1
|
Gomes MLNP, Krijnen PAJ, Middelkoop E, Niessen HWM, Boekema BKHL. Fetal Skin Wound Healing: Key Extracellular Matrix Components and Regulators in Scarless Healing. J Invest Dermatol 2024:S0022-202X(24)01863-3. [PMID: 39152955 DOI: 10.1016/j.jid.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 08/19/2024]
Abstract
Fetal skin at early gestational stage is able to regenerate and heal rapidly after wounding. The exact mechanisms and molecular pathways involved in this process are however still largely unknown. The numerous differences in the skin of the early fetus versus skin in later developmental stages might provide clues for the mechanisms of scarless healing. This review summarizes the differences between mammalian fetal skin and the skin at later developmental phases in healthy and wounded conditions, focusing on extracellular matrix components, which are crucial factors in the microenvironment that direct cells and tissue functions and hence the wound healing process.
Collapse
Affiliation(s)
- Madalena Lopes Natário Pinto Gomes
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Department of Pathology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands; Tissue Function & Regeneration, Amsterdam Movement Sciences, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands
| | - Paul A J Krijnen
- Department of Pathology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences Institute, Amsterdam UMC, Amsterdam, The Netherlands
| | - Esther Middelkoop
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands; Tissue Function & Regeneration, Amsterdam Movement Sciences, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Burn Centre, Red Cross Hospital, Beverwijk, The Netherlands
| | - Hans W M Niessen
- Department of Pathology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences Institute, Amsterdam UMC, Amsterdam, The Netherlands; Department of Cardio-thoracic Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands
| | - Bouke K H L Boekema
- Department of Plastic, Reconstructive and Hand Surgery, Amsterdam UMC (Location VUmc), Amsterdam, The Netherlands; Preclinical Research, Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands.
| |
Collapse
|
2
|
Pang X, Dong N, Zheng Z. Small Leucine-Rich Proteoglycans in Skin Wound Healing. Front Pharmacol 2020; 10:1649. [PMID: 32063855 PMCID: PMC6997777 DOI: 10.3389/fphar.2019.01649] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Healing of cutaneous wounds is a complex and well-coordinated process requiring cooperation among multiple cells from different lineages and delicately orchestrated signaling transduction of a diversity of growth factors, cytokines, and extracellular matrix (ECM) at the wound site. Most skin wound healing in adults is imperfect, characterized by scar formation which results in significant functional and psychological sequelae. Thus, the reconstruction of the damaged skin to its original state is of concern to doctors and scientists. Beyond the traditional treatments such as corticosteroid injection and radiation therapy, several growth factors or cytokines-based anti-scarring products are being or have been tested in clinical trials to optimize skin wound healing. Unfortunately, all have been unsatisfactory to date. Currently, accumulating evidence suggests that the ECM not only functions as the structural component of the tissue but also actively modulates signal transduction and regulates cellular behaviors, and thus, ECM should be considered as an alternative target for wound management pharmacotherapy. Of particular interest are small leucine-rich proteoglycans (SLRPs), a group of the ECM, which exist in a wide range of connecting tissues, including the skin. This manuscript summarizes the most current knowledge of SLRPs regarding their spatial-temporal expression in the skin, as well as lessons learned from the genetically modified animal models simulating human skin pathologies. In this review, particular focus is given on the diverse roles of SLRP in skin wound healing, such as anti-inflammation, pro-angiogenesis, pro-migration, pro-contraction, and orchestrate transforming growth factor (TGF)β signal transduction, since cumulative investigations have indicated their therapeutic potential on reducing scar formation in cutaneous wounds. By conducting this review, we intend to gain insight into the potential application of SLRPs in cutaneous wound healing management which may pave the way for the development of a new generation of pharmaceuticals to benefit the patients suffering from skin wounds and their sequelae.
Collapse
Affiliation(s)
- Xiaoxiao Pang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nuo Dong
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Zhong Zheng
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
3
|
Schomann T, Mezzanotte L, De Groot JCMJ, Rivolta MN, Hendriks SH, Frijns JHM, Huisman MA. Neuronal differentiation of hair-follicle-bulge-derived stem cells co-cultured with mouse cochlear modiolus explants. PLoS One 2017; 12:e0187183. [PMID: 29084289 PMCID: PMC5662184 DOI: 10.1371/journal.pone.0187183] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/16/2017] [Indexed: 11/18/2022] Open
Abstract
Stem-cell-based repair of auditory neurons may represent an attractive therapeutic option to restore sensorineural hearing loss. Hair-follicle-bulge-derived stem cells (HFBSCs) are promising candidates for this type of therapy, because they (1) have migratory properties, enabling migration after transplantation, (2) can differentiate into sensory neurons and glial cells, and (3) can easily be harvested in relatively high numbers. However, HFBSCs have never been used for this purpose. We hypothesized that HFBSCs can be used for cell-based repair of the auditory nerve and we have examined their migration and incorporation into cochlear modiolus explants and their subsequent differentiation. Modiolus explants obtained from adult wild-type mice were cultured in the presence of EF1α-copGFP-transduced HFBSCs, constitutively expressing copepod green fluorescent protein (copGFP). Also, modiolus explants without hair cells were co-cultured with DCX-copGFP-transduced HFBSCs, which demonstrate copGFP upon doublecortin expression during neuronal differentiation. Velocity of HFBSC migration towards modiolus explants was calculated, and after two weeks, co-cultures were fixed and processed for immunohistochemical staining. EF1α-copGFP HFBSC migration velocity was fast: 80.5 ± 6.1 μm/h. After arrival in the explant, the cells formed a fascicular pattern and changed their phenotype into an ATOH1-positive neuronal cell type. DCX-copGFP HFBSCs became green-fluorescent after integration into the explants, confirming neuronal differentiation of the cells. These results show that HFBSC-derived neuronal progenitors are migratory and can integrate into cochlear modiolus explants, while adapting their phenotype depending on this micro-environment. Thus, HFBSCs show potential to be employed in cell-based therapies for auditory nerve repair.
