1
|
Banerjee M, Al-Eryani L, Srivastava S, Rai SN, Pan J, Kalbfleisch TS, States JC. Delineating the Effects of Passaging and Exposure in a Longitudinal Study of Arsenic-Induced Squamous Cell Carcinoma in a HaCaT Cell Line Model. Toxicol Sci 2021; 185:184-196. [PMID: 34730829 DOI: 10.1093/toxsci/kfab129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a major deleterious health effect of chronic arsenic (iAs) exposure. The molecular mechanism of arsenic-induced cSCC remains poorly understood. We recently demonstrated that chronic iAs exposure leads to temporally regulated genome-wide changes in profiles of differentially expressed mRNAs and miRNAs at each stage of carcinogenesis (7, 19 and 28 weeks) employing a well-established passage-matched HaCaT cell line model of arsenic-induced cSCC. Here, we performed longitudinal differential expression analysis (miRNA and mRNA) between the different time points (7 vs. 19 weeks and 19 vs. 28 weeks) within unexposed and exposed groups, coupled to expression pairing and pathway analyses to differentiate the relative effects of long-term passaging and chronic iAs exposure. Data showed that 66-105 miRNA [p < 0.05; log2(Fold Change)>I1I] and 2826-4079 mRNA [p < 0.001; log2(Fold Change)>I1I] molecules were differentially expressed depending on the longitudinal comparison. Several mRNA molecules differentially expressed as a function of time, independent of iAs exposure were being targeted by miRNA molecules which were also differentially expressed in a time dependent manner. Distinct pathways were predicted to be modulated as a function of time or iAs exposure. Some pathways were also modulated both by time and exposure. Thus, the HaCaT model can distinguish between the effects of passaging and chronic iAs exposure individually and corroborate our previously published data on effects of iAs exposure compared to unexposed passage matched HaCaT cells. In addition, this work provides a template for cell line based longitudinal chronic exposure studies to follow for optimal efficacy.
Collapse
Affiliation(s)
- Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, USA Louisville, KY
| | - Laila Al-Eryani
- Department of Pharmacology and Toxicology, University of Louisville, USA Louisville, KY
| | - Sudhir Srivastava
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, USA Louisville, KY.,Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, India New Delhi, 110012
| | - Shesh N Rai
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, USA Louisville, KY.,Department of Bioinformatics and Biostatistics, University of Louisville, USA Louisville, KY
| | - Jianmin Pan
- Biostatistics and Bioinformatics Facility, James Graham Brown Cancer Center, University of Louisville, USA Louisville, KY
| | - Theodore S Kalbfleisch
- Department of Biochemistry and Molecular Genetics, University of Louisville, USA Louisville, KY
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, USA Louisville, KY
| |
Collapse
|
2
|
García-Díaz R, Arriola-Guillén LE, Aliaga-Del Castillo A, Agudelo-Botero AM, Fiori-Chincaro GA. 2D-3D comparison of the temporomandibular joint in skeletal Class II versus Class I adults: A retrospective study. Int Orthod 2020; 18:784-793. [PMID: 32513609 DOI: 10.1016/j.ortho.2020.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To compare the temporomandibular joint (TMJ) morphological characteristics in people with Class II versus Class I sagittal skeletal relationship and to identify other factors that influence the TMJ dimensions. MATERIAL AND METHODS This cross-sectional and retrospective study evaluated 188 people divided into two groups, 92 cone-beam computed tomographies (CBCTs) and lateral radiographs (LR) of people with Skeletal class II relationship with Class II division 1 malocclusion versus 96 CBCTs and LR of people with Class I skeletal relationship and Class I malocclusion (controls). The CBCTs included people of both sexes, aged between 15 and 65 years old. The 3D Imaging Carestream Software was used to evaluate the condyle height and neck width, mediolateral and anteroposterior condyle dimensions, the shape of the glenoid fossa and condyle in the CBCTs. Likewise, the ANB angle, the Wits appraisal and other measurements were evaluated on LR. Besides, Mann-Whitney U, Chi2 and multiple linear regression tests were performed. The significance level was set at P˂0.05. RESULTS The mediolateral and anteroposterior condyle dimensions were smaller in class II people (1.82mm and 0.29mm, respectively) than class I people (P<0.05). Likewise, height and neck width of condyle were smaller in class II people (0.73mm and 0.40mm, respectively) than class I people (P<0.05). Multiple linear regression identified mainly the ANB angle as a factor (P<0.05) that influenced the dimensions, decreasing the condyle dimensions in skeletal class II relationship. CONCLUSIONS People with skeletal class II relationship showed smaller condyle dimension values than class I people. A decrease in the dimensions of the eminence and the condyle could be expected when the ANB angle increases.
Collapse
Affiliation(s)
- Rosaura García-Díaz
- Universidad Científica del Sur, School of Dentistry, Division of Oral Radiology, Lima, Peru
| | | | | | | | | |
Collapse
|
3
|
Su X, Wang J, Kang H, Bao G, Liu L. Effects of dynamic radial tensile stress on fibrocartilage differentiation of bone marrow mesenchymal stem cells. Biomed Eng Online 2020; 19:8. [PMID: 32024525 PMCID: PMC7003351 DOI: 10.1186/s12938-020-0751-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/24/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Uniaxial/biaxial tensile stress has been employed to induce chondrocyte differentiation of mesenchymal stem cells. However, the effects of radial tensile stimuli on differentiation of MSCs into fibrocartilage remain unclear. RESULTS It was found that induced bone marrow mesenchymal stem cells (BMSCs) were not only similar to TMJ disc cells in morphology, but also could synthesize type I collagen (Col I), a small amount of type II collagen (Col II) and glycosaminoglycans (GAGs). The synthesis of Col I significantly increased while that of Col II gradually decreased with increasing tensile strength. The ratio of Col I to Col II was 1.8 to 1 and 2 to 1 in the 10% and 15% stretching groups, respectively. The gene expression of Col I and GAGs was significantly upregulated, whereas that of Col II was downregulated. However, the higher tensile stimulation (15%) promoted the synthesis of α-smooth muscle actin (α-SMA). Too much α-SMA is not conducive to constructing engineered tissue. CONCLUSION Therefore, the 10% radial tensile stimulus was the optimal strength for inducing the BMSCs to differentiate into fibrochondrocytes of the temporomandibular joint (TMJ) disc. This work provided a novel approach for inducing BMSCs to differentiate into fibrochondrocytes.
