1
|
Thomas VJ, Buchweitz NF, Wu Y, Mercuri JJ. Evaluation of Cartilage-Like Matrix Formation in a Nucleus Pulposus-Derived Cartilage Analog Scaffold. J Biomed Mater Res B Appl Biomater 2025; 113:e35534. [PMID: 39797498 DOI: 10.1002/jbm.b.35534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/21/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
The formation of fibrocartilage in microfracture (MFX) severely limits its long-term outlook. There is consensus in the scientific community that the placement of an appropriate scaffold in the MFX defect site can promote hyaline cartilage formation and improve therapeutic benefit. Accordingly, in this work, a novel natural biomaterial-the cartilage analog (CA)-which met criteria favorable for chondrogenesis, was evaluated in vitro to determine its candidacy as a potential MFX scaffold. Human bone marrow stem cells (hBMSCs) were seeded onto the CA and cultured for 28 days in chondrogenic differentiation media. Sulfated glycosaminoglycan (sGAG) and hydroxyproline (HYP) contents were significantly higher than their non-seeded counterparts on both Days 14 and 28 (average sGAG on Day 28: 73.26 vs. 23.82 μg/mg dry wt. of tissue; average HYP on Day 28: 56.19 vs. 38.80 ± 2.53 μg/mg dry wt. of tissue). Histological assessments showed cellular infiltration and abundant sGAG formation for seeded CAs at both time points with new cartilage-like matrix filling up its laser-drilled channels. Polarized light microscopy of picrosirius red stained samples showed collagen fibrils aligning along the path of the laser-drilled channels. However, the seeded scaffolds were also found to have contracted by 20% by the end of the study with their average aggregate moduli significantly lower than non-seeded controls (10.52 vs. 21.74 kPa). Nevertheless, the CA was ultimately found to support the formation of a cartilage-like matrix, and therefore, merits consideration as a scaffold of interest for improving MFX.
Collapse
Affiliation(s)
- Vishal Joseph Thomas
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Nathan Foster Buchweitz
- The Orthopaedic Bioengineering Laboratory, Department of Bioengineering, Clemson University, Charleston, South Carolina, USA
| | - Yongren Wu
- The Orthopaedic Bioengineering Laboratory, Department of Bioengineering, Clemson University, Charleston, South Carolina, USA
| | - Jeremy John Mercuri
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- The Frank H. Stelling and C. Dayton Riddle Orthopaedic Research and Education Laboratory, Clemson University Biomedical Engineering Innovation Campus, Greenville, South Carolina, USA
| |
Collapse
|
2
|
Karimizade A, Hasanzadeh E, Abasi M, Enderami SE, Mirzaei E, Annabi N, Mellati A. Collagen short nanofiber-embedded chondroitin sulfate-hyaluronic acid nanocomposite: A cartilage-mimicking in situ-forming hydrogel with fine-tuned properties. Int J Biol Macromol 2024; 266:131051. [PMID: 38556223 DOI: 10.1016/j.ijbiomac.2024.131051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
In situ-forming hydrogels that possess the ability to be injected in a less invasive manner and mimic the biochemical composition and microarchitecture of the native cartilage extracellular matrix are desired for cartilage tissue engineering. Besides, gelation time and stiffness of the hydrogel are two interdependent factors that affect cells' distribution and fate and hence need to be optimized. This study presented a bioinspired in situ-forming hydrogel composite of hyaluronic acid (HA), chondroitin sulfate (CS), and collagen short nanofiber (CSNF). HA and CS were functionalized with aldehyde and amine groups to form a gel through a Schiff-base reaction. CSNF was fabricated via electrospinning, followed by fragmentation by ultrasonics. Gelation time (11-360 s) and compressive modulus (1.4-16.2 kPa) were obtained by varying the concentrations of CS, HA, CSNFs, and CSNFs length. The biodegradability and biocompatibility of the hydrogels with varying gelation and stiffness were also assessed in vitro and in vivo. At three weeks, the assessment of hydrogels' chondrogenic differentiation also yields varying levels of chondrogenic differentiation. The subcutaneous implantation of the hydrogels in a mouse model indicated no severe inflammation. Results demonstrated that the injectable CS/HA@CSNF hydrogel was a promising hydrogel for tissue engineering and cartilage regeneration.
Collapse
Affiliation(s)
- Ayoob Karimizade
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elham Hasanzadeh
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mozhgan Abasi
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Ehsan Enderami
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles (UCLA), CA 90095, USA
| | - Amir Mellati
- Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
3
|
Moradi L, Witek L, Vivekanand Nayak V, Cabrera Pereira A, Kim E, Good J, Liu CJ. Injectable hydrogel for sustained delivery of progranulin derivative Atsttrin in treating diabetic fracture healing. Biomaterials 2023; 301:122289. [PMID: 37639975 PMCID: PMC11232488 DOI: 10.1016/j.biomaterials.2023.122289] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/22/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Hydrogels with long-term storage stability, controllable sustained-release properties, and biocompatibility have been garnering attention as carriers for drug/growth factor delivery in tissue engineering applications. Chitosan (CS)/Graphene Oxide (GO)/Hydroxyethyl cellulose (HEC)/β-glycerol phosphate (β-GP) hydrogel is capable of forming a 3D gel network at physiological temperature (37 °C), rendering it an excellent candidate for use as an injectable biomaterial. This work focused on an injectable thermo-responsive CS/GO/HEC/β-GP hydrogel, which was designed to deliver Atsttrin, an engineered derivative of a known chondrogenic and anti-inflammatory growth factor-like molecule progranulin. The combination of the CS/GO/HEC/β-GP hydrogel and Atsttrin provides a unique biochemical and biomechanical environment to enhance fracture healing. CS/GO/HEC/β-GP hydrogels with increased amounts of GO exhibited rapid sol-gel transition, higher viscosity, and sustained release of Atsttrin. In addition, these hydrogels exhibited a porous interconnected structure. The combination of Atsttrin and hydrogel successfully promoted chondrogenesis and osteogenesis of bone marrow mesenchymal stem cells (bmMSCs) in vitro. Furthermore, the work also presented in vivo evidence that injection of Atsttrin-loaded CS/GO/HEC/β-GP hydrogel stimulated diabetic fracture healing by simultaneously inhibiting inflammatory and stimulating cartilage regeneration and endochondral bone formation signaling pathways. Collectively, the developed injectable thermo-responsive CS/GO/HEC/βG-P hydrogel yielded to be minimally invasive, as well as capable of prolonged and sustained delivery of Atsttrin, for therapeutic application in impaired fracture healing, particularly diabetic fracture healing.
Collapse
Affiliation(s)
- Lida Moradi
- Department of Orthopaedics Surgery, New York University Grossman School of Medicine, New York, NY, 10003, USA; Department of Orthopaedics & Rehabilitation, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Lukasz Witek
- Biomaterials Division - Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA; Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, 11201, USA
| | - Vasudev Vivekanand Nayak
- Biomaterials Division - Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Angel Cabrera Pereira
- Biomaterials Division - Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Ellen Kim
- Department of Orthopaedics Surgery, New York University Grossman School of Medicine, New York, NY, 10003, USA
| | - Julia Good
- Department of Orthopaedics Surgery, New York University Grossman School of Medicine, New York, NY, 10003, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics Surgery, New York University Grossman School of Medicine, New York, NY, 10003, USA; Department of Orthopaedics & Rehabilitation, Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
4
|
Alizadeh Sardroud H, Chen X, Eames BF. Reinforcement of Hydrogels with a 3D-Printed Polycaprolactone (PCL) Structure Enhances Cell Numbers and Cartilage ECM Production under Compression. J Funct Biomater 2023; 14:313. [PMID: 37367278 DOI: 10.3390/jfb14060313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/28/2023] Open
Abstract
Hydrogels show promise in cartilage tissue engineering (CTE) by supporting chondrocytes and maintaining their phenotype and extracellular matrix (ECM) production. Under prolonged mechanical forces, however, hydrogels can be structurally unstable, leading to cell and ECM loss. Furthermore, long periods of mechanical loading might alter the production of cartilage ECM molecules, including glycosaminoglycans (GAGs) and collagen type 2 (Col2), specifically with the negative effect of stimulating fibrocartilage, typified by collagen type 1 (Col1) secretion. Reinforcing hydrogels with 3D-printed Polycaprolactone (PCL) structures offer a solution to enhance the structural integrity and mechanical response of impregnated chondrocytes. This study aimed to assess the impact of compression duration and PCL reinforcement on the performance of chondrocytes impregnated with hydrogel. Results showed that shorter loading periods did not significantly affect cell numbers and ECM production in 3D-bioprinted hydrogels, but longer periods tended to reduce cell numbers and ECM compared to unloaded conditions. PCL reinforcement enhanced cell numbers under mechanical compression compared to unreinforced hydrogels. However, the reinforced constructs seemed to produce more fibrocartilage-like, Col1-positive ECM. These findings suggest that reinforced hydrogel constructs hold potential for in vivo cartilage regeneration and defect treatment by retaining higher cell numbers and ECM content. To further enhance hyaline cartilage ECM formation, future studies should focus on adjusting the mechanical properties of reinforced constructs and exploring mechanotransduction pathways.
