI: 10.1007/s10561-021-09975-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/31/2021] [Indexed: 12/22/2022]
Abstract
The application of 3D printing technologies fields for biological tissues, organs, and cells in the context of medical and biotechnology applications requires a significant amount of innovation in a narrow printability range. 3D bioprinting is one such way of addressing critical design challenges in tissue engineering. In a more general sense, 3D printing has become essential in customized implant designing, faithful reproduction of microenvironmental niches, sustainable development of implants, in the capacity to address issues of effective cellular integration, and long-term stability of the cellular constructs in tissue engineering. This review covers various aspects of 3D bioprinting, describes the current state-of-the-art solutions for all aforementioned critical issues, and includes various illustrative representations of technologies supporting the development of phases of 3D bioprinting. It also demonstrates several bio-inks and their properties crucial for being used for 3D printing applications. The review focus on bringing together different examples and current trends in tissue engineering applications, including bone, cartilage, muscles, neuron, skin, esophagus, trachea, tympanic membrane, cornea, blood vessel, immune system, and tumor models utilizing 3D printing technology and to provide an outlook of the future potentials and barriers.
Collapse
Affiliation(s)
| | | | - Kunal Mitra
- Florida Institute of Technology, Melbourne, USA
| | | | | | - Ezgi Antmen
- Center of Excellence in Biomaterials and Tissue Engineering, BIOMATEN, Middle East Technical University (METU), Ankara, Turkey
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.,Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Arian Ehterami
- Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Lea Pourchet
- UMR 1121, Biomaterials and Bioengineering, INSERM, Strasbourg, France
| | - Julien Barthes
- UMR 1121, Biomaterials and Bioengineering, INSERM, Strasbourg, France
| | | | - Magnus von Unge
- Akershus University Hospital and University of Oslo, Oslo, Norway.,Center for Clinical Research, Uppsala University, Vasteras, Uppsala, Sweden
| | - Chi-Yun Wang
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Po-Liang Lai
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Arindam Bit
- National Institute of Technology, Raipur, India.
| |
Collapse
|
34
|
Zhou X, Wu H, Wen H, Zheng B. Advances in Single-Cell Printing. MICROMACHINES 2022; 13:80. [PMID: 35056245 PMCID: PMC8778191 DOI: 10.3390/mi13010080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/20/2022]
Abstract
Single-cell analysis is becoming an indispensable tool in modern biological and medical research. Single-cell isolation is the key step for single-cell analysis. Single-cell printing shows several distinct advantages among the single-cell isolation techniques, such as precise deposition, high encapsulation efficiency, and easy recovery. Therefore, recent developments in single-cell printing have attracted extensive attention. We review herein the recently developed bioprinting strategies with single-cell resolution, with a special focus on inkjet-like single-cell printing. First, we discuss the common cell printing strategies and introduce several typical and advanced printing strategies. Then, we introduce several typical applications based on single-cell printing, from single-cell array screening and mass spectrometry-based single-cell analysis to three-dimensional tissue formation. In the last part, we discuss the pros and cons of the single-cell strategies and provide a brief outlook for single-cell printing.
Collapse
Affiliation(s)
| | | | | | - Bo Zheng
- Shenzhen Bay Laboratory, Institute of Cell Analysis, Shenzhen 518132, China; (X.Z.); (H.W.); (H.W.)