Collapse
Affiliation(s)
- Xuelian Su
- College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.,Key Lab of Oral Diseases of Gansu Province, Northwest Minzu University, Lanzhou, People's Republic of China.,Key Lab of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, People's Republic of China.,Key Laboratory of Mechanics on Disaster and Environment in Western China, The Ministry of Education of China, Lanzhou University, Lanzhou, People's Republic of China.,Department of Prosthodontics, School of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Jizeng Wang
- College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China. .,Key Laboratory of Mechanics on Disaster and Environment in Western China, The Ministry of Education of China, Lanzhou University, Lanzhou, People's Republic of China.
| | - Hong Kang
- College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.,Key Laboratory of Mechanics on Disaster and Environment in Western China, The Ministry of Education of China, Lanzhou University, Lanzhou, People's Republic of China
| | - Guangjie Bao
- Key Lab of Oral Diseases of Gansu Province, Northwest Minzu University, Lanzhou, People's Republic of China.,Key Lab of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, People's Republic of China.,Department of Prosthodontics, School of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| | - Lin Liu
- Key Lab of Oral Diseases of Gansu Province, Northwest Minzu University, Lanzhou, People's Republic of China.,Key Lab of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, People's Republic of China.,Department of Prosthodontics, School of Stomatology, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Vapniarsky N, Huwe LW, Arzi B, Houghton MK, Wong ME, Wilson JW, Hatcher DC, Hu JC, Athanasiou KA. Tissue engineering toward temporomandibular joint disc regeneration. Sci Transl Med 2019; 10:10/446/eaaq1802. [PMID: 29925634 DOI: 10.1126/scitranslmed.aaq1802] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/25/2018] [Indexed: 12/11/2022]
Abstract
Treatments for temporomandibular joint (TMJ) disc thinning and perforation, conditions prevalent in TMJ pathologies, are palliative but not reparative. To address this, scaffold-free tissue-engineered implants were created using allogeneic, passaged costal chondrocytes. A combination of compressive and bioactive stimulation regimens produced implants with mechanical properties akin to those of the native disc. Efficacy in repairing disc thinning was examined in minipigs. Compared to empty controls, treatment with tissue-engineered implants restored disc integrity by inducing 4.4 times more complete defect closure, formed 3.4-fold stiffer repair tissue, and promoted 3.2-fold stiffer intralaminar fusion. The osteoarthritis score (indicative of degenerative changes) of the untreated group was 3.0-fold of the implant-treated group. This tissue engineering strategy paves the way for developing tissue-engineered implants as clinical treatments for TMJ disc thinning.
Collapse
Affiliation(s)
- Natalia Vapniarsky
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, Davis, CA 95616, USA
| | - Le W Huwe
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Meghan K Houghton
- Directorate for Computer and Information Science and Engineering, National Science Foundation, Alexandria, VA 22314, USA
| | - Mark E Wong
- Department of Oral and Maxillofacial Surgery, University of Texas School of Dentistry, Houston, TX 77054, USA
| | - James W Wilson
- Department of Oral and Maxillofacial Surgery, University of Texas School of Dentistry, Houston, TX 77054, USA
| | - David C Hatcher
- Diagnostic Digital Imaging Center, Sacramento, CA 95825, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
5
|
Cone SG, Warren PB, Fisher MB. Rise of the Pigs: Utilization of the Porcine Model to Study Musculoskeletal Biomechanics and Tissue Engineering During Skeletal Growth. Tissue Eng Part C Methods 2017; 23:763-780. [PMID: 28726574 PMCID: PMC5689129 DOI: 10.1089/ten.tec.2017.0227] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 07/14/2017] [Indexed: 12/17/2022] Open
Abstract
Large animal models play an essential role in the study of tissue engineering and regenerative medicine (TERM), as well as biomechanics. The porcine model has been increasingly used to study the musculoskeletal system, including specific joints, such as the knee and temporomandibular joints, and tissues, such as bone, cartilage, and ligaments. In particular, pigs have been utilized to evaluate the role of skeletal growth on the biomechanics and engineered replacements of these joints and tissues. In this review, we explore the publication history of the use of pig models in biomechanics and TERM discuss interspecies comparative studies, highlight studies on the effect of skeletal growth and other biological considerations in the porcine model, and present challenges and emerging opportunities for using this model to study functional TERM.
Collapse
Affiliation(s)
- Stephanie G. Cone
- Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina and University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Paul B. Warren
- Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina and University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Matthew B. Fisher
- Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina and University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
- Department of Orthopaedics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
6
|
Fibrochondrocyte Growth and Functionality on TiO₂ Nanothin Films. J Funct Biomater 2016; 7:jfb7020015. [PMID: 27314395 PMCID: PMC4932472 DOI: 10.3390/jfb7020015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 12/26/2022] Open
Abstract
Disorders affecting the temporomandibular joint (TMJ) are a long-standing health concern. TMJ disorders (TMJD) are often associated with an internal disc derangement accompanied by a suite of symptoms including joint noises, jaw dysfunction, and severe pain. The severity of patient symptoms and their reoccurrence can be alleviated to some extent with conservative therapy; however, refractory cases often require surgery that has shown only limited success. Bioengineered scaffolds with cell supportive surfaces an d nanoarchitectures that mimic TMJ tissue structure may offer an alternative treatment modality. In this study, titanium dioxide (TiO2) nanothin films, fabricated by layer-by-layer assembly, were examined as means for creating such a scaffold. The viability and growth of TMJ discal fibrochondrocytes (FCs) were assessed through MTT and DNA assays and total protein content over a 14-day experimental period. ELISA was also used to measure expression of types I and II collagen, decorin and aggrecan. Quantitative analyses demonstrated that FCs synthesized characteristic discal matrix proteins, with an increased production of type I collagen and decorin as opposed to collagen type II and aggrecan. A stimulatory effect on discal FC proliferation and extracellular matrix (ECM) expression with thicker nanofilms was also observed. The cumulative results suggest that TiO2 nanofilms may have potential as a TMJ scaffolding material.