Collapse
Affiliation(s)
- Hamed Alizadeh Sardroud
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - B Frank Eames
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
5
|
Liu Q, Dai W, Gao Y, Dong L, Jia H, Li S, Guo L, Fan Y, Zhang X. The synergistic regulation of chondrogenesis by collagen-based hydrogels and cell co-culture. Acta Biomater 2022; 154:194-211. [PMID: 36309191 DOI: 10.1016/j.actbio.2022.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/19/2022] [Accepted: 10/07/2022] [Indexed: 01/24/2023]
Abstract
The suitable seeding cells and scaffolds are very important for tissue engineering to create functional cartilage. Although the physicochemical properties of scaffold and co-culture system of mesenchymal stem cells (MSCs) and chondrocytes could affect functional properties of engineered cartilage tissues respectively, the combined effects of them on chondrogenesis is currently unknown. Herein, methacrylated collagen (CMA30 and CMA80) hydrogels with different degradation rate and stiffness were prepared. The MSCs and chondrocytes were co-cultured or monocultured in collagen, CMA30 and CMA80 hydrogels in vitro or in vivo. The results demonstrated that cell spreading and proliferation was regulated by degradation rate and stiffness of hydrogels. Compared to single MSCs culture, co-culture cells in all collagen-based hydrogels significantly improved chondrogenesis. CMA30 hydrogel with moderate degradation rate and low storage modulus was the most effective for co-culture system to promote chondrogenesis compared to Col and CMA80 hydrogel in vitro culture, while there was no obvious difference between CMA30 and CMA80 hydrogel in vivo. Furthermore, the intercellular substance exchange was very important for co-culture system to maintain the positive effect on chondrogenesis. Overall, the current study highlights the synergistic effects of the physicochemical properties of collagen-based hydrogel and co-culture system on cartilage formation. STATEMENT OF SIGNIFICANCE: Scaffolds and cells play a key role in cartilage tissue engineering. The combined effects of physicochemical properties of collagen hydrogels and co-culture system (MSCs and chondrocytes) on chondrogenesis is unknown. In contrast to the studies that investigated the effect of single factor (scaffolds or cells) on cartilage formation, this manuscript explored the synergistic regulation of both scaffold properties and biological factors on chondrogenesis, and provided a promising strategy for cartilage tissue engineering.
Collapse
Affiliation(s)
- Qingli Liu
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Wenling Dai
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Yongli Gao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Longpeng Dong
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Hengxing Jia
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Shikui Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Likun Guo
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, PR China
| |
Collapse
|
6
|
Yang L, Miura T, Kasahara M. Effectively improved 3-dimensional structural stability of atelocollagen-gelatin sponge biomaterial by heat treatment. Dent Mater J 2022; 41:337-345. [PMID: 35418547 DOI: 10.4012/dmj.2021-136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Atelocollagen-gelatin (ACG) sponge was fabricated from atelocollagen and gelatin by lyophilization without introducing toxic substances. This study aimed to investigate the effects of heat treatment on the 3-dimensional structural stability of ACG sponge biomaterial. ACG sponge samples were fabricated and heat treated at 125oC for 12 h in the vacuum. The results revealed that heat treatment did not affect porosity, pore size and mechanical compressive strength. Heat-treated ACG sponge showed decreased absorbance and peak shift of amid I (C=O) stretches, slightly higher water uptake degree and significantly decreased in vitro degradation rate. Moreover, heat-treated ACG sponge maintained good 3-dimensional surface morphology and porous microstructure throughout 7 days, while non-heat-treated ACG sponge collapsed in less than 24 h. The human mesenchymal stromal cells (hMSCs) were shown to adhere and grow well on heat-treated ACG sponges. These results indicate that heat treatment is effective and safe to stabilize 3-dimensional ACG sponge biomaterial for tissue engineering.
Collapse
Affiliation(s)
- Longqiang Yang
- Department of Pharmacology, Tokyo Dental College.,Tokyo Dental College Research Branding Project, Tokyo Dental College
| | | | - Masataka Kasahara
- Department of Pharmacology, Tokyo Dental College.,Tokyo Dental College Research Branding Project, Tokyo Dental College
| |
Collapse
|
7
|
Szojka ARA, Liang Y, Marqueti RDC, Moore CN, Erkut EJN, Kunze M, Mulet-Sierra A, Jomha NM, Adesida AB. Time course of 3D fibrocartilage formation by expanded human meniscus fibrochondrocytes in hypoxia. J Orthop Res 2022; 40:495-503. [PMID: 33788325 DOI: 10.1002/jor.25046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 02/04/2023]
Abstract
Adult human meniscus fibrocartilage is avascular and nonhealing after injury. Meniscus tissue engineering aims to replace injured meniscus with lab-grown fibrocartilage. Dynamic culture systems may be necessary to generate fibrocartilage of sufficient mechanical properties for implantation; however, the optimal static preculture conditions before initiation of dynamic culture are unknown. This study thus investigated the time course of fibrocartilage formation by human meniscus fibrochondrocytes on a three-dimensional biomaterial scaffold under various static conditions. Human meniscus fibrochondrocytes from partial meniscectomy were expanded to passage 1 (P1) or P2 (3.0 ± 0.4 and 6.5 ± 0.6 population doublings), seeded onto type I collagen scaffolds, and grown in hypoxia (HYP, 3% O2 ) or normoxia (NRX, 20% O2 ) for 3, 6, and 9 weeks. Mechanical properties were not different between P1 and P2 cell-based constructs. Mechanical properties were lower in HYP, increased continually in NRX only, and were positively correlated with glycosaminoglycan content and accumulation of hyaline cartilage-like matrix components. The most mechanically competent tissues (NRX/9 weeks) reached 1/5 of the native meniscus instantaneous compression modulus but had an increasingly hypertrophic matrix-forming phenotype. HYP consistently suppressed the hypertrophic phenotype. The results provide baselines of engineered meniscus fibrocartilage properties under static conditions, which can be used to select a preculture strategy for dynamic culture depending on the desired combination of mechanical properties, hyaline cartilage-like matrix abundance, and hypertrophic phenotype.