| |
Collapse
|
35
|
DePalma TJ, Sivakumar H, Skardal A. Strategies for developing complex multi-component in vitro tumor models: Highlights in glioblastoma. Adv Drug Deliv Rev 2022; 180:114067. [PMID: 34822927 PMCID: PMC10560581 DOI: 10.1016/j.addr.2021.114067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023]
Abstract
In recent years, many research groups have begun to utilize bioengineered in vitro models of cancer to study mechanisms of disease progression, test drug candidates, and develop platforms to advance personalized drug treatment options. Due to advances in cell and tissue engineering over the last few decades, there are now a myriad of tools that can be used to create such in vitro systems. In this review, we describe the considerations one must take when developing model systems that accurately mimic the in vivo tumor microenvironment (TME) and can be used to answer specific scientific questions. We will summarize the importance of cell sourcing in models with one or multiple cell types and outline the importance of choosing biomaterials that accurately mimic the native extracellular matrix (ECM) of the tumor or tissue that is being modeled. We then provide examples of how these two components can be used in concert in a variety of model form factors and conclude by discussing how biofabrication techniques such as bioprinting and organ-on-a-chip fabrication can be used to create highly reproducible complex in vitro models. Since this topic has a broad range of applications, we use the final section of the review to dive deeper into one type of cancer, glioblastoma, to illustrate how these components come together to further our knowledge of cancer biology and move us closer to developing novel drugs and systems that improve patient outcomes.
Collapse
Affiliation(s)
- Thomas J DePalma
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Hemamylammal Sivakumar
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Aleksander Skardal
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
36
|
Abstract
Tissue engineering or tissue reconstruction/repair/regeneration may be considered as a guiding strategy in oral and maxillofacial surgery, as well as in endodontics, orthodontics, periodontics, and daily clinical practice. A wide range of techniques has been developed over the past years, from tissue grafts to the more recent and innovative regenerative procedures. Continuous research in the field of natural and artificial materials and biomaterials, as well as in advanced scaffold design strategies has been carried out. The focus has also been on various growth factors involved in dental tissue repair or reconstruction. Benefiting from the recent literature, this review paper illustrates current innovative strategies and technological approaches in oral and maxillofacial tissue engineering, trying to offer some information regarding the available scientific data and practical applications. After introducing tissue engineering aspects, an overview on additive manufacturing technologies will be provided, with a focus on the applications of superparamagnetic iron oxide nanoparticles in the biomedical field. The potential applications of magnetic fields and magnetic devices on the acceleration of orthodontic tooth movement will be analysed.
Collapse
|
37
|
Rastin H, Mansouri N, Tung TT, Hassan K, Mazinani A, Ramezanpour M, Yap PL, Yu L, Vreugde S, Losic D. Converging 2D Nanomaterials and 3D Bioprinting Technology: State-of-the-Art, Challenges, and Potential Outlook in Biomedical Applications. Adv Healthc Mater 2021; 10:e2101439. [PMID: 34468088 DOI: 10.1002/adhm.202101439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 12/17/2022]
Abstract
The development of next-generation of bioinks aims to fabricate anatomical size 3D scaffold with high printability and biocompatibility. Along with the progress in 3D bioprinting, 2D nanomaterials (2D NMs) prove to be emerging frontiers in the development of advanced materials owing to their extraordinary properties. Harnessing the properties of 2D NMs in 3D bioprinting technologies can revolutionize the development of bioinks by endowing new functionalities to the current bioinks. First the main contributions of 2D NMS in 3D bioprinting technologies are categorized here into six main classes: 1) reinforcement effect, 2) delivery of bioactive molecules, 3) improved electrical conductivity, 4) enhanced tissue formation, 5) photothermal effect, 6) and stronger antibacterial properties. Next, the recent advances in the use of each certain 2D NMs (1) graphene, 2) nanosilicate, 3) black phosphorus, 4) MXene, 5) transition metal dichalcogenides, 6) hexagonal boron nitride, and 7) metal-organic frameworks) in 3D bioprinting technology are critically summarized and evaluated thoroughly. Third, the role of physicochemical properties of 2D NMSs on their cytotoxicity is uncovered, with several representative examples of each studied 2D NMs. Finally, current challenges, opportunities, and outlook for the development of nanocomposite bioinks are discussed thoroughly.