Collapse
Affiliation(s)
- Timo Schomann
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, South Holland, the Netherlands
| | - Laura Mezzanotte
- Optical Molecular Imaging Group, Department of Radiology, Erasmus Medical Center, Rotterdam, South Holland, the Netherlands
| | - John C. M. J. De Groot
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, South Holland, the Netherlands
| | - Marcelo N. Rivolta
- Centre for Stem Cell Biology, Department of Biomedical Science, University of Sheffield, Sheffield, England, United Kingdom
| | - Sanne H. Hendriks
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, South Holland, the Netherlands
| | - Johan H. M. Frijns
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, South Holland, the Netherlands
| | - Margriet A. Huisman
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, South Holland, the Netherlands
- * E-mail:
| |
Collapse
|
4
|
Fibromodulin reduces scar formation in adult cutaneous wounds by eliciting a fetal-like phenotype. Signal Transduct Target Ther 2017; 2. [PMID: 29201497 PMCID: PMC5661627 DOI: 10.1038/sigtrans.2017.50] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Blocking transforming growth factor (TGF)β1 signal transduction has been a central strategy for scar reduction; however, this approach appears to be minimally effective. Here, we show that fibromodulin (FMOD), a 59-kD small leucine-rich proteoglycan critical for normal collagen fibrillogenesis, significantly reduces scar formation while simultaneously increasing scar strength in both adult rodent models and porcine wounds, which simulate human cutaneous scar repair. Mechanistically, FMOD uncouples pro-migration/contraction cellular signals from pro-fibrotic signaling by selectively enhancing SMAD3-mediated signal transduction, while reducing AP-1-mediated TGFβ1 auto-induction and fibrotic extracellular matrix accumulation. Consequently, FMOD accelerates TGFβ1-responsive adult fibroblast migration, myofibroblast conversion, and function. Furthermore, our findings strongly indicate that, by delicately orchestrating TGFβ1 activities rather than indiscriminately blocking TGFβ1, FMOD elicits fetal-like cellular and molecular phenotypes in adult dermal fibroblasts in vitro and adult cutaneous wounds in vivo, which is a unique response of living system undescribed previously. Taken together, this study illuminates the signal modulating activities of FMOD beyond its structural support functions, and highlights the potential for FMOD-based therapies to be used in cutaneous wound repair.
Collapse
|
5
|
Parekh A, Hebda PA. The Contractile Phenotype of Dermal Fetal Fibroblasts in Scarless Wound Healing. CURRENT PATHOBIOLOGY REPORTS 2017; 5:271-277. [PMID: 29038745 DOI: 10.1007/s40139-017-0149-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Injured skin in the mammalian fetus can heal regeneratively due to the ability of fetal fibroblasts to effectively reorganize the extracellular matrix (ECM). This process occurs without fetal fibroblasts differentiating into highly contractile myofibroblasts which cause scarring and fibrosis in adult wounds. Here, we provide a brief review of fetal wound healing and the evidence supporting a unique contractile phenotype in fetal fibroblasts. Furthermore, we discuss the biomechanical role of the ECM in driving myofibroblast differentiation in wound healing and the implications for new clinical modalities based on the biophysical properties of fetal fibroblasts. RECENT FINDINGS We and others have found that fetal fibroblasts are refractory to the environmental stimuli necessary for myofibroblast differentiation in adult wound healing including mechanical stress. SUMMARY Understanding the biomechanical mechanisms that regulate the contractile phenotype of fetal fibroblasts may unlock new avenues for anti-scarring therapies that target myofibroblast differentiation of adult fibroblasts.
Collapse
Affiliation(s)
- Aron Parekh
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Patricia A Hebda
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Li M, Zhao Y, Hao H, Han W, Fu X. Theoretical and practical aspects of using fetal fibroblasts for skin regeneration. Ageing Res Rev 2017; 36:32-41. [PMID: 28238941 DOI: 10.1016/j.arr.2017.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 12/17/2022]
Abstract
Cutaneous wounding in late-gestational fetal or postnatal humans results in scar formation without any skin appendages. Early or mid- gestational skin healing in humans is characterized by the absence of scaring in a process resembling regeneration. Tremendous cellular and molecular mechanisms contribute to this distinction, and fibroblasts play critical roles in scar or scarless wound healing. This review discussed the different repair mechanisms involved in wound healing of fibroblasts at different developmental stages and further confirmed that fetal fibroblast transplantation resulted in reduced scar healing in vivo. We also discussed the possible problem in fetal fibroblast transplantation for wound repair. We proposed the use of small molecules to improve the regenerative potential of repairing cells in the wound given that remodeling of the wound microenvironment into a regenerative microenvironment in adults might improve skin regeneration.