Collapse
Affiliation(s)
- Alexander R A Szojka
- Department of Surgery, Divisions of Orthopedic Surgery and Surgical Research, Faculty of Medicine and Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada
| | - Yan Liang
- Department of Surgery, Divisions of Orthopedic Surgery and Surgical Research, Faculty of Medicine and Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada
| | - Rita de Cássia Marqueti
- Graduate Program of Rehabilitation Sciences, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
| | - Colleen N Moore
- Department of Surgery, Divisions of Orthopedic Surgery and Surgical Research, Faculty of Medicine and Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada
| | - Esra J N Erkut
- Department of Surgery, Divisions of Orthopedic Surgery and Surgical Research, Faculty of Medicine and Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada
| | - Melanie Kunze
- Department of Surgery, Divisions of Orthopedic Surgery and Surgical Research, Faculty of Medicine and Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada
| | - Aillette Mulet-Sierra
- Department of Surgery, Divisions of Orthopedic Surgery and Surgical Research, Faculty of Medicine and Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada
| | - Nadr M Jomha
- Department of Surgery, Divisions of Orthopedic Surgery and Surgical Research, Faculty of Medicine and Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada
| | - Adetola B Adesida
- Department of Surgery, Divisions of Orthopedic Surgery and Surgical Research, Faculty of Medicine and Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Soliman BG, Major GS, Atienza-Roca P, Murphy CA, Longoni A, Alcala-Orozco CR, Rnjak-Kovacina J, Gawlitta D, Woodfield TBF, Lim KS. Development and Characterization of Gelatin-Norbornene Bioink to Understand the Interplay between Physical Architecture and Micro-Capillary Formation in Biofabricated Vascularized Constructs. Adv Healthc Mater 2022; 11:e2101873. [PMID: 34710291 DOI: 10.1002/adhm.202101873] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/21/2021] [Indexed: 12/12/2022]
Abstract
The principle challenge for engineering viable, cell-laden hydrogel constructs of clinically-relevant size, is rapid vascularization, in order to moderate the finite capacity of passive nutrient diffusion. A multiscale vascular approach, with large open channels and bulk microcapillaries may be an admissible approach to accelerate this process, promoting overall pre-vascularization for long-term viability of constructs. However, the limited availability of bioinks that possess suitable characteristics that support both fabrication of complex architectures and formation of microcapillaries, remains a barrier to advancement in this space. In this study, gelatin-norbornene (Gel-NOR) is investigated as a vascular bioink with tailorable physico-mechanical properties, which promoted the self-assembly of human stromal and endothelial cells into microcapillaries, as well as being compatible with extrusion and lithography-based biofabrication modalities. Gel-NOR constructs containing self-assembled microcapillaries are successfully biofabricated with varying physical architecture (fiber diameter, spacing, and orientation). Both channel sizes and cell types affect the overall structural changes of the printed constructs, where cross-signaling between both human stromal and endothelial cells may be responsible for the reduction in open channel lumen observed over time. Overall, this work highlights an exciting three-way interplay between bioink formulation, construct design, and cell-mediated response that can be exploited towards engineering vascular tissues.
Collapse
Affiliation(s)
- Bram G Soliman
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Gretel S Major
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Pau Atienza-Roca
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Caroline A Murphy
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Alessia Longoni
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Cesar R Alcala-Orozco
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, 2006, Australia
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery and Special Dental Care, University Medical Center Utrecht, Utrecht, GA, 3508, The Netherlands
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| | - Khoon S Lim
- Light Activated Biomaterials (LAB) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago Christchurch, Christchurch, 8011, New Zealand
| |
Collapse
|
9
|
Altered microRNAs in C3H10T1/2 cells induced by p.E95K mutant IHH signaling. Hereditas 2021; 158:48. [PMID: 34922634 PMCID: PMC8684136 DOI: 10.1186/s41065-021-00207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/14/2021] [Indexed: 12/03/2022] Open
Abstract
Background Indian Hedgehog (IHH), an important cell signaling protein, plays a key regulatory role in development of cartilage and chondrogenesis. Earlier studies have shown that heterozygous missense mutations in IHH gene may cause brachydactyly type A1 (BDA1), an autosomal dominant inheritance disease characterized by apparent shortness or absence of the middle phalanges of all digits. MicroRNAs (miRNAs) have been found to be significant post-transcriptional regulators of gene expression and significantly influence the process of bone-development. Therefore, it is possible that miRNAs are involved in the mechanism underlying the development of BDA1. However, the relationship between miRNAs and the pathogenesis of BDA1 remains unclear. Methods In this study, we used microarray-based miRNA profiling to investigate the role of miRNAs in BDA1 by characterization of differentially expressed miRNAs in C3H10T1/2 cell line induced by wild type (WT) and p.E95K mutant (MT) IHH signaling. Results Our results identified 6 differentially expressed miRNAs between WT and control (CT) group and 5 differentially expressed miRNAs between MT and CT groups. In particular, miR-135a-1-3p was found to be a significantly differentially expressed miRNA between WT and CT group. Results of dual-luciferase reporter gene experiment successfully discovered Hoxd10 was one of the target gene of miR-135a-1-3p. Additionally, our pathway analysis revealed that the targets of these miRNAs of interest were highly involved with Runx1/2, Notch and collagen-related pathways. Conclusions Taken together, our findings provided important clue for future study of the process of miRNA-regulation in IHH signaling and novel insights into the regulatory role of miRNA in pathogenesis of BDA1. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-021-00207-8.
Collapse
|
10
|
Shengnan Q, Bennett S, Wen W, Aiguo L, Jiake X. The role of tendon derived stem/progenitor cells and extracellular matrix components in the bone tendon junction repair. Bone 2021; 153:116172. [PMID: 34506992 DOI: 10.1016/j.bone.2021.116172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/22/2021] [Accepted: 09/02/2021] [Indexed: 12/29/2022]
Abstract
Fibrocartilage enthesis is the junction between bone and tendon with a typical characteristics of fibrocartilage transition zones. The regeneration of this transition zone is the bottleneck for functional restoration of bone tendon junction (BTJ). Biomimetic approaches, especially decellularized extracellular matrix (ECM) materials, are strategies which aim to mimic the components of tissues to the utmost extent, and are becoming popular in BTJ healing because of their ability not only to provide scaffolds to allow cells to attach and migrate, but also to provide a microenvironment to guide stem/progenitor cells lineage-specific differentiation. However, the cellular and molecular mechanisms of those approaches, especially the ECM proteins, remain unclear. For BTJ reconstruction, fibrocartilage regeneration is the key for good integrity of bone and tendon as well as its mechanical recovery, so the components which can guide stem cells to a chondrogenic commitment in biomimetic approaches might well be the key for fibrocartilage regeneration and eventually for the better BTJ healing. In this review, we firstly discuss the importance of cartilage-like formation in the healing process of BTJ. Next, we explore the possibility of tendon-derived stem/progenitor cells as cell sources for BTJ regeneration due to their multi-differentiation potential. Finally, we summarize the role of extracellular matrix components of BTJ in guiding stem cell fate to a chondrogenic commitment, so as to provide cues for understanding the mechanisms of lineage-specific potential of biomimetic approaches as well as to inspire researchers to incorporate unique ECM components that facilitate BTJ repair into design.
Collapse
Affiliation(s)
- Qin Shengnan
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Samuel Bennett
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Wang Wen
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Li Aiguo
- Guangzhou Institute of Traumatic Surgery, Department of Orthopedics, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China.
| | - Xu Jiake
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia.
| |
Collapse
|
11
|
Wu Z, Korntner SH, Mullen AM, Zeugolis DI. Collagen type II: From biosynthesis to advanced biomaterials for cartilage engineering. BIOMATERIALS AND BIOSYSTEMS 2021; 4:100030. [PMID: 36824570 PMCID: PMC9934443 DOI: 10.1016/j.bbiosy.2021.100030] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Collagen type II is the major constituent of cartilage tissue. Yet, cartilage engineering approaches are primarily based on collagen type I devices that are associated with suboptimal functional therapeutic outcomes. Herein, we briefly describe cartilage's development and cellular and extracellular composition and organisation. We also provide an overview of collagen type II biosynthesis and purification protocols from tissues of terrestrial and marine species and recombinant systems. We then advocate the use of collagen type II as a building block in cartilage engineering approaches, based on safety, efficiency and efficacy data that have been derived over the years from numerous in vitro and in vivo studies.