Collapse
Affiliation(s)
- Hadi Rastin
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Negar Mansouri
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- School of Electrical and Electronic Engineering The University of Adelaide South Australia 5005 Australia
| | - Tran Thanh Tung
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Kamrul Hassan
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Arash Mazinani
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Mahnaz Ramezanpour
- Department of Surgery‐Otolaryngology Head and Neck Surgery The University of Adelaide Woodville South 5011 Australia
| | - Pei Lay Yap
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Le Yu
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| | - Sarah Vreugde
- Department of Surgery‐Otolaryngology Head and Neck Surgery The University of Adelaide Woodville South 5011 Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials The University of Adelaide South Australia 5005 Australia
- ARC Research Hub for Graphene Enabled Industry Transformation The University of Adelaide South Australia 5005 Australia
| |
Collapse
|
38
|
Roh HH, Kim HS, Kim C, Lee KY. 3D Printing of Polysaccharide-Based Self-Healing Hydrogel Reinforced with Alginate for Secondary Cross-Linking. Biomedicines 2021; 9:biomedicines9091224. [PMID: 34572410 PMCID: PMC8471923 DOI: 10.3390/biomedicines9091224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 11/23/2022] Open
Abstract
Three-dimensional (3D) bioprinting has been attractive for tissue and organ regeneration with the possibility of constructing biologically functional structures useful in many biomedical applications. Autonomous healing of hydrogels composed of oxidized hyaluronate (OHA), glycol chitosan (GC), and adipic acid dihydrazide (ADH) was achieved after damage. Interestingly, the addition of alginate (ALG) to the OHA/GC/ADH self-healing hydrogels was useful for the dual cross-linking system, which enhanced the structural stability of the gels without the loss of their self-healing capability. Various characteristics of OHA/GC/ADH/ALG hydrogels, including viscoelastic properties, cytotoxicity, and 3D printability, were investigated. Additionally, potential applications of 3D bioprinting of OHA/GC/ADH/ALG hydrogels for cartilage regeneration were investigated in vitro. This hydrogel system may have potential for bioprinting of a custom-made scaffold in various tissue engineering applications.
Collapse
Affiliation(s)
- Hyun-Ho Roh
- Department of Bioengineering, Hanyang University, Seoul 04763, Korea; (H.-H.R.); (H.-S.K.); (C.K.)
| | - Hyun-Seung Kim
- Department of Bioengineering, Hanyang University, Seoul 04763, Korea; (H.-H.R.); (H.-S.K.); (C.K.)
| | - Chunggoo Kim
- Department of Bioengineering, Hanyang University, Seoul 04763, Korea; (H.-H.R.); (H.-S.K.); (C.K.)
| | - Kuen-Yong Lee
- Department of Bioengineering, Hanyang University, Seoul 04763, Korea; (H.-H.R.); (H.-S.K.); (C.K.)
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Korea
- Correspondence: ; Tel.: +82-2-2220-0482
| |
Collapse
|
39
|
Mufarrih SH, Mahmood F, Qureshi NQ, Yunus R, Quraishi I, Baribeau V, Sharkey A, Matyal R, Khabbaz KR. Three-Dimensional Printing of Patient-Specific Heart Valves: Separating Facts From Fiction and Myth From Reality. J Cardiothorac Vasc Anesth 2021; 36:2643-2655. [PMID: 34654635 DOI: 10.1053/j.jvca.2021.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/05/2021] [Accepted: 09/08/2021] [Indexed: 11/11/2022]
Abstract
The development of prosthetic heart valves by Dr. Charles Hufnagel in 1952 was a major clinical innovation; however, it was not an ideal solution. Mechanical prosthetic heart valves are rigid, immunogenic, require anticoagulation, do not grow with the patient, and have a finite life.1 An ideal prosthetic valve should overcome all these limitations. Considering the prevalence of valvular heart disorders, there is considerable interest in the creation of patient-specific heart valves. Following the introduction of three-dimensional (3D) printing in 1986 by Chuck Hill, rapid advances in multimodality 3D imaging and modeling have led to a generation of tangible replicas of patient-specific anatomy. The science of organogenesis has gained importance for a multitude of valid reasons: as an alternate source of organs, for realistic drug testing, as an alternative to animal testing, and for transplants that grow with the patient. What scientists imagined to be seemingly impossible in the past now seems just a step away from becoming a reality. However, due to the disruptive nature of this technology, often there are commercially-motivated claims of originality and overstatement of the scope and applicability of 3D printing. It often is difficult to separate fact from fiction and myth from reality. In this manuscript, the authors have reviewed the historic perspective, status of the basic techniques of organogenesis with specific reference to heart valves, and their potential.