Collapse
|
7
|
Abstract
Temporomandibular Disorders (TMD) represent a heterogeneous group of musculoskeletal and neuromuscular conditions involving the temporomandibular joint (TMJ), masticatory muscles and/or associated structures. They are a major cause of non-dental orofacial pain. As a group, they are often multi-factorial in nature and have no common etiology or biological explanations. TMD can be broadly divided into masticatory muscle and TMJ disorders. TMJ disorders are characterized by intra-articular positional and/or structural abnormalities. The most common type of TMJ disorders involves displacement of the TMJ articular disc that precedes progressive degenerative changes of the joint leading to osteoarthritis (OA). In the past decade, progress made in the development of stem cell-based therapies and tissue engineering have provided alternative methods to attenuate the disease symptoms and even replace the diseased tissue in the treatment of TMJ disorders. Resident mesenchymal stem cells (MSCs) have been isolated from the synovia of TMJ, suggesting an important role in the repair and regeneration of TMJ. The seminal discovery of pluripotent stem cells including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have provided promising cell sources for drug discovery, transplantation as well as for tissue engineering of TMJ condylar cartilage and disc. This review discusses the most recent advances in development of stem cell-based treatments for TMJ disorders through innovative approaches of cell-based therapeutics, tissue engineering and drug discovery.
Collapse
|
8
|
Park Y, Hosomichi J, Ge C, Xu J, Franceschi R, Kapila S. Immortalization and characterization of mouse temporomandibular joint disc cell clones with capacity for multi-lineage differentiation. Osteoarthritis Cartilage 2015; 23:1532-42. [PMID: 25887369 PMCID: PMC4558381 DOI: 10.1016/j.joca.2015.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/17/2015] [Accepted: 04/02/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Despite the importance of temporomandibular joint (TMJ) disc in normal function and disease, studying the responses of its cells has been complicated by the lack of adequate characterization of the cell subtypes. The purpose of our investigation was to immortalize, clone, characterize and determine the multi-lineage potential of mouse TMJ disc cells. DESIGN Cells from 12-week-old female mice were cultured and immortalized by stable transfection with human telomerase reverse transcriptase (hTERT). The immortalized cell clones were phenotyped for fibroblast- or chondrocyte-like characteristics and ability to undergo adipocytic, osteoblastic and chondrocytic differentiation. RESULTS Of 36 isolated clones, four demonstrated successful immortalization and maintenance of stable protein expression for up to 50 passages. Two clones each were initially characterized as fibroblast-like and chondrocyte-like on the basis of cell morphology and growth rate. Further the chondrocyte-like clones had higher mRNA expression levels of cartilage oligomeric matrix protein (COMP) (>3.5-fold), collagen X (>11-fold), collagen II expression (2-fold) and collagen II:I ratio than the fibroblast-like clones. In contrast, the fibroblast-like clones had higher mRNA expression level of vimentin (>1.5-fold), and fibroblastic specific protein 1 (>2.5-fold) than the chondrocyte-like clones. Both cell types retained multi-lineage potential as demonstrated by their capacity to undergo robust adipogenic, osteogenic and chondrogenic differentiation. CONCLUSIONS These studies are the first to immortalize TMJ disc cells and characterize chondrocyte-like and fibroblast-like clones with retained multi-differentiation potential that would be a valuable resource in studies to dissect the behavior of specific cell types in health and disease and for tissue engineering.
Collapse
Affiliation(s)
- Young Park
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, The University of Michigan, Ann Arbor, MI, USA
| | - Jun Hosomichi
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, The University of Michigan, Ann Arbor, MI, USA,Department of Orthodontic Science, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chunxi Ge
- Department of Periodontics and Oral Medicine, School of Dentistry, The University of Michigan, Ann Arbor, MI, USA
| | - Jinping Xu
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, The University of Michigan, Ann Arbor, MI, USA
| | - Renny Franceschi
- Department of Periodontics and Oral Medicine, School of Dentistry, The University of Michigan, Ann Arbor, MI, USA
| | - Sunil Kapila
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, The University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Tissue engineering of the temporomandibular joint disc: current status and future trends. Int J Artif Organs 2015; 38:55-68. [PMID: 25744198 DOI: 10.5301/ijao.5000393] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2014] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Temporomandibular joint disorders are extremely prevalent and there is no ideal treatment clinically for the moment. For severe cases, a discectomy often need to be performed, which will further result in the development of osteoarthritis. In the past thirty years, tissue engineering has provided a promising approach for the effective remedy of severe TMJ disease through the creation of viable, effective, and biological functional implants. METHODS Although TMJ disc tissue engineering is still in early stage, unremitting efforts and some achievements have been made over the past decades. In this review, a comprehensive summary of the available literature on the progress and status in tissue engineering of the TMJ disc regarding cell sources, scaffolds, biochemical and biomechanical stimuli, and other prospects relative to this field is provided. RESULTS AND CONCLUSIONS Even though research studies in this field are too few compared to other fibrocartilage (e.g., knee meniscus) and numerous, difficult tasks still exist, we believe that our ultimate goal of regenerating a biological implant whose histological, biochemical, and biomechanical properties parallel native TMJ discs for clinical therapy will be achieved in the near future.
