1
|
A review of composition‐structure‐function properties and tissue engineering strategies of articular cartilage: compare condyle process and knee‐joint. ADVANCED ENGINEERING MATERIALS 2022. [DOI: 10.1002/adem.202200304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
2
|
Gologorsky CJ, Middendorf JM, Cohen I, Bonassar LJ. Depth-dependent patterns in shear modulus of temporomandibular joint cartilage correspond to tissue structure and anatomic location. J Biomech 2021; 129:110815. [PMID: 34706301 DOI: 10.1016/j.jbiomech.2021.110815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
To fully understand TMJ cartilage degeneration and appropriate repair mechanisms, it is critical to understand the native structure-mechanics relationships of TMJ cartilage and any local variation that may occur in the tissue. Here, we used confocal elastography and digital image correlation to measure the depth-dependent shear properties as well as the structural properties of TMJ cartilage at different anatomic locations on the condyle to identify depth-dependent changes in shear mechanics and structure. We found that samples at every anatomic location showed qualitatively similar shear modulus profiles as a function of depth. In every sample, four distinct zones of mechanical behavior were observed, with shear modulus values spanning 3-5 orders of magnitude across zones. However, quantitative characteristics of shear modulus profiles varied by anatomic location, particularly zone size and location, with the most significant variation in zonal width occurring in the fibrocartilage surface layer (zone 1). This anatomic variation suggests that different locations on the TMJ condyle may play unique mechanical roles in TMJ function. Furthermore, zones identified in the mechanical data corresponded on a sample-by-sample basis to zones identified in the structural data, indicating the known structural zones of TMJ cartilage may also play unique mechanical roles in TMJ function.
Collapse
Affiliation(s)
| | - Jill M Middendorf
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Itai Cohen
- Department of Physics, Cornell University, Clark Hall C7, Ithaca, NY 14853, USA
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Basudan AM, Aziz MA, Yang Y. Implications of zonal architecture on differential gene expression profiling and altered pathway expressions in mandibular condylar cartilage. Sci Rep 2021; 11:16915. [PMID: 34413358 PMCID: PMC8376865 DOI: 10.1038/s41598-021-96071-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/04/2021] [Indexed: 11/09/2022] Open
Abstract
Mandibular condylar cartilage (MCC) is a multi-zonal heterogeneous fibrocartilage containing different types of cells, but the factors/mechanisms governing the phenotypic transition across the zones have not been fully understood. The reliability of molecular studies heavily rely on the procurement of pure cell populations from the heterogeneous tissue. We used a combined laser-capture microdissection and microarray analysis approach which allowed identification of differential zone-specific gene expression profiling and altered pathways in the MCC of 5-week-old rats. The bioinformatics analysis demonstrated that the MCC cells clearly exhibited distinguishable phenotypes from the articular chondrocytes. Additionally, a set of genes has been determined as potential markers to identify each MCC zone individually; Crab1 gene showed the highest enrichment while Clec3a was the most downregulated gene at the superficial layer, which consists of fibrous (FZ) and proliferative zones (PZ). Ingenuity Pathway Analysis revealed numerous altered signaling pathways; Leukocyte extravasation signaling pathway was predicted to be activated at all MCC zones, in particular mature and hypertrophic chondrocytes zones (MZ&HZ), when compared with femoral condylar cartilage (FCC). Whereas Superpathway of Cholesterol Biosynthesis showed predicted activation in both FZ and PZ as compared with deep MCC zones and FCC. Determining novel zone-specific differences of large group of potential genes, upstream regulators and pathways in healthy MCC would improve our understanding of molecular mechanisms on regional (zonal) basis, and provide new insights for future therapeutic strategies.
Collapse
Affiliation(s)
- Aisha M Basudan
- Division of Orthodontics, Dental Services Department, KAMC/KAIMRC/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, 11426, Saudi Arabia.
| | - Mohammad Azhar Aziz
- King Abdullah International Medical Research Center (KAIMRC)/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Colorectal Cancer Research Program, MNGHA, Riyadh, 11426, Saudi Arabia
| | - Yanqi Yang
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong, SAR, China
| |
Collapse
|
4
|
Hong H, Hosomichi J, Maeda H, Lekvijittada K, Oishi S, Ishida Y, Usumi-Fujita R, Kaneko S, Suzuki JI, Yoshida KI, Ono T. Intermittent hypoxia retards mandibular growth and alters RANKL expression in adolescent and juvenile rats. Eur J Orthod 2021; 43:94-103. [PMID: 32219305 DOI: 10.1093/ejo/cjaa020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Chronic intermittent hypoxia (IH), a common state experienced in obstructive sleep apnoea (OSA), retards mandibular growth in adolescent rats. The aim of this study was to elucidate the differential effects of IH on mandibular growth in different growth stages. MATERIALS AND METHODS Three-week-old (juvenile stage) and 7-week-old (adolescent stage) male Sprague-Dawley rats underwent IH for 3 weeks. Age-matched control rats were exposed to room air. Mandibular growth was evaluated by radiograph analysis, micro-computed tomography, real-time polymerase chain reaction and immunohistology. Tibial growth was evaluated as an index of systemic skeletal growth. RESULTS IH had no significant impact on the general growth of either the juvenile or adolescent rats. However, it significantly decreased the total mandibular length and the posterior corpus length of the mandible in the adolescent rats and the anterior corpus length in the juvenile rats. IH also increased bone mineral density (BMD) of the condylar head in adolescent rats but did not affect the BMD of the tibia. Immunohistological analysis showed that the expression level of receptor activation of nuclear factor-κB ligand significantly decreased (in contrast to its messenger ribonucleicacid level) in the condylar head of adolescent rats with IH, while the number of osteoprotegerin-positive cells was comparable in the mandibles of adolescent IH rats and control rats. LIMITATIONS The animal model could not simulate the pathological conditions of OSA completely and there were differences in bone growth between humans and rodents. CONCLUSIONS These results suggest that the susceptibility of mandibular growth retardation to IH depends on the growth stage of the rats.
Collapse
Affiliation(s)
- Haixin Hong
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan.,Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Japan
| | - Jun Hosomichi
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan.,Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Japan
| | - Hideyuki Maeda
- Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Japan
| | - Kochakorn Lekvijittada
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan.,Department of Orthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Shuji Oishi
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Yuji Ishida
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Risa Usumi-Fujita
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Sawa Kaneko
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Jun-Ichi Suzuki
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan.,Department of Advanced Clinical Science and Therapeutics, Graduate School of Medicine, The University of Tokyo, Japan
| | - Ken-Ichi Yoshida
- Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| |
Collapse
|
5
|
Abramowicz S, Crotts SJ, Hollister SJ, Goudy S. Tissue-engineered vascularized patient-specific temporomandibular joint reconstruction in a Yucatan pig model. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 132:145-152. [PMID: 33785329 DOI: 10.1016/j.oooo.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022]
Abstract
PURPOSE Current pediatric temporomandibular joint (TMJ) reconstruction options are limited. The aim of this project was to develop a proof-of-principle porcine model for a load-bearing, customized, 3D-printed and bone morphogenic protein 2 (BMP-2)-coated scaffold implanted in a pedicled (temporal) flap as a regenerative approach to pediatric TMJ mandibular condyle reconstruction. MATERIALS AND METHODS Scaffolds were customized, 3D-printed based on porcine computed tomography, and coated with BMP-2. Two operations occurred: (1) implantation of the scaffold in temporalis muscle to establish vascularity and, (2) 6 weeks later, unilateral condylectomy and rotation of the vascularized scaffold (with preservation of superficial temporal artery) onto the defect. Six months later, pigs were sacrified. The experimental side (muscle-scaffold) and control side (unoperated condyle) were individually evaluated by clinical, mechanical, radiographic, and histologic methods. RESULTS Scaffolds maintained physical properties similar in appearance to unoperated condyles. Vascularized scaffolds had new bone formation. Condyle height on the reconstructed side was 68% and 78% of the control side. Reconstructed condyle stiffness was between 20% and 45% of the control side. CONCLUSION In our porcine model, customized 3D-printed TMJ scaffolds coated with BMP-2 and implanted in vascularized temporalis muscle have the ability to (1) reconstruct a TMJ, (2) maintain appropriate condylar height, and (3) generate new bone, without impacting functional outcomes.