Collapse
Affiliation(s)
- Syed Hamza Mufarrih
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| | - Feroze Mahmood
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| | - Nada Qaisar Qureshi
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| | - Rayaan Yunus
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| | - Ibrahim Quraishi
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| | - Vincent Baribeau
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| | - Aidan Sharkey
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| | - Robina Matyal
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Kamal R Khabbaz
- Department of Surgery, Division of Cardiothoracic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| |
Collapse
|
40
|
Khosravimelal S, Mobaraki M, Eftekhari S, Ahearne M, Seifalian AM, Gholipourmalekabadi M. Hydrogels as Emerging Materials for Cornea Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006335. [PMID: 33887108 DOI: 10.1002/smll.202006335] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Hydrogel biomaterials have many favorable characteristics including tuneable mechanical behavior, cytocompatibility, optical properties suitable for regeneration and restoration of the damaged cornea tissue. The cornea is a tissue susceptible to various injuries and traumas with a complicated healing cascade, in which conserving its transparency and integrity is critical. Accordingly, the hydrogels' known properties along with the stimulation of nerve and cell regeneration make them ideal scaffold for corneal tissue engineering. Hydrogels have been used extensively in clinical applications for the repair and replacement of diseased organs. The development and optimizing of novel hydrogels to repair/replace corneal injuries have been the main focus of researches within the last decade. This research aims to critically review in vitro, preclinical, as well as clinical trial studies related to corneal wound healing using hydrogels in the past 10 years, as this is considered as an emerging technology for corneal treatment. Several unique modifications of hydrogels with smart behaviors have undergone early phase clinical trials and showed promising outcomes. Financially, this considers a multibillion dollars industry and with huge interest from medical devices as well as pharmaceutical industries with several products may emerge within the next five years.
Collapse
Affiliation(s)
- Sadjad Khosravimelal
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Mohammadmahdi Mobaraki
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, 1591634311, Iran
| | - Samane Eftekhari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Mark Ahearne
- Trinity Centre for Biomedical Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Dublin, D02 R590, Republic of Ireland
| | - Alexander Marcus Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd), London BioScience Innovation Centre, London, NW1 0NH, UK
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| |
Collapse
|
41
|
|
42
|
Thiévenaz V, Rajesh S, Sauret A. Droplet detachment and pinch-off of bidisperse particulate suspensions. SOFT MATTER 2021; 17:6202-6211. [PMID: 34100040 DOI: 10.1039/d1sm00593f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
When a droplet is generated, the ligament connecting the drop to the nozzle thins down and eventually pinches off. Adding solid particles to the liquid phase leads to a more complex dynamic, notably by increasing the shear viscosity. Moreover, it introduces an additional length scale to the system, the diameter of the particles, which eventually becomes comparable to the diameter of the ligament. In this paper, we experimentally investigate the thinning and pinch-off of drops of suspensions with two different sizes of particles. We characterize the thinning for different particle size ratios and different proportions of small particles. Long before the pinch-off, the thinning rate is that of an equivalent liquid whose viscosity is that of the suspension. Later, when the ligament thickness approaches the size of the large particles, the thinning accelerates and leads to an early pinch-off. We explain how the bidisperse particle size distribution lowers the viscosity by making the packing more efficient, which speeds up the thinning. This result can be used to predict the dynamics of droplet formation with bidisperse suspensions.