Collapse
|
10
|
The pilot study of fibrin with temporomandibular joint derived synovial stem cells in repairing TMJ disc perforation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:454021. [PMID: 24822210 PMCID: PMC4009306 DOI: 10.1155/2014/454021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 03/08/2014] [Accepted: 03/11/2014] [Indexed: 11/23/2022]
Abstract
TMJ disc related diseases are difficult to be cured due to the poor repair ability of the disc. TMJ-SDSCs were ideal cell sources for cartilage tissue engineering which have been widely used in hyaline cartilage regeneration. Fibrin gel has been demonstrated as a potential scaffold for neocartilage formation. The aim of this study was to repair the TMJ disc perforation using fibrin/chitosan hybrid scaffold combined with TMJ-SDSCs. Rat TMJ-SDSCs were cultured on hybrid scaffold or pure chitosan scaffolds. The cell seeding efficiency, distribution, proliferation, and chondrogenic differentiation capacity were investigated. To evaluate the in vivo repair ability of cell/scaffold construct, rat TMJ disc explants were punched with a defect to mimic TMJ disc perforation. Cell seeded scaffolds were inserted into the defect of TMJ disc explants and then were implanted subcutaneously in nude mice for 4 weeks. Results demonstrated that fibrin may improve cell seeding, proliferation, and chondrogenic induction in vitro. The in vivo experiments showed more cartilage ECM deposition in fibrin/chitosan scaffold, which suggested an enhanced reparative ability. This pilot study demonstrated that the regenerative ability of TMJ-SDSCs seeded in fibrin/chitosan scaffold could be applied for repairing TMJ disc perforation.
Collapse
|
11
|
Ahtiainen K, Mauno J, Ellä V, Hagström J, Lindqvist C, Miettinen S, Ylikomi T, Kellomäki M, Seppänen R. Autologous adipose stem cells and polylactide discs in the replacement of the rabbit temporomandibular joint disc. J R Soc Interface 2013; 10:20130287. [PMID: 23720535 DOI: 10.1098/rsif.2013.0287] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The temporomandibular joint (TMJ) disc lacks functional replacement after discectomy. We investigated tissue-engineered bilayer polylactide (PLA) discs and autologous adipose stem cells (ASCs) as a potential replacement for the TMJ disc. These ASC discs were pre-cultured either in control or in differentiation medium, including transforming growth factor (TGF)-β1 for one week. Prior to implantation, expression of fibrocartilaginous genes was measured by qRT-PCR. The control and differentiated ASC discs were implanted, respectively, in the right and left TMJs of rabbits for six (n = 5) and 12 months (n = 5). Thereafter, the excised TMJ areas were examined with cone beam computed tomography (CBCT) and histology. No signs of infection, inflammation or foreign body reactions were detected at histology, whereas chronic arthrosis and considerable condylar hypertrophy were observed in all operated joints at CBCT. The left condyle treated with the differentiated ASC discs appeared consistently smoother and more sclerotic than the right condyle. The ASC disc replacement resulted in dislocation and morphological changes in the rabbit TMJ. The ASC discs pre-treated with TGF-β1 enhanced the condylar integrity. While adverse tissue reactions were not shown, the authors suggest that with improved attachment and design, the PLA disc and biomaterial itself would hold potential for TMJ disc replacement.
Collapse
Affiliation(s)
- Katja Ahtiainen
- Department of Cell Biology, School of Medicine, University of Tampere, 33014 Tampere, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
A combined approach for the assessment of cell viability and cell functionality of human fibrochondrocytes for use in tissue engineering. PLoS One 2012; 7:e51961. [PMID: 23272194 PMCID: PMC3525587 DOI: 10.1371/journal.pone.0051961] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 11/09/2012] [Indexed: 02/06/2023] Open
Abstract
Temporo-mandibular joint disc disorders are highly prevalent in adult populations. Autologous chondrocyte implantation is a well-established method for the treatment of several chondral defects. However, very few studies have been carried out using human fibrous chondrocytes from the temporo-mandibular joint (TMJ). One of the main drawbacks associated to chondrocyte cell culture is the possibility that chondrocyte cells kept in culture tend to de-differentiate and to lose cell viability under in in-vitro conditions. In this work, we have isolated human temporo-mandibular joint fibrochondrocytes (TMJF) from human disc and we have used a highly-sensitive technique to determine cell viability, cell proliferation and gene expression of nine consecutive cell passages to determine the most appropriate cell passage for use in tissue engineering and future clinical use. Our results revealed that the most potentially viable and functional cell passages were P5–P6, in which an adequate equilibrium between cell viability and the capability to synthesize all major extracellular matrix components exists. The combined action of pro-apoptotic (TRAF5, PHLDA1) and anti-apoptotic genes (SON, HTT, FAIM2) may explain the differential cell viability levels that we found in this study. These results suggest that TMJF should be used at P5–P6 for cell therapy protocols.
Collapse
|
13
|
Animal Models of Temporomandibular Joint Disorders: Implications for Tissue Engineering Approaches. Ann Biomed Eng 2011; 39:2479-90. [DOI: 10.1007/s10439-011-0364-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 07/16/2011] [Indexed: 12/19/2022]
|
14
|
Kiga N, Tojyo I, Matsumoto T, Hiraishi Y, Shinohara Y, Fujita S. Expression of lumican in the articular disc of the human temporomandibular joint. Eur J Histochem 2010; 54:e34. [PMID: 20819773 PMCID: PMC3167310 DOI: 10.4081/ejh.2010.e34] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/27/2010] [Accepted: 06/03/2010] [Indexed: 11/23/2022] Open
Abstract
Lumican belongs to the small leucine-rich repeat proteoglycan (SLRP) gene family and has been reported to exist in the cornea, intervertebral disc and tendon. Lumican plays a significant role in the assembly and regulation of collagen fibres. The human temporomandibular joint (TMJ) disc is made up of fibrocartilage with an extracellular matrix (ECM) composed of collagen and proteoglycans. The existence and behaviour of lumican have not been studied in the human TMJ disc. Therefore, we used immunohistochemical methods to detect lumican, CD34 and vascular endothelial growth factor (VEGF) and histochemical staining with toluidine blue in 13 human TMJ specimens (10 surgically removed and 3 obtained from autopsy). In both normal and deformed discs we observed staining with toluidine blue. We found that the area of metachromasia inside the deformed disc was uneven and expression of lumican was strong in the areas negative for metachromasia. Staining of VEGF and CD34 inside the deformed disc was seen. We confirmed the expression of lumican in the human TMJ disc and showed that a large number of fibroblast-like cells existed in the area of strong lumican expression. These new findings about the behaviour of lumican suggest that it may play a key role in the generation of a new collagen network by fibroblast-like cells.