Collapse
Affiliation(s)
- Shelly Abramowicz
- Division of Oral and Maxillofacial Surgery, Department of Surgery, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| | - Sarah Jo Crotts
- Center for 3D Medical Fabrication, Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Scott J Hollister
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Steve Goudy
- Pediatric Otolaryngology, Department of Otolaryngology, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
6
|
Almarza AJ, Mercuri LG, Arzi B, Gallo LM, Granquist E, Kapila S, Detamore MS. Temporomandibular Joint Bioengineering Conference: Working Together Toward Improving Clinical Outcomes. J Biomech Eng 2020; 142:020801. [PMID: 31233104 DOI: 10.1115/1.4044090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Indexed: 12/21/2022]
Abstract
The sixth temporomandibular joint (TMJ) Bioengineering Conference (TMJBC) was held on June 14-15 2018, in Redondo Beach, California, 12 years after the first TMJBC. Speakers gave 30 presentations and came from the United States, Europe, Asia, and Australia. The goal of the conference has remained to foster a continuing forum for bioengineers, scientists, and surgeons and veterinarians to advance technology related to TMJ disorders. These collective multidisciplinary interactions over the past decade have made large strides in moving the field of TMJ research forward. Over the past 12 years, in vivo approaches for tissue engineering have emerged, along with a wide variety of degeneration models, as well as with models occurring in nature. Furthermore, biomechanical tools have become more sensitive and new biologic interventions for disease are being developed. Clinical directives have evolved for specific diagnoses, along with patient-specific biological and immunological responses to TMJ replacement devices alloplastic and/or bioengineered devices. The sixth TMJBC heralded many opportunities for funding agencies to advance the field: (1) initiatives on TMJ that go beyond pain research, (2) more training grants focused on graduate students and fellows, (3) partnership funding with government agencies to translate TMJ solutions, and (4) the recruitment of a critical mass of TMJ experts to participate on grant review panels. The TMJ research community continues to grow and has become a pillar of dental and craniofacial research, and together we share the unified vision to ultimately improve diagnoses and treatment outcomes in patients affected by TMJ disorders.
Collapse
Affiliation(s)
- Alejandro J Almarza
- Departments of Oral Biology and Bioengineering, Center for Craniofacial Regeneration, McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Louis G Mercuri
- Visiting Professor Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612; TMJ Concepts, Ventura, CA 93003
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Luigi M Gallo
- Clinic of Masticatory Disorders, Center of Dental Medicine, University of Zurich, Zurich CH-8031, Switzerland
| | - Eric Granquist
- Department of Oral and Maxillofacial Surgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Sunil Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143
| | - Michael S Detamore
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK 73019
| |
Collapse
|
7
|
Basudan AM, Yang Y. Optimizing Laser Capture Microdissection Protocol for Isolating Zone-Specific Cell Populations from Mandibular Condylar Cartilage. Int J Dent 2019; 2019:5427326. [PMID: 31885587 PMCID: PMC6914897 DOI: 10.1155/2019/5427326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/24/2019] [Accepted: 11/02/2019] [Indexed: 01/06/2023] Open
Abstract
Mandibular condylar cartilage (MCC) is a multizonal heterogeneous fibrocartilage consisting of fibrous (FZ), proliferative (PZ), mature (MZ), and hypertrophic (HZ) zones. Gross sampling of the whole tissue may conceal some important information and compromise the validity of the molecular analysis. Laser capture microdissection (LCM) technology allows isolating zonal (homogenous) cell populations and consequently generating more accurate molecular and genetic data, but the challenges during tissue preparation and microdissection procedures are to obtain acceptable tissue section morphology that allows histological identification of the desirable cell type and to minimize RNA degradation. Therefore, our aim is to optimize an LCM protocol for isolating four homogenous zone-specific cell populations from their respective MCC zones while preserving the quality of RNA recovered. MCC and FCC (femoral condylar cartilage) specimens were harvested from 5-week-old Sprague-Dawley male rats. Formalin-fixed and frozen unfixed tissue sections were prepared and compared histologically. Additional specimens were microdissected to prepare LCM samples from FCC and each MCC zone individually. Then, to evaluate LCM-RNA integrity, 3'/m ratios of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and beta-actin (β-Actin) using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) were calculated. Both fixed and unfixed tissue sections allowed reliable identification of MCC zones. The improved morphology of the frozen sections of our protocol has extended the range of cell types to be isolated. Under the empirically set LCM parameters, four homogeneous cell populations were efficiently isolated from their respective zones. The 3'/m ratio means of GAPDH and β-Actin ranged between 1.11-1.56 and 1.41-2.12, respectively. These values are in line with the reported quality control requirements. The present study shows that the optimized LCM protocol could allow isolation of four homogenous zone-specific cell populations from MCC, meanwhile preserving RNA integrity to meet the high quality requirements for subsequent molecular analyses. Thereby, accurate molecular and genetic data could be generated.
Collapse
Affiliation(s)
- Aisha M. Basudan
- Division of Orthodontics, Dental Services Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
- College of Dentistry King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Yanqi Yang
- Department of Orthodontics, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
8
|
|
9
|
Mamidi SK, Klutcharch K, Rao S, Souza JCM, Mercuri LG, Mathew MT. Advancements in temporomandibular joint total joint replacements (TMJR). Biomed Eng Lett 2019; 9:169-179. [PMID: 31168422 DOI: 10.1007/s13534-019-00105-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/23/2019] [Accepted: 02/18/2019] [Indexed: 11/28/2022] Open
Abstract
The goal of this paper is to review the advantages and disadvantages of the various treatment options of temporomandibular joint (TMJ) total joint replacement (TJR). TMJ articles published within the last 20 years were reviewed to collect the information on non-invasive and invasive TMD treatment methods. Recent technological advancements helped the evolution of treatment methods and offered significant value to TMD patients and surgeons. Considering the TMD levels, the therapeutic procedures can involve general health examiniations, physical therapy, medication, oral rehabilation or as an end stage clinical invention, temporomandibular joint replacement. In fact when intra-articular TMD is present, the effective treatment method appears to be TJR. However, concern for infection, material hypersensitivity, device longevity and screws loosening issues still exists. Further combined research utilizing the knowledge and expertise of, surgeons, material scientists, and bioengineers is needed for the development of improved TMD therapeutic treatment.
Collapse
Affiliation(s)
- Siva Kumar Mamidi
- 1Department of Biomedical Science, School of Medicine, University of Illinois College of Medicine at Rockford, Rockford, IL 61107 USA
| | - Kristin Klutcharch
- 2Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Shradha Rao
- 1Department of Biomedical Science, School of Medicine, University of Illinois College of Medicine at Rockford, Rockford, IL 61107 USA
| | - Julio C M Souza
- 3Center for MicroElectroMechanical System (CMEMS-UMINHO), Universidade do Minho, 4800-058 Guimaraes, Portugal.,Department of Dental Sciences, University Institute of Health Science (IUCS-CESPU), 4800-058 Gandra, Portugal
| | - Louis G Mercuri
- 5Present Address: Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL 60612 USA.,TMJ Concepts, Ventura, CA USA
| | - Mathew T Mathew
- 1Department of Biomedical Science, School of Medicine, University of Illinois College of Medicine at Rockford, Rockford, IL 61107 USA.,2Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612 USA
| |
Collapse
|
10
|
Middendorf J, Albahrani S, Bonassar LJ. Stribeck Curve Analysis of Temporomandibular Joint Condylar Cartilage and Disc. J Biomech Eng 2019; 141:1066041. [PMID: 31654071 DOI: 10.1115/1.4045283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Indexed: 12/29/2022]
Abstract
Temporomandibular joint (TMJ) diseases such as osteoarthritis and disc displacement have no permanent treatment options, but lubrication therapies, used in other joints, could be an effective alternative. However, the healthy TMJ contains fibrocartilage, not hyaline cartilage as is found in other joints. As such, the effect of lubrication therapies in the TMJ is unknown. Additionally, only a few studies have characterized the friction coefficient of the healthy TMJ. Like other cartilaginous tissues, the TMJ condyles and discs are subject to changes in friction coefficient due to fluid pressurization. In addition, the friction coefficient of the TMJ is affected by the sliding direction and anatomic location. However, these previous findings have not been able to identify how all 3 of these parameters (anatomic location, sliding direction, and fluid pressurization) influence changes in friction coefficient. This study used Stribeck curves to identify differences in the friction coefficients of TMJ condyles and discs based on anatomic location, sliding direction, and amount of fluid pressurization (friction mode). Friction coefficients were measured using a cartilage on glass tribometer. Both TMJ condyle and disc friction coefficients were well described by Stribeck curves. These curves changed based on anatomic location, but very few differences in friction coefficients were observed based on sliding direction. TMJ condyles had similar boundary mode and elastoviscous mode friction coefficients to the TMJ disc, and both were lower than hyaline cartilage in other joints. The observed differences here indicate that the surface characteristics of each anatomic region cause differences in friction coefficients.