Collapse
Affiliation(s)
- Virgile Thiévenaz
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA.
| | - Sreeram Rajesh
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA.
| | - Alban Sauret
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA.
| |
Collapse
|
43
|
Application of 3D Bioprinters for Dental Pulp Regeneration and Tissue Engineering (Porous architecture). Transp Porous Media 2021. [DOI: 10.1007/s11242-021-01618-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Belfiore L, Aghaei B, Law AMK, Dobrowolski JC, Raftery LJ, Tjandra AD, Yee C, Piloni A, Volkerling A, Ferris CJ, Engel M. Generation and analysis of 3D cell culture models for drug discovery. Eur J Pharm Sci 2021; 163:105876. [PMID: 33989755 DOI: 10.1016/j.ejps.2021.105876] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Successful preclinical drug testing relies in part on data generated using in vitro cell culture models that recapitulate the structure and function of tumours and other tissues in vivo. The growing evidence that 3D cell models can more accurately predict the efficacy of drug responses compared to traditionally utilised 2D cell culture systems has led to continuous scientific and technological advances that enable better physiologically representative in vitro modelling of in vivo tissues. This review will provide an overview of the utility of current 3D cell models from a drug screening perspective and explore the future of 3D cell models for drug discovery applications.
Collapse
Affiliation(s)
- Lisa Belfiore
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia.
| | - Behnaz Aghaei
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Andrew M K Law
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia
| | | | - Lyndon J Raftery
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia
| | - Angie D Tjandra
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia
| | - Christine Yee
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia; Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Alberto Piloni
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia
| | | | - Cameron J Ferris
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia
| | - Martin Engel
- Inventia Life Science Pty Ltd, Sydney, New South Wales, 2015, Australia
| |
Collapse
|
45
|
Kang D, Park JA, Kim W, Kim S, Lee H, Kim W, Yoo J, Jung S. All-Inkjet-Printed 3D Alveolar Barrier Model with Physiologically Relevant Microarchitecture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004990. [PMID: 34026463 PMCID: PMC8132150 DOI: 10.1002/advs.202004990] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/24/2021] [Indexed: 05/29/2023]
Abstract
With the outbreak of new respiratory viruses and high mortality rates of pulmonary diseases, physiologically relevant models of human respiratory system are urgently needed to study disease pathogenesis, drug efficacy, and pharmaceutics. In this paper, a 3D alveolar barrier model fabricated by printing four human alveolar cell lines, namely, type I and II alveolar cells (NCI-H1703 and NCI-H441), lung fibroblasts (MRC5), and lung microvascular endothelial cells (HULEC-5a) is presented. Automated high-resolution deposition of alveolar cells by drop-on-demand inkjet printing enables to fabricate a three-layered alveolar barrier model with an unprecedented thickness of ≈10 µm. The results show that the 3D structured model better recapitulate the structure, morphologies, and functions of the lung tissue, compared not only to a conventional 2D cell culture model, as expected, but also a 3D non-structured model of a homogeneous mixture of the alveolar cells and collagen. Finally, it is demonstrated that this thin multilayered model reproduce practical tissue-level responses to influenza infection. Drop-on-demand inkjet-printing is an enabling technology for customization, scalable manufacturing, and standardization of their size and growth, and it is believed that this 3D alveolar barrier model can be used as an alternative to traditional test models for pathological and pharmaceutical applications.