Collapse
Affiliation(s)
- N Kiga
- Department of Oral and Maxillofacial Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama City, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Gunja NJ, Huey DJ, James RA, Athanasiou KA. Effects of agarose mould compliance and surface roughness on self-assembled meniscus-shaped constructs. J Tissue Eng Regen Med 2010; 3:521-30. [PMID: 19658151 DOI: 10.1002/term.191] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The meniscus is a fibrocartilaginous tissue that is critically important to the loading patterns within the knee joint. If the meniscus structure is compromised, there is little chance of healing, due to limited vascularity in the inner portions of the tissue. Several tissue-engineering techniques to mimic the complex geometry of the meniscus have been employed. Of these, a self-assembly, scaffoldless approach employing agarose moulds avoids drawbacks associated with scaffold use, while still allowing the formation of robust tissue. In this experiment two factors were examined, agarose percentage and mould surface roughness, in an effort to consistently obtain constructs with adequate geometric properties. Co-cultures of ACs and MCs (50:50 ratio) were cultured in smooth or rough moulds composed of 1% or 2% agarose for 4 weeks. Morphological results showed that constructs formed in 1% agarose moulds, particularly smooth moulds, were able to maintain their shape over the 4 week culture period. Significant increases were observed for the collagen II:collagen I ratio, total collagen, GAG and tensile and compressive properties in smooth wells. Cell number per construct was higher in the rough wells. Overall, it was observed that the topology of an agarose surface may be able to affect the phenotypic properties of cells that are on that surface, with smooth surfaces supporting a more chondrocytic phenotype. In addition, wells made from 1% agarose were able to prevent construct buckling potentially, due to their higher compliance.
Collapse
Affiliation(s)
- Najmuddin J Gunja
- Department of Bioengineering, Rice University, Houston, TX 77251, USA
| | | | | | | |
Collapse
|
16
|
Gunja NJ, Athanasiou KA. Additive and synergistic effects of bFGF and hypoxia on leporine meniscus cell-seeded PLLA scaffolds. J Tissue Eng Regen Med 2010; 4:115-22. [PMID: 19937913 PMCID: PMC3553794 DOI: 10.1002/term.221] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Injuries to avascular regions of menisci do not heal and result in significant discomfort to patients. Current treatments, such as partial meniscectomy, alleviate these symptoms in the short term but lead to premature osteoarthritis as a result of compromised stability and changes in knee biomechanics. Thus, tissue engineering of the meniscus may provide an alternative treatment modality to overcome this problem. In this experiment, a scaffold-based tissue-engineering approach was utilized to regenerate the meniscus. Meniscus cells were cultured on poly-L-lactic acid scaffolds in normoxic (approximately 21% oxygen) or hypoxic (approximately 2% oxygen) conditions in the presence or absence of the growth factor, basic fibroblast growth factor (bFGF). At t = 4 weeks, histological sections of constructs showed presence of collagen and glycosaminoglycan (GAG) in all groups. Immunohistochemical staining showed the presence of collagen I in all groups and collagen II in groups cultured under hypoxic conditions. bFGF in the culture medium significantly increased cell number/construct by 25%, regardless of culture conditions. For GAG/construct, synergistic increases were observed in constructs cultured in hypoxic conditions and bFGF (two-fold) when compared to constructs cultured in normoxic conditions. Compressive tests showed synergistic increases in the relaxation modulus and coefficient of viscosity and additive increases in the instantaneous modulus for constructs cultured under hypoxic conditions and bFGF, when compared to constructs cultured under normoxic conditions. Overall, these results demonstrate that bFGF and hypoxia can significantly enhance the ability of meniscus cells to produce GAGs and improve the compressive properties of tissue-engineered meniscus constructs in vitro.
Collapse
Affiliation(s)
- Najmuddin J Gunja
- Department of Bioengineering, Rice University, Houston, TX 77251, USA
| | | |
Collapse
|
17
|
Bilgen B, Ren Y, Pei M, Aaron RK, Ciombor DM. CD14-negative isolation enhances chondrogenesis in synovial fibroblasts. Tissue Eng Part A 2010; 15:3261-70. [PMID: 19382853 DOI: 10.1089/ten.tea.2008.0273] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Synovial membrane has been shown to contain mesenchymal stem cells. We hypothesized that an enriched population of synovial fibroblasts would undergo chondrogenic differentiation and secrete cartilage extracellular matrix to a greater extent than would a mixed synovial cell population (MSCP). The optimum doses of transforming growth factor beta 1 (TGF-beta1) and insulin-like growth factor 1 (IGF-1) for chondrogenesis were investigated. CD14-negative isolation was used to obtain a porcine cell population enriched in type-B synovial fibroblasts (SFB) from an MSCP. The positive cell surface markers in SFB were CD90, CD44, and cadherin-11. SFB and MSCP were cultured in the presence of 20 ng/mL TGF-beta1 for 7 days, and SFB were demonstrated to have higher chondrogenic potential. Further dose-response studies were carried out using the SFB cells and several doses of TGF-beta1 (2, 10, 20, and 40 ng/mL) and/or IGF-1 (1, 10, 100, and 500 ng/mL) for 14 days. TGF-beta1 supplementation was essential for chondrogenesis and prevention of cell death, whereas IGF-1 did not have a significant effect on the SFB cell number or glycosaminoglycan production. This study demonstrates that the CD14-negative isolation yields an enhanced cell population SFB that is more potent than MSCP as a cell source for cartilage tissue engineering.