Collapse
Affiliation(s)
- Jill Middendorf
- Sibley School of Mechanical and Aerospace Engineering Cornell University, Ithaca, NY
| | - Shaden Albahrani
- Department of Chemical Engineering, Virginia Polytechnic Institute and University, Blacksburg, VA
| | - Lawrence J Bonassar
- Sibley School of Mechanical and Aerospace Engineering Cornell University, Ithaca, NY; Meinig School of Biomedical Engineering Cornell University, Ithaca, NY
| |
Collapse
|
11
|
Aging does not change the compressive stiffness of mandibular condylar cartilage in horses. Osteoarthritis Cartilage 2018; 26:1744-1752. [PMID: 30145230 DOI: 10.1016/j.joca.2018.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Aging can cause an increase in the stiffness of hyaline cartilage as a consequence of increased protein crosslinks. By induction of crosslinking, a reduction in the diffusion of solutions into the hyaline cartilage has been observed. However, there is a lack of knowledge about the effects of aging on the biophysical and biochemical properties of the temporomandibular joint (TMJ) cartilage. Hence, the aim of this study was to examine the biophysical properties (thickness, stiffness, and diffusion) of the TMJ condylar cartilage of horses of different ages and their correlation with biochemical parameters. MATERIALS AND METHODS We measured the compressive stiffness of the condyles, after which the diffusion of two contrast agents into cartilage was measured using Contrast Enhanced Computed Tomography technique. Furthermore, the content of water, collagen, GAG, and pentosidine was analyzed. RESULTS Contrary to our expectations, the stiffness of the cartilage did not change with age (modulus remained around 0.7 MPa). The diffusion of the negatively charged contrast agent (Hexabrix) also did not alter. However, the diffusion of the uncharged contrast agent (Visipaque) decreased with aging. The flux was negatively correlated with the amount of collagen and crosslink level which increased with aging. Pentosidine, collagen, and GAG were positively correlated with age whereas thickness and water content showed negative correlations. CONCLUSION Our data demonstrated that aging was not necessarily reflected in the biophysical properties of TMJ condylar cartilage. The combination of the changes happening due to aging resulted in different diffusive properties, depending on the nature of the solution.
Collapse
|
12
|
Liao L, Zhang S, Zhou GQ, Ye L, Huang J, Zhao L, Chen D. Deletion of Runx2 in condylar chondrocytes disrupts TMJ tissue homeostasis. J Cell Physiol 2018; 234:3436-3444. [PMID: 30387127 DOI: 10.1002/jcp.26761] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/27/2018] [Indexed: 02/05/2023]
Abstract
Runt-related transcription factor-2 (Runx2) is essential for chondrocyte maturation during cartilage development and embryonic mandibular condylar development. The process that chondrocytes, especially a subgroup of hypertrophic chondrocytes (HC), could transform into bone cells in mandibular condyle growth makes chondrocytes crucially important for normal endochondral bone formation. To determine whether Runx2 regulates postnatal condylar cartilage growth and tissue homeostasis, we deleted Runx2 in chondrocytes in postnatal mice and assessed the consequences on temporomandibular joint (TMJ) cartilage growth and remodeling. The cell lineage tracing data provide information demonstrating the role of chondrocytes in subchondral bone remodeling. The histologic and immunohistochemical data showed that Runx2 deficiency caused condylar tissue disorganization, including loss of HC and reduced hypertrophic zone, reduced proliferative chondrocytes, and decreased cartilage matrix production. Expression of Col10a1, Mmp13, Col2a1, Aggrecan, and Ihh was significantly reduced in Runx2 knockout mice. The findings of this study demonstrate that Runx2 is required for chondrocyte proliferation and hypertrophy in TMJ cartilage and postnatal TMJ cartilage growth and homeostasis, and that Runx2 may play an important role in regulation of chondrocyte-derived subchondral bone remodeling.
Collapse
Affiliation(s)
- Lifan Liao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Implant Dentistry, Xi'an Jiaotong University College of Stomatology, Xi'an, Shaanxi, China.,Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Shanxing Zhang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Guang-Qian Zhou
- Department of Medical Cell Biology and Genetics, Shenzhen Key Laboratory and the Center for Anti-Ageing and Regenerative Medicine, Shenzhen University Medical School, Shenzhen, China
| | - Ling Ye
- Department of Cariology and Endodonics West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
13
|
Diffusion of charged and uncharged contrast agents in equine mandibular condylar cartilage is not affected by an increased level of sugar-induced collagen crosslinking. J Mech Behav Biomed Mater 2018; 90:133-139. [PMID: 30366303 DOI: 10.1016/j.jmbbm.2018.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/27/2018] [Accepted: 10/12/2018] [Indexed: 11/20/2022]
Abstract
Nutrition of articular cartilage relies mainly on diffusion and convection of solutes through the interstitial fluid due to the lack of blood vessels. The diffusion is controlled by two factors: steric hindrance and electrostatic interactions between the solutes and the matrix components. Aging comes with changes in the cartilage structure and composition, which can influence the diffusion. In this study, we treated fibrocartilage of mandibular condyle with ribose to induce an aging-like effect by accumulating collagen crosslinks. The effect of steric hindrance or electrostatic forces on the diffusion was analyzed using either charged (Hexabrix) or uncharged (Visipaque) contrast agents. Osteochondral plugs from young equine mandibular condyles were treated with 500 mM ribose for 7 days. The effect of crosslinking on mechanical properties was then evaluated via dynamic indentation. Thereafter, the samples were exposed to contrast agents and imaged using contrast-enhanced computed tomography (CECT) at 18 different time points up to 48 h to measure their diffusion. Normalized concentration of contrast agents in the cartilage and contrast agent diffusion flux, as well as the content of crosslink level (pentosidine), water, collagen, and glycosaminoglycan (GAG) were determined. Ribose treatment significantly increased the pentosidine level (from 0.01 to 7.6 mmol/mol collagen), which resulted in an increase in tissue stiffness (~1.5 fold). Interestingly, the normalized concentration and diffusion flux did not change after the induction of an increased level of pentosidine either for Hexabrix or Visipaque. The results of this study strongly suggest that sugar-induced collagen crosslinking in TMJ condylar cartilage does not affect the diffusion properties.
Collapse
|
14
|
Abstract
The connective tissues of the musculoskeletal system can be grouped into fibrous, cartilaginous, and calcified tissues. While each tissue type has a distinct composition and function, the intersections between these tissues result in the formation of complex, composite, and graded junctions. The complexity of these interfaces is a critical aspect of their healthy function, but poses a significant challenge for their repair. In this review, we describe the organization and structure of complex musculoskeletal interfaces, identify emerging technologies for engineering such structures, and outline the requirements for assessing the complex nature of these tissues in the context of recapitulating their function through tissue engineering.
Collapse
Affiliation(s)
- Edward D Bonnevie
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Translational Musculoskeletal Research Center, Col. Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, Pennsylvania 19104, USA
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Translational Musculoskeletal Research Center, Col. Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
15
|
Stephenson MK, Farris AL, Grayson WL. Recent Advances in Tissue Engineering Strategies for the Treatment of Joint Damage. Curr Rheumatol Rep 2018; 19:44. [PMID: 28718059 DOI: 10.1007/s11926-017-0671-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW While the clinical potential of tissue engineering for treating joint damage has yet to be realized, research and commercialization efforts in the field are geared towards overcoming major obstacles to clinical translation, as well as towards achieving engineered grafts that recapitulate the unique structures, function, and physiology of the joint. In this review, we describe recent advances in technologies aimed at obtaining biomaterials, stem cells, and bioreactors that will enable the development of effective tissue-engineered treatments for repairing joint damage. RECENT FINDINGS 3D printing of scaffolds is aimed at improving the mechanical structure and microenvironment necessary for bone regeneration within a damaged joint. Advances in our understanding of stem cell biology and cell manufacturing processes are informing translational strategies for the therapeutic use of allogeneic and autologous cells. Finally, bioreactors used in combination with cells and biomaterials are promising strategies for generating large tissue grafts for repairing damaged tissues in pre-clinical models. Together, these advances along with ongoing research directions are making tissue engineering increasingly viable for the treatment of joint damage.