Collapse
Affiliation(s)
- Z Wu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - SH Korntner
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - AM Mullen
- Teagasc Research Centre, Ashtown, Ireland
| | - DI Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
- Correspondence author at: REMODEL, NUI Galway & UCD.
| |
Collapse
|
12
|
Ebhodaghe SO. Natural Polymeric Scaffolds for Tissue Engineering Applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2144-2194. [PMID: 34328068 DOI: 10.1080/09205063.2021.1958185] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Natural polymeric scaffolds can be used for tissue engineering applications such as cell delivery and cell-free supporting of native tissues. This is because of their desirable properties such as; high biocompatibility, tunable mechanical strength and conductivity, large surface area, porous- and extracellular matrix (ECM)-mimicked structures. Specifically, their less toxicity and biocompatibility makes them suitable for several tissue engineering applications. For these reasons, several biopolymeric scaffolds are currently being explored for numerous tissue engineering applications. To date, research on the nature, chemistry, and properties of nanocomposite biopolymers are been reported, while the need for a comprehensive research note on more tissue engineering application of these biopolymers remains. As a result, this present study comprehensively reviews the development of common natural biopolymers as scaffolds for tissue engineering applications such as cartilage tissue engineering, cornea repairs, osteochondral defect repairs, and nerve regeneration. More so, the implications of research findings for further studies are presented, while the impact of research advances on future research and other specific recommendations are added as well.
Collapse
|
13
|
Hung CW, Mazumder N, Lin DJ, Chen WL, Lin ST, Chan MC, Zhuo GY. Label-Free Characterization of Collagen Crosslinking in Bone-Engineered Materials Using Nonlinear Optical Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-11. [PMID: 33829983 DOI: 10.1017/s1431927621000295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Engineered biomaterials provide unique functions to overcome the bottlenecks seen in biomedicine. Hence, a technique for rapid and routine tests of collagen is required, in which the test items commonly include molecular weight, crosslinking degree, purity, and sterilization induced structural change. Among them, the crosslinking degree mainly influences collagen properties. In this study, second harmonic generation (SHG) and coherent anti-Stokes Raman scattering (CARS) microscopy are used in combination to explore the collagen structure at molecular and macromolecular scales. These measured parameters are applied for the classification and quantification among the different collagen scaffolds, which were verified by other conventional methods. It is demonstrated that the crosslinking status can be analyzed from SHG images and presented as the coherency of collagen organization that is correlated with the mechanical properties. Also, the comparative analyses of SHG signal and relative CARS signal of amide III band at 1,240 cm−1 to δCH2 band at 1,450 cm−1 of these samples provide information regarding the variation of the molecular structure during a crosslinking process, thus serving as nonlinear optical signatures to indicate a successful crosslinking.
Collapse
Affiliation(s)
- Chao-Wei Hung
- PhD Program for Biomedical Engineering and Rehabilitation Science, China Medical University, No. 91, Hsueh-Shih Road, Taichung40402, Taiwan R.O.C
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka576104, India
| | - Dan-Jae Lin
- School of Dentistry, College of Dentistry, China Medical University, No. 91, Hsueh-Shih Road, Taichung40402, Taiwan R.O.C
| | - Wei-Liang Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei10617, Taiwan R.O.C
| | - Shih-Ting Lin
- Integrative Stem Cell Center, China Medical University Hospital, No. 2, Yude Road, Taichung40447, Taiwan R.O.C
| | - Ming-Che Chan
- Institute of Photonic System, College of Photonics, National Chiao-Tung University, Tainan71150, Taiwan R.O.C
- Institute of Biophotonics, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Beitou District, Taipei City112, Taiwan R.O.C
| | - Guan-Yu Zhuo
- Integrative Stem Cell Center, China Medical University Hospital, No. 2, Yude Road, Taichung40447, Taiwan R.O.C
- Institute of New Drug Development, China Medical University, No. 91, Hsueh-Shih Road, Taichung40402, Taiwan R.O.C
| |
Collapse
|
14
|
Cai X, Daniels O, Cucchiarini M, Madry H. Ectopic models recapitulating morphological and functional features of articular cartilage. Ann Anat 2021; 237:151721. [PMID: 33753232 DOI: 10.1016/j.aanat.2021.151721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Articular cartilage is an extremely specialized connective tissue which covers all diarthrodial joints. Implantation of chondrogenic cells without or with additional biomaterial scaffolds in ectopic locationsin vivo generates substitutes of cartilage with structural and functional characteristics that are used in fundamental investigations while also serving as a basis for translational studies. METHODS Literature search in Pubmed. RESULTS AND DISCUSSION This narrative review summarizes the most relevant ectopic models, among which subcutaneous, intramuscular, and kidney capsule transplantation and elaborates on implanted cells and biomaterial scaffolds and on their use to recapitulate morphological and functional features of articular cartilage. Although the absence of a physiological joint environment and biomechanical stimuli is the major limiting factor, ectopic models are an established component for articular cartilage research aiming to generate a bridge between in vitro data and the clinically more relevant translational orthotopic in vivo models when their limitations are considered.
Collapse
Affiliation(s)
- Xiaoyu Cai
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Oliver Daniels
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany.
| |
Collapse
|
15
|
Matheson AR, Sheehy EJ, Jay GD, Scott WM, O'Brien FJ, Schmidt TA. The role of synovial fluid constituents in the lubrication of collagen-glycosaminoglycan scaffolds for cartilage repair. J Mech Behav Biomed Mater 2021; 118:104445. [PMID: 33740688 DOI: 10.1016/j.jmbbm.2021.104445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 11/18/2022]
Abstract
Extracellular matrix (ECM)-derived scaffolds have shown promise as tissue-engineered grafts for promoting cartilage repair. However, there has been a lack of focus on fine-tuning the frictional properties of scaffolds for cartilage tissue engineering as well as understanding their interactions with synovial fluid constituents. Proteoglycan-4 (PRG4) and hyaluronan (HA) are macromolecules within synovial fluid that play key roles as boundary mode lubricants during cartilage surface interactions. The overall objective of this study was to characterize the role PRG4 and HA play in the lubricating function of collagen-glycosaminoglycan (GAG) scaffolds for cartilage repair. As a first step towards this goal, we aimed to develop a suitable in vitro friction test to establish the boundary mode lubrication parameters for collagen-GAG scaffolds articulated against glass in a phosphate buffered saline (PBS) bath. Subsequently, we sought to leverage this system to determine the effect of physiological synovial fluid lubricants, PRG4 and HA, on the frictional properties of collagen-GAG scaffolds, with scaffolds hydrated in PBS and bovine synovial fluid (bSF) serving as negative and positive controls, respectively. At all compressive strains examined (ε = 0.1-0.5), fluid depressurization within hydrated collagen-GAG scaffolds was >99% complete at ½ minute. The coefficient of friction was stable at all compressive strains (ranging from a low 0.103 ± 0.010 at ε = 0.3 up to 0.121 ± 0.015 at ε = 0.4) and indicative of boundary-mode conditions. Immunohistochemistry demonstrated that PRG4 from recombinant human (rh) and bovine sources adsorbed to collagen-GAG scaffolds and the coefficient of friction for scaffolds immersed in rhPRG4 (0.067 ± 0.027) and normal bSF (0.056 ± 0.020) solution decreased compared to PBS (0.118 ± 0.21, both p < 0.05, at ε = 0.2). The ability of the adsorbed rhPRG4 to reduce friction on the scaffolds indicates that its incorporation within collagen-GAG biomaterials may enhance their lubricating ability as potential tissue-engineered cartilage replacements. To conclude, this study reports the development of an in vitro friction test capable of characterizing the coefficient of friction of ECM-derived scaffolds tested in a range of synovial fluid lubricants and demonstrates frictional properties as a potential design parameter for implants and materials for soft tissue replacement.