Collapse
|
7
|
Walraven M, van Vliet SJ, Beelen RHJ, van Egmond M, Ulrich MMW. Blocking α1-integrin reverts the adhesive phenotype of adult fibroblasts towards a foetal-like migratory phenotype. Exp Dermatol 2016; 25:480-2. [PMID: 27294728 DOI: 10.1111/exd.12977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Mariëlle Walraven
- Department of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Robert H J Beelen
- Department of Molecular Cell Biology & Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
8
|
Balaji S, King A, Marsh E, LeSaint M, Bhattacharya SS, Han N, Dhamija Y, Ranjan R, Le LD, Bollyky PL, Crombleholme TM, Keswani SG. The role of interleukin-10 and hyaluronan in murine fetal fibroblast function in vitro: implications for recapitulating fetal regenerative wound healing. PLoS One 2015; 10:e0124302. [PMID: 25951109 PMCID: PMC4423847 DOI: 10.1371/journal.pone.0124302] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 03/12/2015] [Indexed: 12/14/2022] Open
Abstract
Background Mid-gestation fetal cutaneous wounds heal scarlessly and this has been attributed in part to abundant hyaluronan (HA) in the extracellular matrix (ECM) and a unique fibroblast phenotype. We recently reported a novel role for interleukin 10 (IL-10) as a regulator of HA synthesis in the fetal ECM, as well as the ability of the fetal fibroblast to produce an HA-rich pericellular matrix (PCM). We hypothesized that IL-10-mediated HA synthesis was essential to the fetal fibroblast functional phenotype and, moreover, that this phenotype could be recapitulated in adult fibroblasts via supplementation with IL-10 via an HA dependent process. Methodology/Principal Findings To evaluate the differences in functional profile, we compared metabolism (MTS assay), apoptosis (caspase-3 staining), migration (scratch wound assay) and invasion (transwell assay) between C57Bl/6J murine fetal (E14.5) and adult (8 weeks) fibroblasts. We found that fetal fibroblasts have lower rates of metabolism and apoptosis, and an increased ability to migrate and invade compared to adult fibroblasts, and that these effects were dependent on IL-10 and HA synthase activity. Further, addition of IL-10 to adult fibroblasts resulted in increased fibroblast migration and invasion and recapitulated the fetal phenotype in an HA-dependent manner. Conclusions/Significance Our data demonstrates the functional differences between fetal and adult fibroblasts, and that IL-10 mediated HA synthesis is essential for the fetal fibroblasts' enhanced invasion and migration properties. Moreover, IL-10 via an HA-dependent mechanism can recapitulate this aspect of the fetal phenotype in adult fibroblasts, suggesting a novel mechanism of IL-10 in regenerative wound healing.
Collapse
Affiliation(s)
- Swathi Balaji
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Alice King
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Emily Marsh
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Maria LeSaint
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Sukanta S. Bhattacharya
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Nathaniel Han
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Yashu Dhamija
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Rajeev Ranjan
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Louis D. Le
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Paul L. Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Timothy M. Crombleholme
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Center for Children's Surgery, Children’s Hospital Colorado and The University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Sundeep G. Keswani
- Laboratory for Regenerative Wound Healing, Division of Pediatric, General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Pediatric General and Thoracic Surgery, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
9
|
Vi L, Boo S, Sayedyahossein S, Singh RK, McLean S, Di Guglielmo GM, Dagnino L. Modulation of type II TGF-β receptor degradation by integrin-linked kinase. J Invest Dermatol 2014; 135:885-894. [PMID: 25268583 DOI: 10.1038/jid.2014.427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 07/28/2014] [Accepted: 09/11/2014] [Indexed: 02/07/2023]
Abstract
Cutaneous responses to injury, infection, and tumor formation involve the activation of resident dermal fibroblasts and subsequent transition to myofibroblasts. The key for induction of myofibroblast differentiation is the activation of transforming growth factor-β (TGF-β) receptors and stimulation of integrins and their associated proteins, including integrin-linked kinase (ILK). Cross-talk processes between TGF-β and ILK are crucial for myofibroblast formation, as ILK-deficient dermal fibroblasts exhibit impaired responses to TGF-β receptor stimulation. We now show that ILK associates with type II TGF-β receptors (TβRII) in ligand- and receptor kinase activity-independent manners. In cells with targeted Ilk gene inactivation, cellular levels of TβRII are decreased, through mechanisms that involve enhanced ubiquitination and proteasomal degradation. Partitioning of TGF-β receptors into membrane has been linked to proteasome-dependent receptor degradation. We found that interfering with membrane raft formation in ILK-deficient cells restored TβRII levels and signaling. These observations support a model whereby ILK functions in fibroblasts to direct TβRII away from degradative pathways during their differentiation into myofibroblasts.
Collapse
Affiliation(s)
- Linda Vi
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Stellar Boo
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada; These authors contributed equally to this work
| | - Samar Sayedyahossein
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Randeep K Singh
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Sarah McLean
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Gianni M Di Guglielmo
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Lina Dagnino
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
10
|
Ud-Din S, Volk SW, Bayat A. Regenerative healing, scar-free healing and scar formation across the species: current concepts and future perspectives. Exp Dermatol 2014; 23:615-9. [DOI: 10.1111/exd.12457] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Sara Ud-Din
- Plastic and Reconstructive Surgery Research; Manchester Institute of Biotechnology; Institute of Inflammation and Repair; University of Manchester; Manchester UK
- University Hospital of South Manchester NHS Foundation Trust; University of Manchester; Manchester Academic Health Science Centre; Manchester UK
| | - Susan W. Volk
- Department of Clinical Studies-Philadelphia; University of Pennsylvania School of Veterinary Medicine; Philadelphia PA USA
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research; Manchester Institute of Biotechnology; Institute of Inflammation and Repair; University of Manchester; Manchester UK
- University Hospital of South Manchester NHS Foundation Trust; University of Manchester; Manchester Academic Health Science Centre; Manchester UK
| |
Collapse
|
11
|
Fang Z, Zhu T, Shen WL, Tang QM, Chen JL, Yin Z, Ji JF, Heng BC, Ouyang HW, Chen X. Transplantation of fetal instead of adult fibroblasts reduces the probability of ectopic ossification during tendon repair. Tissue Eng Part A 2014; 20:1815-26. [PMID: 24410299 DOI: 10.1089/ten.tea.2013.0296] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Although cell transplantation therapy can effectively promote functional tendon repair, occasional ectopic ossification during tendon regeneration undermines its efficacy. The effect of transplanted cell types on ectopic ossification has not yet been systematically evaluated. This study compared the rate of ectopic ossification during tendon repair upon transplantation with mouse fetal fibroblasts (FFs) and their adult counterparts (adult fibroblasts [AFs]). Alkaline phosphatase (ALP) staining, immunofluorescence, and gene expression analysis were used to compare the spontaneous osteogenic differentiation of FFs and AFs in vitro. X-ray, histology, and gene expression analysis were used to investigate the ectopic ossification in a mouse Achilles tendon repair model in vivo. ALP staining and immunofluorescence data in vitro showed that FFs had less spontaneous osteogenic differentiation capacity, and lower expression of runt-related transcription factor 2 (runx2). For the in vivo study, the FFs transplant group displayed reduced ectopic ossification (2/7 vs. 7/7, Mann-Whitney test p<0.01) at 14 weeks post-transplantation and enhanced tendon repair (general histological score at week 6, 7.53 vs. 10.56, p<0.05). More chondrocytes formed at 6 weeks, and all mice developed bone marrow at 14 weeks post-transplantation in the AFs transplant group. Gene expression analysis of the regenerated tissue showed significantly higher expression levels of transforming growth factor beta1 (TGF-β1) and transforming growth factor beta3 (TGF-β3) in the AFs group during the early stages of tendon repair. Our study demonstrates that transplantation of fetal instead of AFs is more promising for tendon repair, underscoring the importance of the origin of seed cells for tendon repair.