Collapse
Affiliation(s)
- Makeda K Stephenson
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith Building 5023, Baltimore, MD, 21231, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ashley L Farris
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith Building 5023, Baltimore, MD, 21231, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Warren L Grayson
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 400 N. Broadway, Smith Building 5023, Baltimore, MD, 21231, USA. .,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA. .,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
16
|
Aryaei A, Vapniarsky N, Hu JC, Athanasiou KA. Recent Tissue Engineering Advances for the Treatment of Temporomandibular Joint Disorders. Curr Osteoporos Rep 2016; 14:269-279. [PMID: 27704395 PMCID: PMC5106310 DOI: 10.1007/s11914-016-0327-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Temporomandibular disorders (TMDs) are among the most common maxillofacial complaints and a major cause of orofacial pain. Although current treatments provide short- and long-term relief, alternative tissue engineering solutions are in great demand. Particularly, the development of strategies, providing long-term resolution of TMD to help patients regain normal function, is a high priority. An absolute prerequisite of tissue engineering is to understand normal structure and function. The current knowledge of anatomical, mechanical, and biochemical characteristics of the temporomandibular joint (TMJ) and associated tissues will be discussed, followed by a brief description of current TMD treatments. The main focus is on recent tissue engineering developments for regenerating TMJ tissue components, with or without a scaffold. The expectation for effectively managing TMD is that tissue engineering will produce biomimetic TMJ tissues that recapitulate the normal structure and function of the TMJ.
Collapse
Affiliation(s)
- Ashkan Aryaei
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Natalia Vapniarsky
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
- Department of Orthopedic Surgery, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
17
|
Salash JR, Hossameldin RH, Almarza AJ, Chou JC, McCain JP, Mercuri LG, Wolford LM, Detamore MS. Potential Indications for Tissue Engineering in Temporomandibular Joint Surgery. J Oral Maxillofac Surg 2015; 74:705-11. [PMID: 26687154 DOI: 10.1016/j.joms.2015.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/05/2015] [Accepted: 11/10/2015] [Indexed: 12/29/2022]
Abstract
PURPOSE Musculoskeletal tissue engineering has advanced to the stage where it has the capability to engineer temporomandibular joint (TMJ) anatomic components. Unfortunately, there is a paucity of literature identifying specific indications for the use of TMJ tissue engineering solutions. The objective of this study was to establish an initial set of indications and contraindications for the use of engineered tissues for replacement of TMJ anatomic components. FINDINGS There was consensus among the authors that the management of patients requiring TMJ reconstruction as the result of 1) irreparable condylar trauma, 2) developmental or acquired TMJ pathology in skeletally immature patients, 3) hyperplasia, and 4) documented metal hypersensitivities could be indications for bioengineered condyle and ramus TMJ components. There was consensus that Wilkes stage III internal derangement might be an indication for use of a bioengineered TMJ disc or possibly even a disc-like bioengineered "fossa liner." However, there was some controversy as to whether TMJ arthritic disease (e.g., osteoarthritis) and reconstruction after failed alloplastic devices should be indications. Further research is required to determine whether tissue-engineered TMJ components could be a viable option for such cases. Contraindications for the use of bioengineered TMJ components could include patients with TMJ disorders and multiple failed surgeries, parafunctional oral habits, persistent TMJ infection, TMJ rheumatoid arthritis, and ankylosis unless the underlying pathology can be resolved. CONCLUSIONS Biomedical engineers must appreciate the specific indications that might warrant TMJ bioengineered structures, so that they avoid developing technologies in search of problems that might not exist for patients and clinicians. Instead, they should focus on identifying and understanding the problems that need resolution and then tailor technologies to address those specific situations. The aforementioned indications and contraindications are designed to serve as a guide to the next generation of tissue engineers in their strategic development of technologies to address specific clinical issues.
Collapse
Affiliation(s)
- Jean R Salash
- Graduate Student, Bioengineering Graduate Program, University of Kansas, Lawrence, KS
| | - Reem H Hossameldin
- Oral Surgeon, Department of Oral and Maxillofacial Surgery, Faculty of Oral Medicine, Cairo University, Cairo, Egypt
| | - Alejandro J Almarza
- Associate Professor, Departments of Oral Biology and Bioengineering, McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Joli C Chou
- Clinical Associate Professor, The Craniofacial Center of Western New York, Buffalo, NY
| | - Joseph P McCain
- Clinical Associate Professor and Chief, Department of Oral and Maxillofacial Surgery, Herbert Wertheim College of Medicine, Florida International University, Miami; Department of Oral and Maxillofacial Surgery, Baptist Health Systems, Miami, FL
| | - Louis G Mercuri
- Visiting Professor, Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL; TMJ Concepts, Ventura, CA
| | - Larry M Wolford
- Clinical Professor, Departments of Oral and Maxillofacial Surgery and Orthodontics, Texas A&M University Health Science Center, Baylor College of Dentistry, Baylor University Medical Center, Dallas, TX
| | - Michael S Detamore
- Professor, Department of Chemical and Petroleum Engineering and Bioengineering Graduate Program, University of Kansas, Lawrence, KS.
| |
Collapse
|
18
|
|
19
|
Suzuki A, Iwata J. Mouse genetic models for temporomandibular joint development and disorders. Oral Dis 2015; 22:33-8. [PMID: 26096083 DOI: 10.1111/odi.12353] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/04/2015] [Indexed: 01/22/2023]
Abstract
The temporomandibular joint (TMJ) is a synovial joint essential for hinge and sliding movements of the mammalian jaw. Temporomandibular joint disorders (TMD) are dysregulations of the muscles or the TMJ in structure, function, and physiology, and result in pain, limited mandibular mobility, and TMJ noise and clicking. Although approximately 40-70% adults in the USA have at least one sign of TMD, the etiology of TMD remains largely unknown. Here, we highlight recent advances in our understanding of TMD in mouse models.
Collapse
Affiliation(s)
- A Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center for Craniofacial Research, UTHealth, Houston, TX, USA
| | - J Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Center for Craniofacial Research, UTHealth, Houston, TX, USA
| |
Collapse
|
20
|
Park IK, Cho CS. Stem Cell-assisted Approaches for Cartilage Tissue Engineering. Int J Stem Cells 2014; 3:96-102. [PMID: 24855547 DOI: 10.15283/ijsc.2010.3.2.96] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2010] [Indexed: 12/31/2022] Open
Abstract
The regeneration of damaged articular cartilage remains challenging due to its poor intrinsic capacity for repair. Tissue engineering of articular cartilage is believed to overcome the current limitations of surgical treatment by offering functional regeneration in the defect region. Selection of proper cell sources and ECM-based scaffolds, and incorporation of growth factors or mechanical stimuli are of primary importance to successfully produce artificial cartilage for tissue repair. When designing materials for cartilage tissue engineering, biodegradability and biocompatibility are the key factors in selecting material candidates, for either synthetic or natural polymers. The unique environment of cartilage makes it suitable to use a hydrogel with high water content in the cross-linked or thermosensitive (injectable) form. Moreover, design of composite scaffolds from two polymers with complementary physicochemical and biological properties has been explored to provide residing chondrocytes with a combination of the merits that each component contributes.