Collapse
Affiliation(s)
- Austyn R Matheson
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Eamon J Sheehy
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Gregory D Jay
- Department of Emergency Medicine, Warren Alpert Medical School & School of Engineering, Brown University, Providence, RI, USA
| | - W Michael Scott
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Fergal J O'Brien
- Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Tannin A Schmidt
- Biomedical Engineering Department, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
16
|
Amann E, Amirall A, Franco AR, Poh PSP, Sola Dueñas FJ, Fuentes Estévez G, Leonor IB, Reis RL, van Griensven M, Balmayor ER. A Graded, Porous Composite of Natural Biopolymers and Octacalcium Phosphate Guides Osteochondral Differentiation of Stem Cells. Adv Healthc Mater 2021; 10:e2001692. [PMID: 33448144 PMCID: PMC11468142 DOI: 10.1002/adhm.202001692] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/19/2020] [Indexed: 01/08/2023]
Abstract
Lesions involving the osteochondral unit are difficult to treat. Biomimetic scaffolds are previously shown as promising alternative. Such devices often lack multiple functional layers that mimic bone, cartilage, and the interface. In this study, multilayered scaffolds are developed based on the use of natural extracellular matrix (ECM)-like biopolymers. Particular attention is paid to obtain a complex matrix that mimics the native osteochondral transition. Porous, sponge-like chitosan-collagen-octacalcium phosphate (OCP) scaffolds are obtained. Collagen content increases while the amount of OCP particles decreases toward the cartilage layer. The scaffolds are bioactive as a mineral layer is deposited containing hydroxyapatite at the bony side. The scaffolds stimulate proliferation of human adipose-derived mesenchymal stem cells, but the degree of proliferation depends on the cell seeding density. The scaffolds give rise to a zone-specific gene expression. RUNX2, COL1A1, BGLAP, and SPP1 are upregulated in the bony layer of the scaffold. SOX9 is upregulated concomitant with COL2A1 expression in the cartilage zone. Mineralization in presence of the cells is prominent in the bone area with Ca and P steadily increasing over time. These results are encouraging for the fabrication of biomimetic scaffolds using ECM-like materials and featuring gradients that mimic native tissues and their interface.
Collapse
Affiliation(s)
- Elisabeth Amann
- Experimental Trauma SurgeryKlinikum rechts der IsarTechnical University of MunichMunich81675Germany
| | | | - Albina R. Franco
- 3B's Research GroupI3Bs‐Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAveparkBarcoGuimarães4805‐017Portugal
- ICVS/3B's—PT Government Associate LaboratoryBragaGuimarãesPortugal
| | - Patrina S. P. Poh
- Experimental Trauma SurgeryKlinikum rechts der IsarTechnical University of MunichMunich81675Germany
- Julius Wolff InstituteCharité—Universitätsmedizin Berlin13353BerlinGermany
| | | | | | - Isabel B. Leonor
- 3B's Research GroupI3Bs‐Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAveparkBarcoGuimarães4805‐017Portugal
- ICVS/3B's—PT Government Associate LaboratoryBragaGuimarãesPortugal
| | - Rui L. Reis
- 3B's Research GroupI3Bs‐Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAveparkBarcoGuimarães4805‐017Portugal
- ICVS/3B's—PT Government Associate LaboratoryBragaGuimarãesPortugal
- The Discoveries Centre for Regenerative and Precision MedicineHeadquarters at University of MinhoAveparkBarcoGuimarães4805‐017Portugal
| | - Martijn van Griensven
- Experimental Trauma SurgeryKlinikum rechts der IsarTechnical University of MunichMunich81675Germany
- Department of Cell Biology‐Inspired Tissue EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Elizabeth R. Balmayor
- Experimental Trauma SurgeryKlinikum rechts der IsarTechnical University of MunichMunich81675Germany
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| |
Collapse
|
17
|
Prionace glauca skin collagen bioengineered constructs as a promising approach to trigger cartilage regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111587. [DOI: 10.1016/j.msec.2020.111587] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/18/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
|
18
|
Zhu W, Cao L, Song C, Pang Z, Jiang H, Guo C. Cell-derived decellularized extracellular matrix scaffolds for articular cartilage repair. Int J Artif Organs 2020; 44:269-281. [PMID: 32945220 DOI: 10.1177/0391398820953866] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Articular cartilage repair remains a great clinical challenge. Tissue engineering approaches based on decellularized extracellular matrix (dECM) scaffolds show promise for facilitating articular cartilage repair. Traditional regenerative approaches currently used in clinical practice, such as microfracture, mosaicplasty, and autologous chondrocyte implantation, can improve cartilage repair and show therapeutic effect to some degree; however, the long-term curative effect is suboptimal. As dECM prepared by proper decellularization procedures is a biodegradable material, which provides space for regeneration tissue growth, possesses low immunogenicity, and retains most of its bioactive molecules that maintain tissue homeostasis and facilitate tissue repair, dECM scaffolds may provide a biomimetic microenvironment promoting cell attachment, proliferation, and chondrogenic differentiation. Currently, cell-derived dECM scaffolds have become a research hotspot in the field of cartilage tissue engineering, as ECM derived from cells cultured in vitro has many advantages compared with native cartilage ECM. This review describes cell types used to secrete ECM, methods of inducing cells to secrete cartilage-like ECM and decellularization methods to prepare cell-derived dECM. The potential mechanism of dECM scaffolds on cartilage repair, methods for improving the mechanical strength of cell-derived dECM scaffolds, and future perspectives on cell-derived dECM scaffolds are also discussed in this review.
Collapse
Affiliation(s)
- Wenrun Zhu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Cao
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunfeng Song
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiying Pang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haochen Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Changan Guo
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Tsai CC, Kuo SH, Lu TY, Cheng NC, Shie MY, Yu J. Enzyme-Cross-linked Gelatin Hydrogel Enriched with an Articular Cartilage Extracellular Matrix and Human Adipose-Derived Stem Cells for Hyaline Cartilage Regeneration of Rabbits. ACS Biomater Sci Eng 2020; 6:5110-5119. [PMID: 33455262 DOI: 10.1021/acsbiomaterials.9b01756] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hyaline cartilage regeneration remains clinically challenging. In this study, microbial transglutaminase was used to cross-link gelatin. The articular cartilage extracellular matrix (cECM), mainly comprising collagen type II and glycosaminoglycans (GAGs), which can support chondrogenesis, was enclosed in this enzyme-catalyzed hydrogel. After human adipose-derived stem cells (hASCs) were encapsulated in the hydrogel enriched with the cECM, the results demonstrated that the enzymatic cross-linking reaction is of low cytotoxicity. Moreover, the stem cells showed great proliferation and chondrogenic differentiation potential in the hydrogel. Most importantly, we assessed the therapeutic effects of applying a hydrogel enriched with the cECM and hASCs to repair a full-thickness osteochondral defect. At 8 weeks after surgery, the GCC group (hydrogel encapsulating cells and the cECM) exhibited a smooth articular surface with transparent new hyaline-like tissue macroscopically. According to histological analysis, inflammatory responses were hardly observed, and sound chondrocytes were aligned in the newly formed chondral layer. In addition, the GCC group exhibited significant improvement in the GAG content between weeks 4 and 8. In summary, the implantation of a gelatin hydrogel enriched with the cECM and hASCs could facilitate the hyaline cartilage regeneration significantly in rabbit knee joint models.