Collapse
Affiliation(s)
- Zhi Fang
- 1 Zhejiang Provincial Key Laboratory of Tissue Engineering and Regenerative Medicine , Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bai Y, Lee PF, Gibbs HC, Bayless KJ, Yeh AT. Dynamic multicomponent engineered tissue reorganization and matrix deposition measured with an integrated nonlinear optical microscopy-optical coherence microscopy system. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:36014. [PMID: 24647972 PMCID: PMC3959743 DOI: 10.1117/1.jbo.19.3.036014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 01/03/2014] [Accepted: 01/08/2014] [Indexed: 05/29/2023]
Abstract
Multicomponent tissue models are viable tools to better understand cell responses in complex environments, but present challenges when investigated with live cell microscopy noninvasively. In this study, integrated nonlinear optical microscopy-optical coherence microscopy (NLOM-OCM) was used to characterize cell interactions within three-dimensional (3-D), multicomponent extracellular matrices. In fibrin-collagen mixtures, 3T3 fibroblasts were observed to recruit both fibrin and collagen fibers while remodeling matrices. Also, NLOM-OCM was used to observe collagen deposition by neonatal human dermal fibroblasts within originally fibrin matrices over an extended time. It was observed that preferentially aligned collagen deposition could be achieved with aligned fibroblasts but that cell alignment could be achieved without aligning the extant extracellular matrix. In summary, this multimodel imaging system has potential for both real-time and longitudinal imaging of living 3-D cultures, which is particularly important for evaluating cell microenvironments in composite scaffolds or serial characterization of engineered tissue constructs during culture.
Collapse
Affiliation(s)
- Yuqiang Bai
- Texas A&M University, Department of Biomedical Engineering, 5045 Emerging Technologies Building, College Station, Texas 77843
| | - Po-Feng Lee
- Texas A&M University, Department of Biomedical Engineering, 5045 Emerging Technologies Building, College Station, Texas 77843
| | - Holly C. Gibbs
- Texas A&M University, Department of Biomedical Engineering, 5045 Emerging Technologies Building, College Station, Texas 77843
| | - Kayla J. Bayless
- Texas A&M Health Science Center, Department of Molecular and Cellular Medicine, 142 Reynolds Medical Building, College Station, Texas 77843
| | - Alvin T. Yeh
- Texas A&M University, Department of Biomedical Engineering, 5045 Emerging Technologies Building, College Station, Texas 77843
| |
Collapse
|
13
|
Wulff BC, Yu L, Parent AE, Wilgus TA. Novel differences in the expression of inflammation-associated genes between mid- and late-gestational dermal fibroblasts. Wound Repair Regen 2012; 21:103-12. [PMID: 23126606 DOI: 10.1111/j.1524-475x.2012.00860.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 08/21/2012] [Indexed: 01/11/2023]
Abstract
While cutaneous wounds of late-gestational fetuses and on through adulthood result in scar formation, wounds incurred early in gestation have been shown to heal scarlessly. Unique properties of fetal fibroblasts are believed to mediate this scarless healing process. In this study, microarray analysis was used to identify differences in the gene expression profiles of cultured fibroblasts from embryonic day 15 (E15; midgestation) and embryonic day 18 (E18; late-gestation) skin. Sixty-two genes were differentially expressed and 12 of those genes are associated with inflammation, a process that correlates with scar formation in fetal wounds. One of the differentially expressed inflammatory genes was cyclooxygenase-1 (COX-1). COX-1 was more highly expressed in E18 fibroblasts than in E15 fibroblasts, and these differences were confirmed at the gene and protein level. Differences in COX-1 protein expression were also observed in fetal skin by immunohistochemical and immunofluorescence staining. The baseline differences in gene expression found in mid- and late-gestational fetal fibroblasts suggest that developmental alterations in fibroblasts could be involved in the transition from scarless to fibrotic fetal wound healing. Furthermore, baseline differences in the expression of inflammatory genes by fibroblasts in E15 and E18 skin may contribute to inflammation and scar formation late in gestation.