Collapse
Affiliation(s)
- In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, The Research Institute of Medical Science, Chonnam National University, Gwangju
| | - Chong-Su Cho
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
21
|
Tanaka E, Pelayo F, Kim N, Lamela MJ, Kawai N, Fernández-Canteli A. Stress relaxation behaviors of articular cartilages in porcine temporomandibular joint. J Biomech 2014; 47:1582-7. [DOI: 10.1016/j.jbiomech.2014.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/03/2014] [Accepted: 03/03/2014] [Indexed: 11/25/2022]
|
22
|
Murphy MK, MacBarb RF, Wong ME, Athanasiou KA. Temporomandibular disorders: a review of etiology, clinical management, and tissue engineering strategies. Int J Oral Maxillofac Implants 2014; 28:e393-414. [PMID: 24278954 DOI: 10.11607/jomi.te20] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Temporomandibular disorders (TMD) are a class of degenerative musculoskeletal conditions associated with morphologic and functional deformities that affect up to 25% of the population, but their etiology and progression are poorly understood and, as a result, treatment options are limited. In up to 70% of cases, TMD are accompanied by malpositioning of the temporomandibular joint (TMJ) disc, termed "internal derangement." Although the onset is not well characterized, correlations between internal derangement and osteoarthritic change have been identified. Because of the complex and unique nature of each TMD case, diagnosis requires patient-specific analysis accompanied by various diagnostic modalities. Likewise, treatment requires customized plans to address the specific characteristics of each patient's disease. In the mechanically demanding and biochemically active environment of the TMJ, therapeutic approaches that can restore joint functionality while responding to changes in the joint have become a necessity. One such approach, tissue engineering, which may be capable of integration and adaptation in the TMJ, carries significant potential for the development of repair and replacement tissues. The following review presents a synopsis of etiology, current treatment methods, and the future of tissue engineering for repairing and/or replacing diseased joint components, specifically the mandibular condyle and TMJ disc. An analysis of native tissue characterization to assist clinicians in identifying tissue engineering objectives and validation metrics for restoring healthy and functional structures of the TMJ is followed by a discussion of current trends in tissue engineering.
Collapse
|
23
|
Expression of ADAMTs-5 and TIMP-3 in the condylar cartilage of rats induced by experimentally created osteoarthritis. Arch Oral Biol 2014; 59:524-9. [PMID: 24632095 DOI: 10.1016/j.archoralbio.2014.02.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/22/2014] [Accepted: 02/26/2014] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To study the expression of ADAMTs-5 and TIMP-3 in temporomandibular joint osteoarthritis (TMJOA) model rats, to explore and confer the possible effects of ADAMTs-5 and TIMP-3 involved in the degradation of the early stage of OA. DESIGN 32 SD rats were divided into four groups: 2-week control group (NC1), 2-week OA group (OA1), 4-week control group (NC2) and 4-week OA group (OA2). Each group had 8 rats. Injection of collagenase was used to build up the TMJOA model. HE staining was used to analyze the structural change of condyle cartilage. Western blot and RT-PCR were used to measure the expression of ADAMTs-5 and TIMP-3 in protein and mRNA levels respectively. RESULTS HE analysis revealed that no significant changes were observed in NC1, NC2 and OA1 groups, while mild damages appeared in OA2 group. No significant differences were achieved in the expression of ADAMTs-5 in protein levels between NC1 and OA1, but the expression of ADAMTs-5 in 4-week group increased significantly compared to that in the NC2 group. On mRNA level, the expression of ADAMTs-5 in 2-week and 4-week OA groups increased significantly compared to that in the matched control group. Meanwhile, the expression of TIMP-3 decreased significantly, showing a completely different trend. CONCLUSIONS The expression of ADAMTs-5 and TIMP-3 changed significantly in the early stage of TMJOA, which indicated that ADAMTs-5 and TIMP-3 may be play an important part in the initial stage of condylar cartilage degradation.
Collapse
|
24
|
Lamela MJ, Fernández P, Ramos A, Fernández-Canteli A, Tanaka E. Dynamic compressive properties of articular cartilages in the porcine temporomandibular joint. J Mech Behav Biomed Mater 2013; 23:62-70. [PMID: 23660305 DOI: 10.1016/j.jmbbm.2013.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 03/27/2013] [Accepted: 04/02/2013] [Indexed: 10/26/2022]
Abstract
The mandibular condylar and temporal cartilages in the temporomandibular joint (TMJ) play an important role as a stress absorber during function. However, relatively little information is available on its viscoelastic properties in dynamic compression, particularly in a physiological range of frequencies. We hypothesized that these properties are region-specific and depend on loading frequency. To characterize the viscoelastic properties of both cartilages, we performed dynamic indentation tests over a wide range of loading frequencies. Nine porcine TMJs were used; the articular surface was divided into five regions: anterior; central; posterior; medial and lateral. Sinusoidal compressive strain was applied with an amplitude of 1.0% and a frequency range between 0.01 and 10 Hz. In both cartilages, the dynamic storage modulus increased with frequency, and the value was the highest in the lateral region. These values of E' in the temporal cartilage were smaller than those in the mandibular condylar cartilage in all five regions except the lateral region. The Loss tangent values were higher in the temporal cartilage (0.35-0.65) than in the mandibular condylar one (0.2-0.45), which means that the temporal cartilage presents higher viscosity. The present results suggest that the dynamic compressive moduli in both cartilages are region-specific and dependent on the loading frequency, which might have important implications for the transmission of load in the TMJ.
Collapse
Affiliation(s)
- María Jesús Lamela
- Department of Construction and Manufacturing Engineering, University of Oviedo, Spain
| | | | | | | | | |
Collapse
|
25
|
Petrovic V, Zivkovic P, Petrovic D, Stefanovic V. Craniofacial bone tissue engineering. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 114:e1-9. [PMID: 22862985 DOI: 10.1016/j.oooo.2012.02.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 01/18/2012] [Accepted: 02/29/2012] [Indexed: 12/17/2022]
Abstract
There are numerous conditions, such as trauma, cancer, congenital malformations, and progressive deforming skeletal diseases, that can compromise the function and architectonics of bones of craniofacial region. The need to develop new approaches for treatment of these disorders arises from the fact that conventional therapeutic strategies face many obstacles and limitations. The use of tissue engineering in regeneration of craniofacial bone structures is a very promising possibility and a great challenge for researchers and practitioners. Developments in stem cell biology and engineering have led to the discovery of different stem cell populations and biodegradable materials with suitable properties. This review summarizes the current achievements in tissue engineering of craniofacial bone, temporomandibular joint, and periodontal ligament.
Collapse
Affiliation(s)
- Vladimir Petrovic
- Department of Histology, Stem Cells Laboratory, University School of Medicine, Nis, Serbia
| | | | | | | |
Collapse
|
26
|
Owtad P, Park JH, Shen G, Potres Z, Darendeliler MA. The biology of TMJ growth modification: a review. J Dent Res 2013; 92:315-21. [PMID: 23358678 DOI: 10.1177/0022034513476302] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Several studies have indicated a positive response of the temporomandibular joint (TMJ) to mandibular advancement, while others have reported that TMJ adaptive responses are non-existent and negligible. Controversy continues to grow over the precise nature of skeletal changes that occur during mandibular growth modification, due to an apparent lack of tissue markers required to substantiate the precise mechanism by which this is occurring. However, evidence suggests that orthopedic forces clinically modify the growth of the mandible. To further our knowledge about the effect of orthopedic treatment on the TMJ, it is necessary that we understand the biologic basis behind the various tissues involved in the TMJ's normal growth and maturation. The importance of this knowledge is to consider the potential association between TMJ remodeling and mandibular repositioning under orthopedic loading. Considerable histologic and biochemical research has been performed to provide basic information about the nature of skeletal growth modification in response to mandibular advancement. In this review, the relevant histochemical evidence and various theories regarding TMJ growth modification are discussed. Furthermore, different regulatory growth factors and tissue markers, which are used for cellular and molecular evaluation of the TMJ during its adaptive response to biomechanical forces, are underlined.