Collapse
Affiliation(s)
- Ching-Cheng Tsai
- Department of Chemical Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City 10617, Taiwan
| | - Shuo-Hsiu Kuo
- Department of Chemical Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City 10617, Taiwan
| | - Ting-Yu Lu
- Department of Chemical Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City 10617, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital, No.1, Changde St., Zhongzheng Dist., Taipei City 10048, Taiwan
| | - Ming-You Shie
- Department of Dentistry, China Medical University, No.91 Hsueh-Shih Rd., Taichung City 40402, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City 10617, Taiwan
| |
Collapse
|
20
|
Kilmer CE, Battistoni CM, Cox A, Breur GJ, Panitch A, Liu JC. Collagen Type I and II Blend Hydrogel with Autologous Mesenchymal Stem Cells as a Scaffold for Articular Cartilage Defect Repair. ACS Biomater Sci Eng 2020; 6:3464-3476. [PMID: 33463160 PMCID: PMC8287628 DOI: 10.1021/acsbiomaterials.9b01939] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Collagen type II is a promising material to repair cartilage defects since it is a major component of articular cartilage and plays a key role in chondrocyte function. This study investigated the chondrogenic differentiation of bone marrow-derived mesenchymal stem cells (MSCs) embedded within a 3:1 collagen type I to II blend (Col I/II) hydrogel or an all collagen type I (Col I) hydrogel. Glycosaminoglycan (GAG) production in Col I/II hydrogels was statistically higher than that in Col I hydrogels or pellet culture, and these results suggested that adding collagen type II promoted GAG production. Col I/II hydrogels had statistically lower alkaline phosphatase (AP) activity than pellets cultured in a chondrogenic medium. The ability of MSCs encapsulated in Col I/II hydrogels to repair cartilage defects was investigated by creating two cartilage defects in the femurs of rabbits. After 13 weeks, histochemical staining suggested that Col I/II blend hydrogels provided favorable conditions for cartilage repair. Histological scoring revealed a statistically higher cartilage repair score for the Col I/II hydrogels compared to either the Col I hydrogels or empty defect controls. Results from this study suggest that there is clinical value in the cartilage repair capabilities of our Col I/II hydrogel with encapsulated MSCs.
Collapse
Affiliation(s)
- Claire E. Kilmer
- Davidson School of Chemical Engineering, Purdue University,
West Lafayette, IN, 47907, USA
| | - Carly M. Battistoni
- Davidson School of Chemical Engineering, Purdue University,
West Lafayette, IN, 47907, USA
| | - Abigail Cox
- Department of Comparative Pathobiology, Purdue University,
West Lafayette, IN, 47907, USA
| | - Gert J. Breur
- Department of Veterinary Clinical Sciences, Purdue
University, West Lafayette, IN, 47907, USA
| | - Alyssa Panitch
- Weldon School of Biomedical Engineering, Purdue University,
West Lafayette, IN, 47907, USA
- School of Biomedical Engineering, University of California
Davis, Davis, CA, 95616, USA
| | - Julie C. Liu
- Davidson School of Chemical Engineering, Purdue University,
West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University,
West Lafayette, IN, 47907, USA
| |
Collapse
|
21
|
Lin IC, Wang TJ, Wu CL, Lu DH, Chen YR, Yang KC. Chitosan-cartilage extracellular matrix hybrid scaffold induces chondrogenic differentiation to adipose-derived stem cells. Regen Ther 2020; 14:238-244. [PMID: 32435677 PMCID: PMC7229425 DOI: 10.1016/j.reth.2020.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction Adipose-derived stem cells (ASCs) are potential cell sources for cartilage tissue engineering. Chitosan has been shown to enhance the stemness and differentiation capability of ASCs, and the native extracellular matrix (ECM) derived from articular cartilage has been also reported to induce chondrogenic differentiation of ASCs. Here we tested the hypothesis that a porous three-dimensional (3D) hybrid scaffold composed of chitosan and cartilage ECM can provide a better environment to induce ASC chondrogenesis. Methods Mixed solution composed of chitosan and cartilage ECM was frozen and lyophilized to form a composite construct. The porous 3D scaffolds were further crosslinked by genipin and used for ASC culture. Results Cultivation of ASCs in the chitosan/cartilage ECM composite 3D scaffolds induced the formation of cell spheroids with profound glycosaminoglycan production after 14 and 28 days culture. Chondrogenesis of ASCs seeded in the 3D scaffolds was also evident by mRNA expressions of cartilage-specific gene COL2A1 and ACAN on day 14. Histology and immunohistochemistry on day 28 also showed abundant cartilage-specific macromolecules, namely collagen type II and proteoglycan, deposited in a surface layer of the composite scaffold with tangential layer, transitional layer, and lacunae-like structures. Otherwise, hypertrophic markers collagen type I and X were concentrated in the area beneath the surface. Conclusion Our findings demonstrated spatial chondrogenic differentiation of ASCs in the chitosan-cartilage ECM composite scaffolds. This 3D hybrid scaffold exhibits great potentials for ASC-based cartilage tissue engineering. Cultivation of ASCs in the chitosan and cartilage ECM hybrid scaffold induced chondrogenesis. ASCs in composite scaffold expressed cartilage-specific genes COL2A1 and ACAN. Histologic inspections showed abundant cartilage-specific collagen type II and proteoglycan productions. Chitosan-cartilage ECM hybrid scaffold exhibits great potentials for ASC-based cartilage tissue engineering.
Collapse
Affiliation(s)
- I-Chan Lin
- Department of Ophthalmology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.,Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsung-Jen Wang
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Department of Ophthalmology, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Chien-Liang Wu
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Department of Ophthalmology, Taipei Municipal Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Dai-Hua Lu
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Ru Chen
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kai-Chiang Yang
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
22
|
Zhang W, Xia Y, Ling Y, Yang W, Dong ZX, Wang DA, Fan C. A Transcriptome Sequencing Study on Genome-Wide Gene Expression Differences of 3D Cultured Chondrocytes in Hydrogel Scaffolds with Different Gel Density. Macromol Biosci 2020; 20:e2000028. [PMID: 32187455 DOI: 10.1002/mabi.202000028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/18/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Hydrogel is considered as a promising cell delivery vehicle in cartilage tissue engineering, whose tunable microenvironments may influence the function and fate of encapsulated chondrocytes. Here, the transcriptomes of chondrocytes that are encapsulated and cultured in hydrogel constructs respectively made of 0.8% and 4% alginate solution are investigated. Differences in chondrocyte transcriptome are detected via RNA-sequencing from these two cultural conditions. The differentially expressed genes (DEGs) are reflected in extracellular matrix (ECM) secretion, cell cycle, proliferation, cartilage development, and so on. Significantly, the expression of DEGs associated with cartilage ECM and cell proliferation are upregulated in 0.8% constructs; whilst the expressions of DEGs involved in cell cycle and matrix degradation are upregulated in 4% constructs. Moreover, interestingly, the expressions of chondrocyte hypertrophy markers are upregulated in 0.8% constructs; while 4% constructs seemingly favor the long-term maintenance of chondrocyte phenotype. Taken together, this study confirms on transcriptomic level that gel density affects gene expression and phenotype of the encapsulated chondrocytes; therefore, it may provide guidance for future design and fabrication of cartilage tissue engineering scaffolds.
Collapse
Affiliation(s)
- Weiyuan Zhang
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yujun Xia
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yang Ling
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Wei Yang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, P. R. China
| | - Zuo-Xiang Dong
- Department of Neurosurgery, Affiliated Hospital of Qingdao University, Qingdao, 266021, P. R. China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR
| | - Changjiang Fan
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Qingdao University, Qingdao, 266021, China.,Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, P. R. China
| |
Collapse
|
23
|
Nikolova MP, Chavali MS. Recent advances in biomaterials for 3D scaffolds: A review. Bioact Mater 2019; 4:271-292. [PMID: 31709311 PMCID: PMC6829098 DOI: 10.1016/j.bioactmat.2019.10.005] [Citation(s) in RCA: 451] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023] Open
Abstract
Considering the advantages and disadvantages of biomaterials used for the production of 3D scaffolds for tissue engineering, new strategies for designing advanced functional biomimetic structures have been reviewed. We offer a comprehensive summary of recent trends in development of single- (metal, ceramics and polymers), composite-type and cell-laden scaffolds that in addition to mechanical support, promote simultaneous tissue growth, and deliver different molecules (growth factors, cytokines, bioactive ions, genes, drugs, antibiotics, etc.) or cells with therapeutic or facilitating regeneration effect. The paper briefly focuses on divers 3D bioprinting constructs and the challenges they face. Based on their application in hard and soft tissue engineering, in vitro and in vivo effects triggered by the structural and biological functionalized biomaterials are underlined. The authors discuss the future outlook for the development of bioactive scaffolds that could pave the way for their successful imposing in clinical therapy.