Collapse
Affiliation(s)
- Brian C Wulff
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
14
|
Collins CA, Kretzschmar K, Watt FM. Reprogramming adult dermis to a neonatal state through epidermal activation of β-catenin. Development 2011; 138:5189-99. [PMID: 22031549 DOI: 10.1242/dev.064592] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hair follicle formation depends on reciprocal epidermal-dermal interactions and occurs during skin development, but not in adult life. This suggests that the properties of dermal fibroblasts change during postnatal development. To examine this, we used a PdgfraEGFP mouse line to isolate GFP-positive fibroblasts from neonatal skin, adult telogen and anagen skin and adult skin in which ectopic hair follicles had been induced by transgenic epidermal activation of β-catenin (EF skin). We also isolated epidermal cells from each mouse. The gene expression profile of EF epidermis was most similar to that of anagen epidermis, consistent with activation of β-catenin signalling. By contrast, adult dermis with ectopic hair follicles more closely resembled neonatal dermis than adult telogen or anagen dermis. In particular, genes associated with mitosis were upregulated and extracellular matrix-associated genes were downregulated in neonatal and EF fibroblasts. We confirmed that sustained epidermal β-catenin activation stimulated fibroblasts to proliferate to reach the high cell density of neonatal skin. In addition, the extracellular matrix was comprehensively remodelled, with mature collagen being replaced by collagen subtypes normally present only in developing skin. The changes in proliferation and extracellular matrix composition originated from a specific subpopulation of fibroblasts located beneath the sebaceous gland. Our results show that adult dermis is an unexpectedly plastic tissue that can be reprogrammed to acquire the molecular, cellular and structural characteristics of neonatal dermis in response to cues from the overlying epidermis.
Collapse
Affiliation(s)
- Charlotte A Collins
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | | | |
Collapse
|
15
|
Wulff BC, Parent AE, Meleski MA, DiPietro LA, Schrementi ME, Wilgus TA. Mast cells contribute to scar formation during fetal wound healing. J Invest Dermatol 2011; 132:458-65. [PMID: 21993557 PMCID: PMC3258379 DOI: 10.1038/jid.2011.324] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Scar formation is a potentially detrimental process of tissue restoration in adults, affecting organ form and function. During fetal development, cutaneous wounds heal without inflammation or scarring at early stages of development, but begin to heal with significant inflammation and scarring as the skin becomes more mature. One possible cell type that could regulate the change from scarless to fibrotic healing is the mast cell. We show here that dermal mast cells in scarless wounds generated at embryonic day 15 (E15) are fewer in number, less mature and do not degranulate in response to wounding as effectively as mast cells of fibrotic wounds made at embryonic day 18 (E18). Differences were also observed between cultured mast cells from E15 and E18 skin with regard to degranulation and preformed cytokine levels. Injection of mast cell lysates into E15 wounds disrupted scarless healing, suggesting that mast cells interfere with scarless repair. Finally, wounds produced at E18, which normally heal with a scar, healed with significantly smaller scars in mast cell-deficient KitW/W-v mice compared to Kit+/+ littermates. Together, these data suggest that mast cells enhance scar formation, and that these cells may mediate the transition from scarless to fibrotic healing during fetal development.
Collapse
Affiliation(s)
- Brian C Wulff
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
16
|
Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis P, Koidis P, Geurtsen W. Assessment of the impact of two different isolation methods on the osteo/odontogenic differentiation potential of human dental stem cells derived from deciduous teeth. Calcif Tissue Int 2011; 88:130-41. [PMID: 21153807 DOI: 10.1007/s00223-010-9438-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 10/31/2010] [Indexed: 12/13/2022]
Abstract
Human deciduous teeth have been proposed as a promising source of mesenchymal stem cells for application in bone and dental tissue engineering. We established cultures of mesenchymal stem cells from the pulp of human deciduous teeth (deciduous teeth stem cells, DTSCs) and analyzed their morphologic, growth, immunophenotypic, and osteo/odontogenic differentiation characteristics using different isolation methods and culturing environments. We compared the biologic behavior of DTSCs isolated either by enzymatic dissociation (DTSCs-ED) or by direct outgrowth from pulp tissue explants (DTSCs-OG). We found that different isolation methods give rise to different populations/lineages of cells with respect to their phenotypic and differentiation characteristics. DTSCs-ED cultures comprised heterogeneous cell populations, whereas DTSCs-OG comprised more homogenous spindle-shaped cells. We have characterized DTSCs as STRO-1(+)/CD146(+)/CD34(+)/CD45(-) cells. However, the percentage of STRO-1(+) and CD34(+) cells was higher in DTSCs-ED (STRO-1, 17.01 ± 5.04%; CD34, 19.79 ± 4.66%) compared to DTSCs-OG cultures (STRO-1, 5.18 ± 2.39%; CD34, 9.94 ± 3.41%), probably as a result of a higher release of stem/progenitor cells from the perivascular niche during enzymatic dissociation. DTSCs isolated using either method displayed an active potential for cellular migration and biomineralization, giving rise to 3D mineralized structures when challenged with dexamethasone, monopotassium phosphate, and β-glycerophosphate. These cellular aggregates progressively expressed differentiation markers of functional odontoblasts, including dentin sialophosphoprotein, bone sialoprotein, osteocalcin, and alkaline phosphatase, having the characteristics of osteodentin. However, in DTSCs-ED, the mineralization rate and the amount of mineralized matrix produced was higher compared to DTSCs-OG cultures. Therefore, DTSCs-ED cells display enhanced biomineralization potential, which might be of advantage for application in clinical therapy.
Collapse
Affiliation(s)
- Athina Bakopoulou
- Department of Fixed Prosthesis and Implant Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
17
|
Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis P, Koidis P, Geurtsen W. Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Arch Oral Biol 2011; 56:709-21. [PMID: 21227403 DOI: 10.1016/j.archoralbio.2010.12.008] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 12/07/2010] [Accepted: 12/14/2010] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of this study was to compare the in vitro osteo/odontogenic differentiation potential of mesenchymal stem cells (MSCs) derived from the dental pulp (dental pulp stem cells - DPSCs) or the apical papilla (stem cells from the apical papilla - SCAP) of permanent developing teeth. DESIGN DPSCs and SCAP cultures were established from impacted third molars of young healthy donors at the stage of root development. Cultures were analysed for stem cell markers, including STRO-1, CD146, CD34 and CD45 using flow cytometry. Cells were then induced for osteo/odontogenic differentiation by media containing dexamethasone, KH(2)PO(4) and β-glycerophosphate. Cultures were analysed for morphology, growth characteristics, mineralization potential (Alizarin Red method) and differentiation markers (dentine sialophosphoprotein-DSPP, bone sialoprotein-BSP, osteocalcin-OCN, alkaline phosphatase-ALP), using immunocytochemistry and reverse transcriptase-polymerase chain reaction. RESULTS All DPSCs and SCAP cultures were positive for STRO-1, CD146 and CD34, in percentages varying according to cell type and donor, but negative for CD45. Both types of MSCs displayed an active potential for cellular migration, organization and mineralization, producing 3D mineralized structures. These structures progressively expressed differentiation markers, including DSPP, BSP, OCN, ALP, having the characteristics of osteodentin. SCAP, however, showed a significantly higher proliferation rate and mineralization potential, which might be of significance for their use in bone/dental tissue engineering. CONCLUSIONS This study provides evidence that different types of dental MSCs can be used in tissue engineering/regeneration protocols as an approachable stem cell source for osteo/odontogenic differentiation and biomineralization that could be further applied for stem cell-based clinical therapies.