Collapse
Affiliation(s)
- Bahar Bilgen
- Department of Orthopaedics, Alpert Medical School of Brown University and Center for Restorative and Regenerative Medicine, Providence VA Medical Center and Brown University, Providence, Rhode Island 02903, USA
| | | | | | | | | |
Collapse
|
18
|
Chen WQ, Siegel N, Li L, Pollak A, Hengstschläger M, Lubec G. Variations of Protein Levels in Human Amniotic Fluid Stem Cells CD117/2 Over Passages 5−25. J Proteome Res 2009; 8:5285-95. [DOI: 10.1021/pr900630s] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei-Qiang Chen
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria, and Department of Medical Genetics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria
| | - Nicol Siegel
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria, and Department of Medical Genetics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria
| | - Lin Li
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria, and Department of Medical Genetics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria
| | - Arnold Pollak
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria, and Department of Medical Genetics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria
| | - Markus Hengstschläger
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria, and Department of Medical Genetics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria, and Department of Medical Genetics, Medical University of Vienna, Währinger Gürtel 18, 1090 Vienna, Austria
| |
Collapse
|
19
|
Gunja NJ, Athanasiou KA. Effects of co-cultures of meniscus cells and articular chondrocytes on PLLA scaffolds. Biotechnol Bioeng 2009; 103:808-16. [DOI: 10.1002/bit.22301] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Mäenpää K, Ellä V, Mauno J, Kellomäki M, Suuronen R, Ylikomi T, Miettinen S. Use of adipose stem cells and polylactide discs for tissue engineering of the temporomandibular joint disc. J R Soc Interface 2009; 7:177-88. [PMID: 19474082 DOI: 10.1098/rsif.2009.0117] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There is currently no suitable replacement for damaged temporomandibular joint (TMJ) discs after discectomy. In the present study, we fabricated bilayer biodegradable polylactide (PLA) discs comprising a non-woven mat of poly(L/D)lactide (P(L/D)LA) 96/4 and a P(L/DL)LA 70/30 membrane plate. The PLA disc was examined in combination with adipose stem cells (ASCs) for tissue engineering of the fibrocartilaginous TMJ disc in vitro. ASCs were cultured in parallel in control and chondrogenic medium for a maximum of six weeks. Relative expression of the genes, aggrecan, type I collagen and type II collagen present in the TMJ disc extracellular matrix increased in the ASC-seeded PLA discs in the chondrogenic medium. The hypertrophic marker, type X collagen, was moderately induced. Alcian blue staining showed accumulation of sulphated glycosaminoglycans. ASC differentiation in the PLA discs was close to that observed in pellet cultures. Comparison of the mRNA levels revealed that the degree of ASC differentiation was lower than that in TMJ disc-derived cells and tissue. The pellet format supported the phenotype of the TMJ disc-derived cells under chondrogenic conditions and also enhanced their hyalinization potential, which is considered part of the TMJ disc degeneration process. Accordingly, the combination of ASCs and PLA discs has potential for the development of a tissue-engineered TMJ disc replacement.
Collapse
Affiliation(s)
- Katja Mäenpää
- Department of Cell Biology, Medical School, and Regea-Institute for Regenerative Medicine, FM5/Regea, University of Tampere, 33014 Tampere, Finland.
| | | | | | | | | | | | | |
Collapse
|
21
|
Wang W, Hayami T, Kapila S. Female hormone receptors are differentially expressed in mouse fibrocartilages. Osteoarthritis Cartilage 2009; 17:646-54. [PMID: 19010067 PMCID: PMC2744768 DOI: 10.1016/j.joca.2008.09.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 09/30/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Despite the female predilection for joint diseases, and the known effects of female hormones in regulating chondrocyte function, the various female hormone receptor subtypes in joints are not well characterized, and comparisons in receptor profiles between joints and genders are lacking. This investigation characterized and compared the relative levels of estrogen receptors (ER)-alpha and -beta, relaxin receptors LGR7 and LGR8, and progesterone receptor (PR) in the temporomandibular joint (TMJ) disc, knee meniscus (KM) and pubic symphysis fibrocartilages. METHODS Fibrocartilaginous cells from 12-week-old mice were maintained in serum-containing alpha-modified Eagle's medium (MEM) until confluence. Total RNA and cell lysates were assayed by RT-PCR, qRT-PCR, immunocytochemistry and Western blots, and joint sections subjected to immunohistochemistry. RESULTS All hormone receptors assayed were present in the three joints, but showed substantial differences in expression levels between joints. TMJ cells had higher ER-alpha (>2.8-fold), ER-beta (>2.2-fold), LGR7 (>3-fold) and PR (>1.8-fold), and lower LGR8 (0.5-fold) gene expression levels than KM cells. The ratio of ER-alpha:ER-beta and LGR7:LGR8 was 1.8- and 7.5-fold higher, respectively, in TMJ than in KM cells. The profile of hormone receptors in the TMJ disc was similar to those in the pubic symphysis. Immunochemistry confirmed the differential expression patterns of these receptors in the three tissues. The TMJ cells demonstrated sexual dimorphism in the levels of both ER isoforms, but not of LGR7, LGR8 or PR. CONCLUSIONS The findings suggest that these fibrocartilages are putative target tissues for actions of female hormones. The differential expression profiles of the hormone receptors in the three joint fibrocartilages and the sexual dimorphism in ERs in TMJ disc cells are likely to result in varied downstream effects in response to hormones within these fibrocartilaginous tissues.