Collapse
Affiliation(s)
- P Owtad
- Arizona School of Dentistry & Oral Health, 5835 E. Still Circle, Mesa, AZ 85206, USA
| | | | | | | | | |
Collapse
|
27
|
Mehrotra D, Kumar S, Dhasmana S. Hydroxyapatite/collagen block with platelet rich plasma in temporomandibular joint ankylosis: a pilot study in children and adolescents. Br J Oral Maxillofac Surg 2012; 50:774-8. [DOI: 10.1016/j.bjoms.2012.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 01/06/2012] [Indexed: 12/24/2022]
|
28
|
Higuchi A, Ling QD, Hsu ST, Umezawa A. Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation. Chem Rev 2012; 112:4507-40. [PMID: 22621236 DOI: 10.1021/cr3000169] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, 32001 Taiwan.
| | | | | | | |
Collapse
|
29
|
Extracellular matrix as an inductive template for temporomandibular joint meniscus reconstruction: a pilot study. J Oral Maxillofac Surg 2012; 69:e488-505. [PMID: 21684655 DOI: 10.1016/j.joms.2011.02.130] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 02/18/2011] [Accepted: 02/27/2011] [Indexed: 11/20/2022]
Abstract
PURPOSE A device consisting of powdered porcine urinary bladder extracellular matrix (UBM-ECM) encapsulated within sheets of the same material was investigated as a scaffold for temporomandibular joint (TMJ) meniscus reconstruction. MATERIALS AND METHODS Five dogs underwent unilateral resection of the native meniscus and replacement with a UBM-ECM device. Necropsies were performed at 3, 4, 8, 12, and 24 weeks. Two additional dogs underwent bilateral resection of the meniscus with replacement with a UBM-ECM device on 1 side, leaving the contralateral side empty as a control. Necropsies were performed at 24 weeks for bilaterally treated animals. RESULTS Macroscopically, the UBM-ECM implants were remodeled rapidly and were indistinguishable from newly deposited host tissue at all time points. Microscopically, remodeling was characterized by a dense infiltration of predominantly CD68(+) mononuclear cells and smooth muscle actin-positive fibroblast-like cells at early time points changing with time to a sparse population of smooth muscle actin-negative spindle-shaped cells resembling those of the native fibrocartilaginous TMJ meniscus. Furthermore, the remodeling process showed deposition of predominantly type I collagen, the density and organization of which resembled those of the native meniscus by the 24-week time point. Ingrowth of calsequestrin-positive skeletal muscle tissue was also observed at the periphery of the remodeled UBM-ECM device and was similar to that found at the attachment site of the native meniscus to the surrounding soft tissues. Histologic results were identical for samples excised from both unilaterally and bilaterally treated animals. No adverse changes in the articulating surfaces of the condyle or fossa were observed in UBM-ECM-implanted joints. In the bilaterally treated animals, the unimplanted control side was characterized by degeneration and pitting of the articulating surfaces of both the condyle and the fossa, with disorganized bands of fibrous connective tissue observed within the joint space. CONCLUSION Results of this study suggest that the UBM-ECM device provides an effective interpositional material while serving as an inductive template for reconstruction of the TMJ meniscus.
Collapse
|
30
|
Galhardo MS, Caldini EG, Battlehner CN, Toledo OMS. Age-dependent physiological changes in the histoarchitecture of the articular cartilage of the rabbit mandibular condyle: a morphological and morphometric study. Cells Tissues Organs 2011; 195:340-52. [PMID: 21893930 DOI: 10.1159/000327722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2011] [Indexed: 11/19/2022] Open
Abstract
Mandibular condyle articular cartilage participates in condylar postnatal growth and is responsible for adaptations to anatomical and/or biomechanical alterations throughout life. In a preliminary study in rabbits, differences were observed in the thickness of the layers of articular cartilage in control animals at 5 and 6 months (generally considered adults for this purpose). This study aimed to describe sagittally sectioned condylar cartilages stained with Picrosirius-hematoxylin in rabbits at 40 days and 5, 6, 8, 13, and 18 months to determine when histological maturity is reached. At 40 days, 5 layers were seen: fibrous, proliferative, transition, maturation, and hypertrophic. Older animals (5-18 months) lacked the transition layer. Fibrous, proliferative, and hypertrophic regions were considered for morphometric analysis. The thickness of the fibrous region did not change during the analyzed period (p = 0.1899). When proliferative and hypertrophic regions and the total thickness of the cartilage were compared, a difference was detected (p < 0.001). The thickness of the proliferative region was greatest at 40 days and decreased at 5 months; however, it increased at 6 months, when it was significantly thicker than at 5, 8, 13, and 18 months. Both the hypertrophic region and the total thickness were thickest at 40 days, intermediate at 5, 6, and 8 months, and thinnest at 13 and 18 months. In summary, our data suggest a physiological period of increased cartilage growth at 6 months. Additionally, rabbits at this age should be avoided in experiments involving condylar cartilage. Finally, 13-month-old rabbits have reached histological maturity of the condylar cartilage.
Collapse
|
31
|
Kalpakci KN, Kim EJ, Athanasiou KA. Assessment of growth factor treatment on fibrochondrocyte and chondrocyte co-cultures for TMJ fibrocartilage engineering. Acta Biomater 2011; 7:1710-8. [PMID: 21185408 DOI: 10.1016/j.actbio.2010.12.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/10/2010] [Accepted: 12/17/2010] [Indexed: 11/16/2022]
Abstract
Treatments for patients suffering from severe temporomandibular joint (TMJ) dysfunction are limited, motivating the development of strategies for tissue regeneration. In this study, co-cultures of fibrochondrocytes (FCs) and articular chondrocytes (ACs) were seeded in agarose wells, and supplemented with growth factors, to engineer tissue with biomechanical properties and extracellular matrix composition similar to native TMJ fibrocartilage. In the first phase, growth factors were applied alone and in combination, in the presence or absence of serum, while in the second phase, the best overall treatment was applied at intermittent dosing. Continuous treatment of AC/FC co-cultures with TGF-β1 in serum-free medium resulted in constructs with glycosaminoglycan/wet weight ratios (12.2%), instantaneous compressive moduli (790 kPa), relaxed compressive moduli (120 kPa) and Young's moduli (1.87 MPa) that overlap with native TMJ disc values. Among co-culture groups, TGF-β1 treatment increased collagen deposition ∼20%, compressive stiffness ∼130% and Young's modulus ∼170% relative to controls without growth factor. Serum supplementation, though generally detrimental to functional properties, was identified as a powerful mediator of FC construct morphology. Finally, both intermittent and continuous TGF-β1 treatment showed positive effects, though continuous treatment resulted in greater enhancement of construct functional properties. This work proposes a strategy for regeneration of TMJ fibrocartilage and its future application will be realized through translation of these findings to clinically viable cell sources.
Collapse
|
32
|
Kim BS, Park IK, Hoshiba T, Jiang HL, Choi YJ, Akaike T, Cho CS. Design of artificial extracellular matrices for tissue engineering. Prog Polym Sci 2011. [DOI: 10.1016/j.progpolymsci.2010.10.001] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Zheng YH, Su K, Jian YT, Kuang SJ, Zhang ZG. Basic fibroblast growth factor enhances osteogenic and chondrogenic differentiation of human bone marrow mesenchymal stem cells in coral scaffold constructs. J Tissue Eng Regen Med 2010; 5:540-50. [PMID: 21695795 DOI: 10.1002/term.346] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 07/08/2010] [Indexed: 11/08/2022]
Abstract
Temporomandibular joint (TMJ) disorders are commonly occurring degenerative joint diseases that require surgical replacement of the mandibular condyle in severe cases. Transplantation of tissue-engineered mandibular condyle constructs may solve some of the current surgical limitations to TMJ repair. We evaluated the feasibility of mandibular condyle constructs engineered from human bone marrow-derived mesenchymal cells (BMSCs). Specifically, human BMSCs were transfected with basic FGF (bFGF) gene-encoding plasmids and induced to differentiate into osteoblasts and chondroblasts. The cells were seeded onto mandibular condyle-shaped porous coral scaffolds and evaluated for osteogenic/chondrogenic differentiation, cell proliferation, collagen deposition and tissue vascularization. Transfected human BMSCs expressed bFGF and were highly proliferative. Osteogenesis was irregular, showing neovascularization around new bone tissue. There was no evidence of bilayered osteochondral tissue present in normal articulating surfaces. Collagen deposition, characteristic of bone and cartilage, was observed. Subcutaneous transplantation of seeded coral/hydrogel hyaluran constructs into nude mice resulted in bone formation and collagen type I and type II deposition. Neovascularization was observed around newly formed bone tissue; bFGF expression was detected in implanted constructs seeded with bFGF expressing hBMSCs. This report demonstrates that engineered porous coral constructs using bFGF gene-transfected human BMSCs may be a feasible option for surgical transplantation in TMJ repair.