Collapse
Affiliation(s)
- Dayoon Kang
- School of Interdisciplinary Bioscience and BioengineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohang37673Korea
| | - Ju An Park
- Department of Convergence IT EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohang37673Korea
| | - Woojo Kim
- Department of Convergence IT EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohang37673Korea
| | - Seongju Kim
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohang37673Korea
| | - Hwa‐Rim Lee
- Department of Convergence IT EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohang37673Korea
| | - Woo‐Jong Kim
- Department of Life SciencesPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohang37673Korea
| | - Joo‐Yeon Yoo
- Department of Life SciencesPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohang37673Korea
| | - Sungjune Jung
- School of Interdisciplinary Bioscience and BioengineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohang37673Korea
- Department of Convergence IT EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohang37673Korea
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohang37673Korea
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)77 Cheongam‐Ro, Nam‐GuPohang37673Korea
| |
Collapse
|
46
|
Pedroza-González SC, Rodriguez-Salvador M, Pérez-Benítez BE, Alvarez MM, Santiago GTD. Bioinks for 3D Bioprinting: A Scientometric Analysis of Two Decades of Progress. Int J Bioprint 2021; 7:333. [PMID: 34007938 PMCID: PMC8126700 DOI: 10.18063/ijb.v7i2.337] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
This scientometric analysis of 393 original papers published from January 2000 to June 2019 describes the development and use of bioinks for 3D bioprinting. The main trends for bioink applications and the primary considerations guiding the selection and design of current bioink components (i.e., cell types, hydrogels, and additives) were reviewed. The cost, availability, practicality, and basic biological considerations (e.g., cytocompatibility and cell attachment) are the most popular parameters guiding bioink use and development. Today, extrusion bioprinting is the most widely used bioprinting technique. The most reported use of bioinks is the generic characterization of bioink formulations or bioprinting technologies (32%), followed by cartilage bioprinting applications (16%). Similarly, the cell-type choice is mostly generic, as cells are typically used as models to assess bioink formulations or new bioprinting methodologies rather than to fabricate specific tissues. The cell-binding motif arginine-glycine-aspartate is the most common bioink additive. Many articles reported the development of advanced functional bioinks for specific biomedical applications; however, most bioinks remain the basic compositions that meet the simple criteria: Manufacturability and essential biological performance. Alginate and gelatin methacryloyl are the most popular hydrogels that meet these criteria. Our analysis suggests that present-day bioinks still represent a stage of emergence of bioprinting technology.
Collapse
Affiliation(s)
- Sara Cristina Pedroza-González
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
- Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
| | | | | | - Mario Moisés Alvarez
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, Mexico 64849
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
- Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
| |
Collapse
|
47
|
Manita PG, Garcia-Orue I, Santos-Vizcaino E, Hernandez RM, Igartua M. 3D Bioprinting of Functional Skin Substitutes: From Current Achievements to Future Goals. Pharmaceuticals (Basel) 2021; 14:ph14040362. [PMID: 33919848 PMCID: PMC8070826 DOI: 10.3390/ph14040362] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
The aim of this review is to present 3D bioprinting of skin substitutes as an efficient approach of managing skin injuries. From a clinical point of view, classic treatments only provide physical protection from the environment, and existing engineered scaffolds, albeit acting as a physical support for cells, fail to overcome needs, such as neovascularisation. In the present work, the basic principles of bioprinting, together with the most popular approaches and choices of biomaterials for 3D-printed skin construct production, are explained, as well as the main advantages over other production methods. Moreover, the development of this technology is described in a chronological manner through examples of relevant experimental work in the last two decades: from the pioneers Lee et al. to the latest advances and different innovative strategies carried out lately to overcome the well-known challenges in tissue engineering of skin. In general, this technology has a huge potential to offer, although a multidisciplinary effort is required to optimise designs, biomaterials and production processes.
Collapse
Affiliation(s)
- Paula Gabriela Manita
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Itxaso Garcia-Orue
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: (R.M.H.); (M.I.)
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (P.G.M.); (I.G.-O.); (E.S.-V.)