Collapse
|
22
|
Athanasiou KA, Almarza AJ, Detamore MS, Kalpakci KN. Tissue Engineering of Temporomandibular Joint Cartilage. ACTA ACUST UNITED AC 2009. [DOI: 10.2200/s00198ed1v01y200906tis002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
A comparison of primary and passaged chondrocytes for use in engineering the temporomandibular joint. Arch Oral Biol 2008; 54:138-45. [PMID: 19013549 DOI: 10.1016/j.archoralbio.2008.09.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 09/09/2008] [Accepted: 09/24/2008] [Indexed: 11/21/2022]
Abstract
OBJECTIVE This study examines the tissue engineering potential of passaged (P3) and primary (P0) articular chondrocytes (ACs) and costal chondrocytes (CCs) from skeletally mature goats for use in the temporomandibular joint (TMJ). DESIGN These four cell types were assembled into scaffoldless tissue engineered constructs and cultured for 4 wks. The constructs were then tested for cell, collagen, and glycosaminoglycan (GAG) content with biochemical assays, and collagen types I and II with enzyme-linked immunosorbent assays. Constructs were also tested under tension and compression to determine biomechanical properties. RESULTS Both primary and passaged CC constructs had greater GAG/wet weight than AC constructs. Primary AC constructs had significantly less total collagen and contained no collagen type I. AC P3 constructs had the largest collagen I/collagen II ratio, which was also greater in passaged CC constructs relative to primary groups. Primary AC constructs were not mechanically testable, whereas passaged AC and CC constructs had significantly greater tensile properties than primary CC constructs. CONCLUSIONS Primary CCs are considerably better than primary ACs and have potential use in tissue engineering when larger quantities of collagen type II are desired. The poor performance of the ACs, in this study, which contradicts the results seen with previous studies using immature bovine ACs, may thus be attributed to the animals' maturity. However, CC P3 cells appear particularly well suited for tissue engineering fibrocartilage of the TMJ due to the high quantity of collagen and GAG, and tensile and compressive mechanical properties.
Collapse
|
24
|
Anderson DEJ, Athanasiou KA. Passaged goat costal chondrocytes provide a feasible cell source for temporomandibular joint tissue engineering. Ann Biomed Eng 2008; 36:1992-2001. [PMID: 18830818 DOI: 10.1007/s10439-008-9572-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 09/19/2008] [Indexed: 11/25/2022]
Abstract
Costal cartilage is commonly harvested for various types of facial reconstructive surgery. The ability of costal chondrocytes (CCs) to produce relevant extracellular matrix, including glycosaminoglycans (GAGs) and collagens, makes them an appealing cell source for fibrocartilage engineering. In order to obtain enough cells for tissue engineering, however, cell expansion will likely be necessary. This study examined CCs at passages 0, 1, 3, and 5, as well as temporomandibular (TMJ) disc cells, in a scaffoldless tissue engineering approach. It was hypothesized that earlier passage constructs would have more cartilaginous proteins and less fibrocartilaginous proteins. TMJ disc constructs had over twice the collagen content of any other group, as well as the largest tensile properties; however, the substantial contraction of the constructs and limited cell numbers make it a non-feasible cell source for tissue engineering. In general, statistical differences in mechanical properties or collagen content of the various CC groups were not observed; however, significantly more GAG was produced in the passaged CCs than the primary CCs. More collagen type II was also observed in some of the passaged groups. These results suggest not only feasibility but potential superiority of passaged CCs over primary CCs, which may lead to functional engineered fibrocartilage.
Collapse
Affiliation(s)
- Deirdre E J Anderson
- Department of Bioengineering, MS-142, Rice University, PO Box 1892, Houston, TX 77251, USA
| | | |
Collapse
|
25
|
Gunja NJ, Athanasiou KA. Passage and reversal effects on gene expression of bovine meniscal fibrochondrocytes. Arthritis Res Ther 2008; 9:R93. [PMID: 17854486 PMCID: PMC2212577 DOI: 10.1186/ar2293] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 09/05/2007] [Accepted: 09/13/2007] [Indexed: 01/08/2023] Open
Abstract
The knee meniscus contains a mixed population of cells that exhibit fibroblastic as well as chondrocytic characteristics. Tissue engineering studies and future therapies for the meniscus require a large population of cells that are seeded on scaffolds. To achieve this, monolayer expansion is often used as a technique to increase cell number. However, the phenotype of these cells may be significantly different from that of the primary population. The objective of this study was to investigate changes in meniscal fibrochondrocytes at the gene expression level over four passages using quantitative real-time reverse transcriptase polymerase chain reaction. Cells from the inner two-thirds of bovine medial menisci were used. Four extracellular matrix (ECM) molecules, commonly found in the meniscus, were investigated, namely collagen I, collagen II, aggrecan and cartilage oligomeric matrix protein (COMP). In addition, primary and passaged meniscus fibrochondrocytes were placed on surfaces coated with collagen I or aggrecan protein to investigate whether any gene expression changes resulting from passage could be reversed. Collagen I expression was found to increase with the number of passages, whereas collagen II and COMP expression decreased. Collagen I and aggrecan surface coatings were shown to downregulate and upregulate collagen I and COMP expression levels, respectively, in passaged cells. However, decreases in collagen II expression could not be reversed by either protein coating. These results indicate that although monolayer expansion results in significant changes in gene expression in meniscal fibrochondrocytes, protein coatings may be used to regain the primary cell expression of several ECM molecules.