Collapse
Affiliation(s)
- A Bakopoulou
- Department of Fixed Prosthesis & Implant Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
18
|
Hakkinen KM, Harunaga JS, Doyle AD, Yamada KM. Direct comparisons of the morphology, migration, cell adhesions, and actin cytoskeleton of fibroblasts in four different three-dimensional extracellular matrices. Tissue Eng Part A 2010; 17:713-24. [PMID: 20929283 DOI: 10.1089/ten.tea.2010.0273] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interactions between cells and the extracellular matrix are at the core of tissue engineering and biology. However, most studies of these interactions have used traditional two-dimensional (2D) tissue culture, which is less physiological than three-dimensional (3D) tissue culture. In this study, we compared cell behavior in four types of commonly used extracellular matrix under 2D and 3D conditions. Specifically, we quantified parameters of cell adhesion and migration by human foreskin fibroblasts in cell-derived matrix or hydrogels of collagen type I, fibrin, or basement membrane extract (BME). Fibroblasts in 3D were more spindle shaped with fewer lateral protrusions and substantially reduced actin stress fibers than on 2D matrices; cells failed to spread in 3D BME. Cell-matrix adhesion structures were detected in all matrices. Although the shapes of these cell adhesions differed, the total area per cell occupied by cell-matrix adhesions in 2D and 3D was nearly identical. Fibroblasts migrated most rapidly in cell-derived 3D matrix and collagen and migrated minimally in BME, with highest migration directionality in cell-derived matrix. This identification of quantitative differences in cellular responses to different matrix composition and dimensionality should help guide the development of customized 3D tissue culture and matrix scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Kirsi M Hakkinen
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4370, USA
| | | | | | | |
Collapse
|
19
|
Enoch S, Peake M, Wall I, Davies L, Farrier J, Giles P, Kipling D, Price P, Moseley R, Thomas D, Stephens P. ‘Young’ Oral Fibroblasts Are Geno/Phenotypically Distinct. J Dent Res 2010; 89:1407-13. [DOI: 10.1177/0022034510377796] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Wound healing within the oral mucosa results in minimal scar formation compared with wounds within the skin. We have recently demonstrated distinct differences in the aging profiles of cells (oral mucosal and patient-matched skin fibroblasts) isolated from these tissues. We hypothesized that the increased replicative potential of oral mucosal fibroblasts may confer upon them preferential wound-healing capacities. Passage-matched early cultures of oral mucosal fibroblasts and skin fibroblasts demonstrated distinct gene expression profiles, with several genes linked to wound healing/tissue repair. This was related to an increased ability of the ‘replicatively younger’ oral mucosal fibroblasts to repopulate a wound space and reorganize their surrounding extracellular matrix environment, key activities during the wound-healing process. We conclude that oral mucosal fibroblasts exhibit a preferential healing response in vivo, due to their ‘replicatively younger’ phenotype when compared with that of patient-matched skin fibroblasts.
Collapse
Affiliation(s)
- S. Enoch
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Tissue Engineering and Reparative Dentistry, School of Dentistry
- Department of Burns and Plastic Surgery, University Hospital of South Manchester, Southmoor Road, Wythenshawe, Manchester M23 7LT, UK
| | - M.A. Peake
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Tissue Engineering and Reparative Dentistry, School of Dentistry
| | - I. Wall
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Tissue Engineering and Reparative Dentistry, School of Dentistry
- Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - L. Davies
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Tissue Engineering and Reparative Dentistry, School of Dentistry
| | - J. Farrier
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Tissue Engineering and Reparative Dentistry, School of Dentistry
| | - P. Giles
- Department of Pathology, School of Medicine
| | - D. Kipling
- Department of Pathology, School of Medicine
| | - P. Price
- Wound Healing Research Unit, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XY, Wales, UK
| | - R. Moseley
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Tissue Engineering and Reparative Dentistry, School of Dentistry
| | - D. Thomas
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Tissue Engineering and Reparative Dentistry, School of Dentistry
| | - P. Stephens
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Tissue Engineering and Reparative Dentistry, School of Dentistry
| |
Collapse
|
20
|
Kandere-Grzybowska K, Soh S, Mahmud G, Komarova Y, Pilans D, Grzybowski BA. Short-term molecular polarization of cells on symmetric and asymmetric micropatterns. SOFT MATTER 2010; 6:3257-3268. [PMID: 23826026 PMCID: PMC3697907 DOI: 10.1039/b922647h] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The ability of cells to sense geometrical/physical constraints of local environment is important for cell movements during development, immune surveillance, and in cancer invasion. In this paper, we quantify "front-rear" polarization - the crucial step in initiating cell migration - based on cytoskeleton and substrate adhesion anisotropy in micropatterned cells of well-defined shapes. We then show that the general viewpoint that asymmetric cell shape is one of the defining characteristics of polarized cells is incomplete. Specifically, we demonstrate that cells on circular micropatterned islands can exhibit asymmetric distribution of both filamentous actin (f-actin) and focal adhesions (FAs) as well as directional, lamellipodial-like ruffling activity. This asymmetry, however, is transient and persists only for the period of several hours during which actin filaments and adhesion structures reorganize into symmetric peripheral arrangement. Cells on asymmetric tear-drop shape islands also display polarized f-actin and FAs, but polarization axes are oriented towards the wide end of the islands. Polarization of actin filaments on tear-drop islands is short-term, while focal adhesions remain asymmetrically distributed for long times. From a practical perspective, circular cells constitute a convenient experimental system, in which phenomena related to cell polarization are "decoupled" from the effects of cells' local curvature (constant along circular cell's perimeter), while asymmetric (tear-drop) micropatterned cells standardize the organization of motility machinery of polarized/ moving cells. Both systems may prove useful for the design of diagnostic tools with which to probe and quantify ex vivo the motility/invasiveness status of cells from cancer patients.