Collapse
Affiliation(s)
- You-Hua Zheng
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
34
|
Xu H, Han D, Dong JS, Shen GX, Chai G, Yu ZY, Lang WJ, Ai ST. Rapid prototyped PGA/PLA scaffolds in the reconstruction of mandibular condyle bone defects. Int J Med Robot 2010; 6:66-72. [PMID: 20013824 DOI: 10.1002/rcs.290] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Craniomaxillofacial bone defects are currently reconstructed by using computer-aided design and manufacturing (CAD/CAM) processes. We have developed a novel digital medical support system that enables us to custom-make scaffolds to repair craniomaxillofacial bone defects using three-dimensional computed tomographic (CT) images and a rapid-prototyping method. METHODS We created positive molds using CT data, CAD/CAM and a rapid prototyping method using 3D printing. Custom-made poly (glycolic acid) (PGA) and polymers poly (lactic acid) (PLA) scaffolds were prefabricated by a positive-negative mold interchange technique. A laser scanning system was used to evaluate the accuracy of the PGA/PLA scaffold. Bone marrow stem cells were incubated with the scaffold to assess biocompatibility. RESULTS The mean error was <0.3 mm and confidence was >or=95% when the error was <1 mm. Results from in vitro cell culture demonstrated that the PGA/PLA scaffold had excellent cellular compatibility. CONCLUSIONS This pilot study suggests that custom-made PGA/PLA scaffolds infiltrated with bone marrow stem cells may be effective for future treatment of craniomaxillofacial bone injuries.
Collapse
Affiliation(s)
- Hua Xu
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Laureano Filho JR, Andrade ESS, Albergaria-Barbosa JR, Camargo IB, Garcia RR. Effects of demineralized bone matrix and a 'Ricinus communis' polymer on bone regeneration: a histological study in rabbit calvaria. J Oral Sci 2010; 51:451-6. [PMID: 19776514 DOI: 10.2334/josnusd.51.451] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The aim of the present study was to histologically analyze the effects of bovine and human demineralized bone matrix and a Ricinus communis polymer on the bone regeneration process. Two surgical bone defects were created in rabbit calvaria, one on the right and the other on the left side of the parietal suture. Eighteen rabbits were divided into three groups. In Group I, the experimental defect was treated with bovine demineralized bone matrix, Group II with human demineralized bone matrix, and in Group III, the experimental cavity was treated with polyurethane resin derived from Ricinus communis oil. The control defects were filled with the animals' own blood. The animals were sacrificed after 7 and 15 weeks. Histological analysis revealed that in all groups (control and experimental), bone regeneration increased with time. The least time required for bone regeneration was noted in the control group, with a substantial decrease in the thickness of the defect. All materials proved to be biologically compatible, but polyurethane resorbed more slowly and demonstrated considerably better results than the demineralized bone matrices.
Collapse
|
36
|
Lee CH, Marion NW, Hollister S, Mao JJ. Tissue formation and vascularization in anatomically shaped human joint condyle ectopically in vivo. Tissue Eng Part A 2009; 15:3923-30. [PMID: 19563263 PMCID: PMC2792071 DOI: 10.1089/ten.tea.2008.0653] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 06/29/2009] [Indexed: 12/24/2022] Open
Abstract
Scale-up of bioengineered grafts toward clinical applications is a challenge in regenerative medicine. Here, we report tissue formation and vascularization of anatomically shaped human tibial condyles ectopically with a dimension of 20 x 15 x 15 mm(3). A composite of poly-epsilon-caprolactone and hydroxyapatite was fabricated using layer deposition of three-dimensional interlaid strands with interconnecting microchannels (400 microm) and seeded with human bone marrow stem cells (hMSCs) with or without osteogenic differentiation. An overlaying layer (1 mm deep) of poly(ethylene glycol)-based hydrogel encapsulating hMSCs or hMSC-derived chondrocytes was molded into anatomic shape and anchored into microchannels by gel infusion. After 6 weeks of subcutaneous implantation in athymic rats, hMSCs generated not only significantly more blood vessels, but also significantly larger-diameter vessels than hMSC-derived osteoblasts, although hMSC-derived osteoblasts yielded mineralized tissue in microchannels. Chondrocytes in safranin-O-positive glycosaminoglycan matrix were present in the cartilage layer seeded with hMSC-derived chondrogenic cells, although significantly more cells were present in the cartilage layer seeded with hMSCs than hMSC-derived chondrocytes. Together, MSCs elaborate substantially more angiogenesis, whereas their progenies yield corresponding differentiated tissue phenotypes. Scale up is probable by incorporating a combination of stem cells and their progenies in repeating modules of internal microchannels.
Collapse
Affiliation(s)
- Chang H. Lee
- Tissue Engineering and Regenerative Medicine Laboratory, Columbia University Medical Center, New York, New York
| | - Nicholas W. Marion
- Tissue Engineering and Regenerative Medicine Laboratory, Columbia University Medical Center, New York, New York
| | - Scott Hollister
- Scaffold Tissue Engineering Group, Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Jeremy J. Mao
- Tissue Engineering and Regenerative Medicine Laboratory, Columbia University Medical Center, New York, New York
| |
Collapse
|
37
|
Abstract
The human innate regenerative ability is known to be limited by the intensity of the insult together with the availability of progenitor cells, which may cause certain irreparable damage. It is only recently that the paradigm of tissue engineering found its way to the treatment of irreversibly affected body structures with the challenge of reconstructing the lost part. In the current review, we underline recent trials that target engineering of human craniofacial structures, mainly bone, cartilage, and teeth. We analyze the applied engineering strategies relative to the selection of cell types to lay down a specific targeted tissue, together with their association with an escorting scaffold for a particular engineered site, and discuss their necessity to be sustained by growth factors. Challenges and expectations for facial skeletal engineering are discussed in the context of future treatment.
Collapse
Affiliation(s)
- S H Zaky
- Istituto Nazionale per la Ricerca sul Cancro, and Dipartimento di Oncologia, Biologia e Genetica dell'Universita' di Genova, Largo R. Benzi, 10, 16132 Genova, Italy
| | | |
Collapse
|
38
|
Hinton RJ, Serrano M, So S. Differential gene expression in the perichondrium and cartilage of the neonatal mouse temporomandibular joint. Orthod Craniofac Res 2009; 12:168-77. [PMID: 19627518 DOI: 10.1111/j.1601-6343.2009.01450.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Our goal was to discover genes differentially expressed in the perichondrium (PC) of the mandibular condylar cartilage (MCC) that might enhance regenerative medicine or orthopaedic therapies directed at the tissues of the temporomandibular joint. We used targeted gene arrays (osteogenesis, stem cell) to identify genes preferentially expressed in the PC and the cartilaginous (C) portions of the MCC in 2-day-old mice. Genes with higher expression in the PC sample related to growth factor ligand-receptor interactions [FGF-13 (6.4x), FGF-18 (4x), NCAM (2x); PGDF receptors, transforming growth factor (TGF)-beta and IGF-1], the Notch isoforms (especially Notch 3 and 4) and their ligands or structural proteins/proteoglycans [collagen XIV (21x), collagen XVIII (4x), decorin (2.5x)]. Genes with higher expression in the C sample consisted mostly of known cartilage-specific genes [aggrecan (11x), procollagens X (33x), XI (14x), IX (4.5x), Sox 9 (4.4x) and Indian hedgehog (6.7x)]. However, the functional or structural roles of several genes that were expressed at higher levels in the PC sample are unclear [myogenic factor (Myf) 9 (9x), tooth-related genes such as tuftelin (2.5x) and dentin sialophosphoprotein (1.6x), VEGF-B (2x) and its receptors (3-4x) and sclerostin (1.7x)]. FGF, Notch and TGF-beta signalling may be important regulators of MCC proliferation and differentiation; the relatively high expression of genes such as Myf6 and VEGF-B and its receptors suggests a degree of unsuspected plasticity in PC cells.
Collapse
Affiliation(s)
- R J Hinton
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, TX 75246, USA.
| | | | | |
Collapse
|
39
|
Abstract
The ability to engineer anatomically correct pieces of viable and functional human bone would have tremendous potential for bone reconstructions after congenital defects, cancer resections, and trauma. We report that clinically sized, anatomically shaped, viable human bone grafts can be engineered by using human mesenchymal stem cells (hMSCs) and a "biomimetic" scaffold-bioreactor system. We selected the temporomandibular joint (TMJ) condylar bone as our tissue model, because of its clinical importance and the challenges associated with its complex shape. Anatomically shaped scaffolds were generated from fully decellularized trabecular bone by using digitized clinical images, seeded with hMSCs, and cultured with interstitial flow of culture medium. A bioreactor with a chamber in the exact shape of a human TMJ was designed for controllable perfusion throughout the engineered construct. By 5 weeks of cultivation, tissue growth was evidenced by the formation of confluent layers of lamellar bone (by scanning electron microscopy), markedly increased volume of mineralized matrix (by quantitative microcomputer tomography), and the formation of osteoids (histologically). Within bone grafts of this size and complexity cells were fully viable at a physiologic density, likely an important factor of graft function. Moreover, the density and architecture of bone matrix correlated with the intensity and pattern of the interstitial flow, as determined in experimental and modeling studies. This approach has potential to overcome a critical hurdle-in vitro cultivation of viable bone grafts of complex geometries-to provide patient-specific bone grafts for craniofacial and orthopedic reconstructions.