Collapse
Affiliation(s)
- Najmuddin J Gunja
- Department of Bioengineering, Rice University, PO Box 1892, Houston, TX 77251, USA
| | | |
Collapse
|
26
|
Allen KD, Athanasiou KA. Scaffold and growth factor selection in temporomandibular joint disc engineering. J Dent Res 2008; 87:180-5. [PMID: 18218847 DOI: 10.1177/154405910808700205] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Temporomandibular joint disc tissue-engineering studies commonly fail to produce significant matrix before construct contraction. We hypothesized that poly-L-lactic acid (PLLA) non-woven meshes would limit contraction, allow for comprehensive mechanical evaluation, and maintain viability relative to polyglycolic acid (PGA) non-woven mesh controls. Additionally, we proposed that growth factor stimulation, while limiting contraction, would increase construct properties relative to previous reports. After 4 wks, cell proliferation and matrix deposition were similar between the two meshes, but PGA constructs had contracted significantly. Furthermore, only PLLA constructs could be tested in tension and compression. Additional PLLA constructs were formed, then treated with insulin-like growth factor-1 (10 ng/mL), transforming growth factor-beta 1 (5 ng/mL), or transforming growth factor-beta 3 (5 ng/mL). Transforming growth factor-beta 1 yielded the most cells, collagen, and glycosaminoglycans at 6 wks; these constructs also demonstrated improved mechanics. Analysis of these data demonstrated significant temporomandibular joint disc-engineering potential for PLLA and transforming growth factor-beta 1.
Collapse
Affiliation(s)
- K D Allen
- Department of Bioengineering, Rice University, MS-142, PO Box 1892, Houston, TX 77251-1892, USA
| | | |
Collapse
|
27
|
Tanaka E, Detamore MS, Tanimoto K, Kawai N. Lubrication of the temporomandibular joint. Ann Biomed Eng 2007; 36:14-29. [PMID: 17985243 DOI: 10.1007/s10439-007-9401-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2007] [Accepted: 10/26/2007] [Indexed: 10/22/2022]
Abstract
Although tissue engineering of the temporomandibular joint (TMJ) structures is in its infancy, tissue engineering provides the revolutionary possibility for treatment of temporomandibular disorders (TMDs). Recently, several reviews have provided a summary of knowledge of TMJ structure and function at the biochemical, cellular, or mechanical level for tissue engineering of mandibular cartilage, bone and the TMJ disc. As the TMJ enables large relative movements, joint lubrication can be considered of great importance for an understanding of the dynamics of the TMJ. The tribological characteristics of the TMJ are essential for reconstruction and tissue engineering of the joint. The purpose of this review is to provide a summary of advances relevant to the tribological characteristics of the TMJ and to serve as a reference for future research in this field. This review consists of four parts. Part 1 is a brief review of the anatomy and function of the TMJ articular components. In Part 2, the biomechanical and biochemical factors associated with joint lubrication are described: the articular surface topology with microscopic surface roughness and the biomechanical loading during jaw movements. Part 3 includes lubrication theories and possible mechanisms for breakdown of joint lubrication. Finally, in Part 4, the requirement and possibility of tissue engineering for treatment of TMDs with degenerative changes as a future treatment regimen will be discussed in a tribological context.
Collapse
Affiliation(s)
- Eiji Tanaka
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | | | | | | |
Collapse
|
28
|
Allen KD, Erickson K, Athanasiou KA. The effects of protein-coated surfaces on passaged porcine TMJ disc cells. Arch Oral Biol 2007; 53:53-9. [PMID: 17825784 PMCID: PMC2265635 DOI: 10.1016/j.archoralbio.2007.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2007] [Revised: 07/10/2007] [Accepted: 07/13/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Implantation of synthetic temporomandibular joint (TMJ) disc replacements aimed to alleviate pain and restore functional losses caused by TMJ disorders. Unfortunately, these synthetic replacements have been largely unsuccessful and in some instances have incited severe immune responses. Tissue engineering, however, may provide viable TMJ disc replacements. Towards this end, we have studied TMJ disc gene expression as a measure of protein production potential. With passage, collagen type I and aggrecan gene expression decrease in TMJ disc cell cultures. We hypothesize that surfaces coated with TMJ disc proteins may rapidly recover the lost gene expression in passaged TMJ disc cells. DESIGN To study these effects, passages 0, 1, and 2 TMJ disc cells were plated in wells coated with aggrecan, collagen type I, collagen type II, or decorin. Safranin O staining was conducted to visualize cell aggregation. RESULTS At passage 0, cultures appeared similar on each surface; however, by passages 1 and 2, aggrecan-coated and decorin-coated surfaces appeared to have more cell aggregates. Gene expression data did not correspond to these visual changes. No treated surface offered a significant change in aggrecan, collagen type I, or decorin expression relative to untreated controls. Furthermore, aggrecan and collagen type I gene expression dropped relative to samples taken prior to plating. CONCLUSIONS These results indicate that, despite visual changes described by cell aggregates, protein coatings have limited effects for recovering TMJ disc gene expression in monolayer cultures.
Collapse
Affiliation(s)
- Kyle D Allen
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | | | | |
Collapse
|
29
|
Johns DE, Athanasiou KA. Improving culture conditions for temporomandibular joint disc tissue engineering. Cells Tissues Organs 2007; 185:246-57. [PMID: 17587799 DOI: 10.1159/000102173] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The temporomandibular joint (TMJ) is extremely important for activities like eating and talking, which can become painful and difficult for patients with TMJ dysfunction. Tissue engineering is a potential alternative to current surgical interventions through replacement of diseased or injured tissue with a functional construct. Since research with TMJ disc cells began relatively recently, optimal culturing conditions must be determined. METHODS Metabolic additives, L-glutamine, L-alanyl-L-glutamine, sodium pyruvate, and insulin, were examined for their effects on TMJ disc cells in monolayer. Effects of L-proline were examined in three-dimensional (3-D) culture at concentrations of 0, 25 and 100 mg/l. RESULTS The combination of L-glutamine, sodium pyruvate, and insulin improved cell proliferation rates without affecting collagen production or gene expression. No differences were observed in mechanical properties of the engineered constructs; however, collagen and glycosaminoglycan quantities normalized to cell number decreased at the highest concentration of L-proline. CONCLUSION This work identified supplements for 2-D monolayer expansion. Other supplements or culture conditions still need to be investigated for 3-D tissue production. This work improves upon porcine TMJ disc cell culturing conditions, taking us closer to being able to engineer the TMJ disc.
Collapse
Affiliation(s)
- D E Johns
- Department of Bioengineering, Rice University, Houston, Texas 77251, USA
| | | |
Collapse
|