Collapse
Affiliation(s)
- Kristiana Kandere-Grzybowska
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - Siowling Soh
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - Goher Mahmud
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - Yulia Komarova
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - Didzis Pilans
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - Bartosz A. Grzybowski
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| |
Collapse
|
21
|
Coolen NA, Schouten KCWM, Boekema BKHL, Middelkoop E, Ulrich MMW. Wound healing in a fetal, adult, and scar tissue model: a comparative study. Wound Repair Regen 2010; 18:291-301. [PMID: 20412555 DOI: 10.1111/j.1524-475x.2010.00585.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Early gestation fetal wounds heal without scar formation. Understanding the mechanism of this scarless healing may lead to new therapeutic strategies for improving adult wound healing. The aims of this study were to develop a human fetal wound model in which fetal healing can be studied and to compare this model with a human adult and scar tissue model. A burn wound (10 x 2 mm) was made in human ex vivo fetal, adult, and scar tissue under controlled and standardized conditions. Subsequently, the skin samples were cultured for 7, 14, and 21 days. Cells in the skin samples maintained their viability during the 21-day culture period. Already after 7 days, a significantly higher median percentage of wound closure was achieved in the fetal skin model vs. the adult and scar tissue model (74% vs. 28 and 29%, respectively, p<0.05). After 21 days of culture, only fetal wounds were completely reepithelialized. Fibroblasts migrated into the wounded dermis of all three wound models during culture, but more fibroblasts were present earlier in the wound area of the fetal skin model. The fast reepithelialization and prompt presence of many fibroblasts in the fetal model suggest that rapid healing might play a role in scarless healing.
Collapse
|
22
|
Brink HE, Bernstein J, Nicoll SB. Fetal dermal fibroblasts exhibit enhanced growth and collagen production in two- and three-dimensional culture in comparison to adult fibroblasts. J Tissue Eng Regen Med 2010; 3:623-33. [PMID: 19685484 DOI: 10.1002/term.204] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The high morbidity of tendon injuries and the poor outcomes observed following repair or replacement have stimulated interest in regenerative approaches to treatment and, in particular, the use of cell-based analogues as alternatives to autologous and allogeneic graft repair. Given the known regenerative properties of fetal tissues, the objective of this study was to assess the biological and mechanical properties of tissue-engineered three-dimensional (3D) composites seeded with fetal skin cells. Dermal fibroblasts were isolated from pregnant rats and their fetuses and characterized in monolayer culture and on 3D resorbable polyester scaffolds. To determine the differences between fetal and adult fibroblasts, DNA, total protein and types I and III collagen production were measured. In addition, morphology and mechanical properties of the 3D constructs were examined. In monolayer culture, fetal fibroblasts produced significantly more types I and III collagen and displayed serum-independent growth, while adult fibroblasts elaborated less collagen and exhibited reduced cell spreading and attachment under low-serum conditions. In 3D culture, fetal constructs appeared more developed based on gross examination, with significantly more total DNA, total protein and normalized type I collagen production compared to adult specimens. Finally, after 35 days, fetal fibroblast-seeded constructs possessed superior mechanical properties compared to adult samples. Taken together, these findings indicate that fetal dermal fibroblasts may be an effective source of cells for fabricating tissue equivalents to regenerate injured tendons.
Collapse
Affiliation(s)
- Hallie E Brink
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
23
|
Sandulache VC, Singh T, Li-Korotky HS, Lo CY, Otteson TD, Barsic M, Dohar JE, Hebda PA. Prostaglandin E2 is activated by airway injury and regulates fibroblast cytoskeletal dynamics. Laryngoscope 2009; 119:1365-73. [PMID: 19444894 DOI: 10.1002/lary.20173] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVES/HYPOTHESIS To characterize the activation of cyclooxygenase (COX)-2/prostaglandin (PG) E2 signaling during airway mucosal repair and its subsequent role during the wound healing process. STUDY DESIGN Prospective animal study. METHODS The subglottis was approached via cricothyroidotomy. Sham airways were closed, and wounded airways were subjected to laser injury and closed. Subglottic tissue was harvested at 12 hours, 24 hours, 48 hours, and 72 hours postinjury. Secretions were collected preoperatively and at time of sacrifice. Inflammatory gene expression was analyzed using quantitative reverse transcriptase polymerase chain reaction. Subglottic/tracheal explants were exposed to exogenous IL-1beta in the presence or absence of COX inhibitors. Explant-produced PGE2 levels were assayed using enzyme linked immunoassays. Human airway fibroblast migration and collagen contraction were assayed in the presence or absence of prostaglandin E2. RESULTS Laser injury triggers a rapid, dose-dependent increase in mucosal IL-1beta and COX-2 gene expression, with an anatomical distribution proportional to the distance from the site of injury. Gene upregulation correlates with dose-dependent increases in PGE2 mucosal secretion levels. Ex vivo analysis indicates IL-1beta is responsible for the activation of the COX-2 / PGE2 pathway. Prostaglandin E2 differentially inhibits airway fibroblast migration and contraction in a specific, dose-dependent manner. CONCLUSIONS PGE2 is activated during mucosal inflammation and acts to decrease fibroplastic activity in the mucosal wound bed. During subglottic stenosis (SGS) development, the levels of PGE2 generated in response to injury may be insufficient to blunt the intrinsically fibroplastic phenotype of SGS fibroblasts, resulting in excessive scarring.