Collapse
Affiliation(s)
- Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse “A. Kanchev”, 8 Studentska Str., 7000, Ruse, Bulgaria
| | - Murthy S. Chavali
- Shree Velagapudi Ramakrishna Memorial College (PG Studies, Autonomous), Nagaram, 522268, Guntur District, India
- PG Department of Chemistry, Dharma Appa Rao College, Nuzvid, 521201, Krishna District, India
- MCETRC, Tenali, 522201, Guntur District, Andhra Pradesh, India
| |
Collapse
|
24
|
Chondrogenesis of human adipose-derived mesenchymal stromal cells on the [devitalized costal cartilage matrix/poly(vinyl alcohol)/fibrin] hybrid scaffolds. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.04.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Irawan V, Sung TC, Higuchi A, Ikoma T. Collagen Scaffolds in Cartilage Tissue Engineering and Relevant Approaches for Future Development. Tissue Eng Regen Med 2018; 15:673-697. [PMID: 30603588 PMCID: PMC6250655 DOI: 10.1007/s13770-018-0135-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/30/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cartilage tissue engineering (CTE) aims to obtain a structure mimicking native cartilage tissue through the combination of relevant cells, three-dimensional scaffolds, and extraneous signals. Implantation of 'matured' constructs is thus expected to provide solution for treating large injury of articular cartilage. Type I collagen is widely used as scaffolds for CTE products undergoing clinical trial, owing to its ubiquitous biocompatibility and vast clinical approval. However, the long-term performance of pure type I collagen scaffolds would suffer from its limited chondrogenic capacity and inferior mechanical properties. This paper aims to provide insights necessary for advancing type I collagen scaffolds in the CTE applications. METHODS Initially, the interactions of type I/II collagen with CTE-relevant cells [i.e., articular chondrocytes (ACs) and mesenchymal stem cells (MSCs)] are discussed. Next, the physical features and chemical composition of the scaffolds crucial to support chondrogenic activities of AC and MSC are highlighted. Attempts to optimize the collagen scaffolds by blending with natural/synthetic polymers are described. Hybrid strategy in which collagen and structural polymers are combined in non-blending manner is detailed. RESULTS Type I collagen is sufficient to support cellular activities of ACs and MSCs; however it shows limited chondrogenic performance than type II collagen. Nonetheless, type I collagen is the clinically feasible option since type II collagen shows arthritogenic potency. Physical features of scaffolds such as internal structure, pore size, stiffness, etc. are shown to be crucial in influencing the differentiation fate and secreting extracellular matrixes from ACs and MSCs. Collagen can be blended with native or synthetic polymer to improve the mechanical and bioactivities of final composites. However, the versatility of blending strategy is limited due to denaturation of type I collagen at harsh processing condition. Hybrid strategy is successful in maximizing bioactivity of collagen scaffolds and mechanical robustness of structural polymer. CONCLUSION Considering the previous improvements of physical and compositional properties of collagen scaffolds and recent manufacturing developments of structural polymer, it is concluded that hybrid strategy is a promising approach to advance further collagen-based scaffolds in CTE.
Collapse
Affiliation(s)
- Vincent Irawan
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2 Chome-12-1, Meguro-ku, Tokyo, 152-8550 Japan
| | - Tzu-Cheng Sung
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jung Da Rd., Chung-Li, Taoyuan, 320 Taiwan
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, No. 300 Jung Da Rd., Chung-Li, Taoyuan, 320 Taiwan
| | - Toshiyuki Ikoma
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2 Chome-12-1, Meguro-ku, Tokyo, 152-8550 Japan
| |
Collapse
|
26
|
Zhang X, Zhai C, Fei H, Liu Y, Wang Z, Luo C, Zhang J, Ding Y, Xu T, Fan W. Composite Silk-Extracellular Matrix Scaffolds for Enhanced Chondrogenesis of Mesenchymal Stem Cells. Tissue Eng Part C Methods 2018; 24:645-658. [PMID: 30351193 DOI: 10.1089/ten.tec.2018.0199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Xiao Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenjun Zhai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Orthopedics, Yixing People's Hospital, Yixing, China
| | - Hao Fei
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhen Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chunyang Luo
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiyong Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanzi Ding
- Department of Cardiovascular, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weimin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
Injectable and self-crosslinkable hydrogels based on collagen type II and activated chondroitin sulfate for cell delivery. Int J Biol Macromol 2018; 118:2014-2020. [DOI: 10.1016/j.ijbiomac.2018.07.079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/29/2018] [Accepted: 07/12/2018] [Indexed: 11/24/2022]
|
28
|
Waghmare NA, Arora A, Bhattacharjee A, Katti DS. Sulfated polysaccharide mediated TGF-β1 presentation in pre-formed injectable scaffolds for cartilage tissue engineering. Carbohydr Polym 2018; 193:62-72. [DOI: 10.1016/j.carbpol.2018.03.091] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 12/22/2022]
|
29
|
Interplay between stiffness and degradation of architectured gelatin hydrogels leads to differential modulation of chondrogenesis in vitro and in vivo. Acta Biomater 2018; 69:83-94. [PMID: 29378326 DOI: 10.1016/j.actbio.2018.01.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 02/06/2023]
Abstract
The limited capacity of cartilage to heal large lesions through endogenous mechanisms has led to extensive effort to develop materials to facilitate chondrogenesis. Although physical-chemical properties of biomaterials have been shown to impact in vitro chondrogenesis, whether these findings are translatable in vivo is subject of debate. Herein, architectured 3D hydrogel scaffolds (ArcGel) (produced by crosslinking gelatin with ethyl lysine diisocyanate (LDI)) were used as a model system to investigate the interplay between scaffold mechanical properties and degradation on matrix deposition by human articular chondrocytes (HAC) from healthy donors in vitro and in vivo. Using ArcGel scaffolds of different tensile and shear modulus, and degradation behavior; in this study, we compared the fate of ex vivo engineered ArcGels-chondrocytes constructs, i.e. the traditional tissue engineering approach, with thede novoformation of cartilaginous tissue in HAC laden ArcGels in an ectopic nude mouse model. While the softer and fast degrading ArcGel (LNCO3) was more efficient at promoting chondrogenic differentiation in vitro, upon ectopic implantation, the stiffer and slow degrading ArcGel (LNCO8) was superior in maintaining chondrogenic phenotype in HAC and retention of cartilaginous matrix. Furthermore, surprisingly the de novo formation of cartilage tissue was promoted only in LNCO8. Since HAC cultured for only three days in the LNCO8 environment showed upregulation of hypoxia-associated genes, this suggests a potential role for hypoxia in the observed in vivo outcomes. In summary, this study sheds light on how immediate environment (in vivo versus in vitro) can significantly impact the outcomes of cell-laden biomaterials. STATEMENT OF SIGNIFICANCE In this study, 3D architectured hydrogels (ArcGels) with different mechanical and biodegradation properties were investigated for their potential to promote formation of cartilaginous matrix by human articular chondrocytes in vitro and in vivo. Two paradigms were explored (i) ex vivo engineering followed by in vivo implantation in ectopic site of nude mice and (ii) short in vitro culture (3 days) followed by implantation to induce de novo cartilage formation. Softer and fast degrading ArcGel were better at promoting chondrogenesis in vitro, while stiffer and slow degrading ArcGel were strikingly superior in both maintaining chondrogenesis in vivo and inducing de novo formation of cartilage. Our findings highlight the importance of the interplay between scaffold mechanics and degradation in chondrogenesis.