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Correspondence: (R.M.H.); (M.I.)
| |
Collapse
|
48
|
Li N, Guo R, Zhang ZJ. Bioink Formulations for Bone Tissue Regeneration. Front Bioeng Biotechnol 2021; 9:630488. [PMID: 33614614 PMCID: PMC7892967 DOI: 10.3389/fbioe.2021.630488] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Unlike the conventional techniques used to construct a tissue scaffolding, three-dimensional (3D) bioprinting technology enables fabrication of a porous structure with complex and diverse geometries, which facilitate evenly distributed cells and orderly release of signal factors. To date, a range of cell-laden materials, such as natural or synthetic polymers, have been deployed by the 3D bioprinting technique to construct the scaffolding systems and regenerate substitutes for the natural extracellular matrix (ECM). Four-dimensional (4D) bioprinting technology has attracted much attention lately because it aims to accommodate the dynamic structural and functional transformations of scaffolds. However, there remain challenges to meet the technical requirements in terms of suitable processability of the bioink formulations, desired mechanical properties of the hydrogel implants, and cell-guided functionality of the biomaterials. Recent bioprinting techniques are reviewed in this article, discussing strategies for hydrogel-based bioinks to mimic native bone tissue-like extracellular matrix environment, including properties of bioink formulations required for bioprinting, structure requirements, and preparation of tough hydrogel scaffolds. Stimulus mechanisms that are commonly used to trigger the dynamic structural and functional transformations of the scaffold are analyzed. At the end, we highlighted the current challenges and possible future avenues of smart hydrogel-based bioink/scaffolds for bone tissue regeneration.
Collapse
Affiliation(s)
- Na Li
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Zhenyu Jason Zhang
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
49
|
Yang J, Zheng F, Derby B. Stability of Lines with Zero Receding Contact Angle Produced by Inkjet Printing at Small Drop Volume. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:26-34. [PMID: 33393297 DOI: 10.1021/acs.langmuir.0c01928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present an experimental study of the maximum and minimum bounding drop spacing for a parallel-sided liquid line produced by inkjet printing with drop volumes of 1.5 and 8.5 pL, on substrates with advancing contact angles of 46 and 54°, and zero receding contact angle. The results are used to validate models of the limiting bounds for the formation of stable parallel-sided lines as a function of drop spacing and transverse printing speed. The model for the maximum drop spacing bound (minimum line width) shows a good agreement with our results, but, when used to predict the stable line width, there is an influence of printing speed not captured by the model. This is probably because of a coupling between printed drop volume and ejection velocity outside the scope of the model. The minimum drop spacing bound (maximum stable line width) is limited by a bulging instability, and our results agree with the existing model, except for printing with the largest drop volumes at low temperature. It is shown that under these conditions, there is a different mechanism for bulging that occurs after printing over a period of minutes, if the liquid bead is present on the surface for a significant period of time before drying. Our results suggest that this mechanism is possibly triggered by imperfections on the substrate.
Collapse
Affiliation(s)
- Jinxin Yang
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Fei Zheng
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Brian Derby
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
50
|
Tan B, Gan S, Wang X, Liu W, Li X. Applications of 3D bioprinting in tissue engineering: advantages, deficiencies, improvements, and future perspectives. J Mater Chem B 2021; 9:5385-5413. [PMID: 34124724 DOI: 10.1039/d1tb00172h] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Over the past decade, 3D bioprinting technology has progressed tremendously in the field of tissue engineering in its ability to fabricate individualized biological constructs with precise geometric designability, which offers us the capability to bridge the divergence between engineered tissue constructs and natural tissues. In this work, we first review the current widely used 3D bioprinting approaches, cells, and materials. Next, the updated applications of this technique in tissue engineering, including bone tissue, cartilage tissue, vascular grafts, skin, neural tissue, heart tissue, liver tissue and lung tissue, are briefly introduced. Then, the prominent advantages of 3D bioprinting in tissue engineering are summarized in detail: rapidly prototyping the customized structure, delivering cell-laden materials with high precision in space, and engineering with a highly controllable microenvironment. The current technical deficiencies of 3D bioprinted constructs in terms of mechanical properties and cell behaviors are afterward illustrated, as well as corresponding improvements. Finally, we conclude with future perspectives about 3D bioprinting in tissue engineering.
Collapse
Affiliation(s)
- Baosen Tan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Shaolei Gan
- Jiangxi Borayer Biotech Co., Ltd, Nanchang 330052, China
| | - Xiumei Wang
- Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Wenyong Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|