Collapse
Affiliation(s)
- Vlad C Sandulache
- Division of Pediatric Otolaryngology, Children's Hospital of Pittsburgh, Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Stalling SS, Nicoll SB. Fetal ACL fibroblasts exhibit enhanced cellular properties compared with adults. Clin Orthop Relat Res 2008; 466:3130-7. [PMID: 18648900 PMCID: PMC2628219 DOI: 10.1007/s11999-008-0391-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 06/30/2008] [Indexed: 01/31/2023]
Abstract
Fetal tendons and skin heal regeneratively without scar formation. Cells isolated from these fetal tissues exhibit enhanced cellular migration and collagen production in comparison to cells from adult tissue. We determined whether fetal and adult fibroblasts isolated from the anterior cruciate ligament (ACL), a tissue that does not heal regeneratively, exhibit differences in cell migration rates and collagen elaboration. An in vitro migration assay showed fetal ACL fibroblasts migrated twice as fast as adult ACL fibroblasts at a rate of 38.90 +/- 7.69 microm per hour compared with 18.88 +/- 4.18 microm per hour, respectively. Quantification of Type I collagen elaboration by enzyme-linked immunosorbent assay showed fetal ACL fibroblasts produced four times the amount of Type I collagen compared with adult ACL fibroblasts after 7 days in culture. We observed no differences in Type III collagen with time for adult or fetal ACL fibroblasts. Our findings indicate fetal ACL fibroblasts are intrinsically different from adult ACL fibroblasts, suggesting the healing potential of the ACL may be age-dependent.
Collapse
Affiliation(s)
- Simone S. Stalling
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 USA
| | - Steven B. Nicoll
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 USA ,Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
25
|
Ramelet AA, Hirt-Burri N, Raffoul W, Scaletta C, Pioletti DP, Offord E, Mansourian R, Applegate LA. Chronic wound healing by fetal cell therapy may be explained by differential gene profiling observed in fetal versus old skin cells. Exp Gerontol 2008; 44:208-18. [PMID: 19049860 DOI: 10.1016/j.exger.2008.11.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 10/03/2008] [Accepted: 11/04/2008] [Indexed: 12/16/2022]
Abstract
Engineering of fetal tissue has a high potential for the treatment of acute and chronic wounds of the skin in humans as these cells have high expansion capacity under simple culture conditions and one organ donation can produce Master Cell Banks which can fabricate over 900 million biological bandages (9 x 12cm). In a Phase 1 clinical safety study, cases are presented for the treatment of therapy resistant leg ulcers. All eight patients, representing 13 ulcers, tolerated multiple treatments with fetal biological bandages showing no negative secondary effects and repair processes similar to that seen in 3rd degree burns. Differential gene profiling using Affymetrix gene chips (analyzing 12,500 genes) were accomplished on these banked fetal dermal skin cells compared to banked dermal skin cells of an aged donor in order to point to potential indicators of wound healing. Families of genes involved in cell adhesion and extracellular matrix, cell cycle, cellular signaling, development and immune response show significant differences in regulation between banked fetal and those from banked old skin cells: with approximately 47.0% of genes over-expressed in fetal fibroblasts. It is perhaps these differences which contribute to efficient tissue repair seen in the clinic with fetal cell therapy.
Collapse
|
26
|
Dudas M, Wysocki A, Gelpi B, Tuan TL. Memory encoded throughout our bodies: molecular and cellular basis of tissue regeneration. Pediatr Res 2008; 63:502-12. [PMID: 18427295 DOI: 10.1203/pdr.0b013e31816a7453] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
When a sheep loses its tail, it cannot regenerate it in the manner of lizards. On the other hand, it is possible to clone mammals from somatic cells, showing that a complete developmental program is intact in a wounded sheep's tail the same way it is in a lizard. Thus, there is a requirement for more than only the presence of the entire genetic code in somatic cells for regenerative abilities. Thoughts like this have motivated us to assemble more than just a factographic synopsis on tissue regeneration. As a model, we review skin wound healing in chronological order, and when possible, we use that overview as a framework to point out possible mechanisms of how damaged tissues can restore their original structure. This article postulates the existence of tissue structural memory as a complex distributed homeostatic mechanism. We support such an idea by referring to an extremely fragmented literature base, trying to synthesize a broad picture of important principles of how tissues and organs may store information about their own structure for the purposes of regeneration. Selected developmental, surgical, and tissue engineering aspects are presented and discussed in the light of recent findings in the field. When a sheep loses its tail, it cannot regenerate it in the manner of lizards. On the other hand, it is possible to clone mammals from somatic cells, showing that a complete developmental program is intact in a wounded sheep's tail the same way it is in a lizard. Thus, there is a requirement for more than only the presence of the entire genetic code in somatic cells for regenerative abilities. Thoughts like this have motivated us to assemble more than just a factographic synopsis on tissue regeneration. As a model, we review skin wound healing in chronological order, and when possible, we use that overview as a framework to point out possible mechanisms of how damaged tissues can restore their original structure. This article postulates the existence of tissue structural memory as a complex distributed homeostatic mechanism. We support such an idea by referring to an extremely fragmented literature base, trying to synthesize a broad picture of important principles of how tissues and organs may store information about their own structure for the purposes of regeneration. Selected developmental, surgical, and tissue engineering aspects are presented and discussed in the light of recent findings in the field.
Collapse
Affiliation(s)
- Marek Dudas
- Developmental Biology Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | | | | | |
Collapse
|