Collapse
|
40
|
Wang L, Lazebnik M, Detamore MS. Hyaline cartilage cells outperform mandibular condylar cartilage cells in a TMJ fibrocartilage tissue engineering application. Osteoarthritis Cartilage 2009; 17:346-53. [PMID: 18760638 DOI: 10.1016/j.joca.2008.07.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 07/03/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To compare temporomandibular joint (TMJ) condylar cartilage cells in vitro to hyaline cartilage cells cultured in a three-dimensional (3D) environment for tissue engineering of mandibular condylar cartilage. DESIGN Mandibular condylar cartilage and hyaline cartilage cells were harvested from pigs and cultured for 6 weeks in polyglycolic acid (PGA) scaffolds. Both types of cells were treated with glucosamine sulfate (0.4 mM), insulin-like growth factor-I (IGF-I) (100 ng/ml) and their combination. At weeks 0 and 6, cell number, glycosaminoglycan (GAG) and collagen content were determined, types I and II collagen were visualized by immunohistochemistry and GAGs were visualized by histology. RESULTS Hyaline cartilage cells produced from half an order to a full order of magnitude more GAGs and collagen than mandibular condylar cartilage cells in 3D culture. IGF-I was a highly effective signal for biosynthesis with hyaline cartilage cells, while glucosamine sulfate decreased cell proliferation and biosynthesis with both types of cells. In vitro culture of TMJ condylar cartilage cells produced a fibrous tissue with predominantly type I collagen, while hyaline cartilage cells formed a fibrocartilage-like tissue with types I and II collagen. The combination of IGF and glucosamine had a synergistic effect on maintaining the phenotype of TMJ condylar cells to generate both types I and II collagen. CONCLUSION Given the superior biosynthetic activity by hyaline cartilage cells and the practical surgical limitations of harvesting cells from the TMJ of a patient requiring TMJ reconstruction, cartilage cells from elsewhere in the body may be a potentially better alternative to cells harvested from the TMJ for TMJ tissue engineering. This finding may also apply to other fibrocartilages such as the intervertebral disc and knee meniscus in applications where a mature cartilage cell source is desired.
Collapse
Affiliation(s)
- L Wang
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045, United States
| | | | | |
Collapse
|
41
|
Athanasiou KA, Almarza AJ, Detamore MS, Kalpakci KN. Tissue Engineering of Temporomandibular Joint Cartilage. ACTA ACUST UNITED AC 2009. [DOI: 10.2200/s00198ed1v01y200906tis002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
42
|
Mountziaris PM, Kramer PR, Mikos AG. Emerging intra-articular drug delivery systems for the temporomandibular joint. Methods 2008; 47:134-40. [PMID: 18835358 DOI: 10.1016/j.ymeth.2008.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Revised: 08/31/2008] [Accepted: 09/05/2008] [Indexed: 12/12/2022] Open
Abstract
Temporomandibular joint (TMJ) disorders are a heterogeneous group of diseases that cause progressive joint degeneration leading to chronic pain and reduced quality of life. Both effective pain reduction and restoration of TMJ function remain unmet challenges. Intra-articular injections of corticosteroids and hyaluronic acid are currently used to treat chronic pain, but these methods require multiple injections that increase the risk of iatrogenic joint damage and other complications. The small and emerging field of TMJ tissue engineering aims to reduce pain and disability through novel strategies that induce joint tissue regeneration. Development of methods for sustained, intra-articular release of growth factors and other pro-regenerative signals will be critical for the success of TMJ tissue engineering strategies. This review discusses methods of intra-articular drug delivery to the TMJ, as well as emerging injectable controlled release systems with potential to improve TMJ drug delivery, to encourage further research in the development of sustained release systems for both long-term pain management and to enhance tissue engineering strategies for TMJ regeneration.
Collapse
Affiliation(s)
- Paschalia M Mountziaris
- Department of Bioengineering, Rice University, P.O. Box 1892, MS 142, Houston, TX 77251-1892, USA
| | | | | |
Collapse
|
43
|
Tanaka E, Detamore MS, Tanimoto K, Kawai N. Lubrication of the temporomandibular joint. Ann Biomed Eng 2007; 36:14-29. [PMID: 17985243 DOI: 10.1007/s10439-007-9401-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2007] [Accepted: 10/26/2007] [Indexed: 10/22/2022]
Abstract
Although tissue engineering of the temporomandibular joint (TMJ) structures is in its infancy, tissue engineering provides the revolutionary possibility for treatment of temporomandibular disorders (TMDs). Recently, several reviews have provided a summary of knowledge of TMJ structure and function at the biochemical, cellular, or mechanical level for tissue engineering of mandibular cartilage, bone and the TMJ disc. As the TMJ enables large relative movements, joint lubrication can be considered of great importance for an understanding of the dynamics of the TMJ. The tribological characteristics of the TMJ are essential for reconstruction and tissue engineering of the joint. The purpose of this review is to provide a summary of advances relevant to the tribological characteristics of the TMJ and to serve as a reference for future research in this field. This review consists of four parts. Part 1 is a brief review of the anatomy and function of the TMJ articular components. In Part 2, the biomechanical and biochemical factors associated with joint lubrication are described: the articular surface topology with microscopic surface roughness and the biomechanical loading during jaw movements. Part 3 includes lubrication theories and possible mechanisms for breakdown of joint lubrication. Finally, in Part 4, the requirement and possibility of tissue engineering for treatment of TMDs with degenerative changes as a future treatment regimen will be discussed in a tribological context.
Collapse
Affiliation(s)
- Eiji Tanaka
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | | | | | | |
Collapse
|
44
|
Detamore MS, Athanasiou KA, Mao J. A call to action for bioengineers and dental professionals: directives for the future of TMJ bioengineering. Ann Biomed Eng 2007; 35:1301-11. [PMID: 17393335 DOI: 10.1007/s10439-007-9298-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 03/13/2007] [Indexed: 10/23/2022]
Abstract
The world's first TMJ Bioengineering Conference was held May 25-27, 2006, in Broomfield, Colorado. Presentations were given by 34 invited speakers representing industry, academics, government agencies such as NIH, and private practice, which included surgeons, engineers, biomedical scientists, and patient advocacy leaders. Other attendees included documentary film makers and FDA officials. The impetus for the conference was that the field of TMJ research has been lacking continuity, with no open forum available for surgeons, scientists, and bioengineers to exchange scientific and clinical ideas and identify common goals, strengths, and capabilities. The goal was thus to plant the seeds for establishing a forum for multidisciplinary and interdisciplinary interactions. The collective wisdom and interactions brought about by a melting pot of these diverse individuals has been pooled and is disseminated in this article, which offers specific directives to bioengineers, basic scientists, and medical and dental professionals including oral and maxillofacial surgeons, pain specialists, orthodontists, prosthodontists, endocrinologists, rheumatologists, immunologists, radiologists, neurologists, and orthopaedic surgeons. A primary goal of this article was to attract researchers across a breadth of research areas to lend their expertise to a significant clinical problem with a dire need for new talent. For example, researchers with expertise in finite element modeling will find an extensive list of clinically significant problems. Specific suggestions for TMJ research were presented by the leading organizations for TMJ surgeons and TMJ patients, and further research needs were identified in a series of group discussions. The specific needs identified at the conference and presented here will be essential for those who endeavor to engage in TMJ research, especially in the areas of tissue engineering and biomechanics. Collectively, it is our hope that many of the questions and directives presented here find their way into the proposals of multidisciplinary teams across the world with new and promising approaches to diagnose, prevent and treat TMJ disorders.
Collapse
Affiliation(s)
- Michael S Detamore
- Department of Chemical & Petroleum Engineering, University of Kansas, 1530 W. 15th St., Room 4132, Lawrence, KS 66045-7609, USA.
| | | | | |
Collapse
|