Collapse
|
30
|
Pulkkinen H, Tiitu V, Valonen P, Hämäläinen ER, Lammi M, Kiviranta I. Recombinant human type II collagen as a material for cartilage tissue engineering. Int J Artif Organs 2018; 31:960-9. [DOI: 10.1177/039139880803101106] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose Collagen type II is the major component of cartilage and would be an optimal scaffold material for reconstruction of injured cartilage tissue. In this study, the feasibility of recombinant human type II collagen gel as a 3-dimensional culture system for bovine chondrocytes was evaluated in vitro. Methods Bovine chondrocytes (4x106 cells) were seeded within collagen gels and cultivated for up to 4 weeks. The gels were investigated with confocal microscopy, histology, and biochemical assays. Results Confocal microscopy revealed that the cells maintained their viability during the entire cultivation period. The chondrocytes were evenly distributed inside the gels, and the number of cells and the amount of the extracellular matrix increased during cultivation. The chondrocytes maintained their round phenotype during the 4-week cultivation period. The glycosaminoglycan levels of the tissue increased during the experiment. The relative levels of aggrecan and type II collagen mRNA measured with realtime polymerase chain reaction (PCR) showed an increase at 1 week. Conclusion Our results imply that recombinant human type II collagen is a promising biomaterial for cartilage tissue engineering, allowing homogeneous distribution in the gel and biosynthesis of extracellular matrix components.
Collapse
Affiliation(s)
- H.J. Pulkkinen
- Institute of Biomedicine, Department of Anatomy, University of Kuopio, Kuopio - Finland
- Department of Orthopaedics and Traumatology, Jyväskylä Central Hospital, Jyväskylä - Finland
| | - V. Tiitu
- Institute of Biomedicine, Department of Anatomy, University of Kuopio, Kuopio - Finland
- Department of Orthopaedics and Traumatology, Jyväskylä Central Hospital, Jyväskylä - Finland
| | - P. Valonen
- Institute of Biomedicine, Department of Anatomy, University of Kuopio, Kuopio - Finland
- Department of Orthopaedics and Traumatology, Jyväskylä Central Hospital, Jyväskylä - Finland
| | - E.-R. Hämäläinen
- Bioprocess Engineering Laboratory, University of Oulu, Oulu - Finland
| | - M.J. Lammi
- Institute of Biomedicine, Department of Anatomy, University of Kuopio, Kuopio - Finland
- Department of Biosciences, Applied Biotechnology, University of Kuopio, Kuopio - Finland
| | - I. Kiviranta
- Department of Orthopaedics and Traumatology, Jyväskylä Central Hospital, Jyväskylä - Finland
- Department of Orthopaedics and Traumatology, Helsinki University Hospital, Helsinki - Finland
| |
Collapse
|
31
|
Nie X, Wang DA. Decellularized orthopaedic tissue-engineered grafts: biomaterial scaffolds synthesised by therapeutic cells. Biomater Sci 2018; 6:2798-2811. [DOI: 10.1039/c8bm00772a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In orthopaedic surgery, the reconstruction of musculoskeletal defects is a constant challenge.
Collapse
Affiliation(s)
- Xiaolei Nie
- Division of Bioengineering
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
- Singapore
| | - Dong-An Wang
- Division of Bioengineering
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637457
- Singapore
| |
Collapse
|
32
|
Rothrauff BB, Coluccino L, Gottardi R, Ceseracciu L, Scaglione S, Goldoni L, Tuan RS. Efficacy of thermoresponsive, photocrosslinkable hydrogels derived from decellularized tendon and cartilage extracellular matrix for cartilage tissue engineering. J Tissue Eng Regen Med 2017; 12:e159-e170. [PMID: 28486778 DOI: 10.1002/term.2465] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 03/07/2017] [Accepted: 05/04/2017] [Indexed: 11/11/2022]
Abstract
Tissue engineering using adult mesenchymal stem cells (MSCs), a promising approach for cartilage repair, is highly dependent on the nature of the matrix scaffold. Thermoresponsive, photocrosslinkable hydrogels were fabricated by functionalizing pepsin-soluble decellularized tendon and cartilage extracellular matrices (ECM) with methacrylate groups. Methacrylated gelatin hydrogels served as controls. When seeded with human bone marrow MSCs and cultured in chondrogenic medium, methacrylated ECM hydrogels experienced less cell-mediated contraction, as compared against non-methacrylated ECM hydrogels. However, methacrylation slowed or diminished chondrogenic differentiation of seeded MSCs, as determined through analyses of gene expression, biochemical composition and histology. In particular, methacrylated cartilage hydrogels supported minimal due to chondrogenesis over 42 weeks, as hydrogel disintegration beginning at day 14 presumably compromised cell-matrix interactions. As compared against methacrylated gelatin hydrogels, MSCs cultured in non-methacrylated ECM hydrogels exhibited comparable expression of chondrogenic genes (Sox9, Aggrecan and collagen type II) but increased collagen type I expression. Non-methacrylated cartilage hydrogels did not promote chondrogenesis to a greater extent than either non-methacrylated or methacrylated tendon hydrogels. Whereas methacrylated gelatin hydrogels supported relatively homogeneous increases in proteoglycan and collagen type II deposition throughout the construct over 42 days, ECM hydrogels possessed greater heterogeneity of staining intensity and construct morphology. These results do not support the utility of pepsin-solubilized cartilage and tendon hydrogels for cartilage tissue engineering over methacrylated gelatin hydrogels. Methacrylation of tendon and cartilage ECM hydrogels permits thermal- and light-induced polymerization but compromises chondrogenic differentiation of seeded MSCs.
Collapse
Affiliation(s)
- Benjamin B Rothrauff
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Luca Coluccino
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Istituto Italiano di Tecnologia, Genoa, Italy.,IEIIT Institute, CNR-National Research Council of Italy, Genoa, Italy
| | - Riccardo Gottardi
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Fondazione RiMED, Palermo, Italy
| | | | - Silvia Scaglione
- IEIIT Institute, CNR-National Research Council of Italy, Genoa, Italy
| | | | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
33
|
Stratton S, Shelke NB, Hoshino K, Rudraiah S, Kumbar SG. Bioactive polymeric scaffolds for tissue engineering. Bioact Mater 2016; 1:93-108. [PMID: 28653043 PMCID: PMC5482547 DOI: 10.1016/j.bioactmat.2016.11.001] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/27/2016] [Accepted: 11/08/2016] [Indexed: 12/12/2022] Open
Abstract
A variety of engineered scaffolds have been created for tissue engineering using polymers, ceramics and their composites. Biomimicry has been adopted for majority of the three-dimensional (3D) scaffold design both in terms of physicochemical properties, as well as bioactivity for superior tissue regeneration. Scaffolds fabricated via salt leaching, particle sintering, hydrogels and lithography have been successful in promoting cell growth in vitro and tissue regeneration in vivo. Scaffold systems derived from decellularization of whole organs or tissues has been popular due to their assured biocompatibility and bioactivity. Traditional scaffold fabrication techniques often failed to create intricate structures with greater resolution, not reproducible and involved multiple steps. The 3D printing technology overcome several limitations of the traditional techniques and made it easier to adopt several thermoplastics and hydrogels to create micro-nanostructured scaffolds and devices for tissue engineering and drug delivery. This review highlights scaffold fabrication methodologies with a focus on optimizing scaffold performance through the matrix pores, bioactivity and degradation rate to enable tissue regeneration. Review highlights few examples of bioactive scaffold mediated nerve, muscle, tendon/ligament and bone regeneration. Regardless of the efforts required for optimization, a shift in 3D scaffold uses from the laboratory into everyday life is expected in the near future as some of the methods discussed in this review become more streamlined.
Collapse
Affiliation(s)
- Scott Stratton
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Namdev B. Shelke
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, USA
- Institute for Regenerative Engineering, UConn Health, Farmington, CT, USA
| | - Kazunori Hoshino
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Swetha Rudraiah
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Saint Joseph, Hartford, CT, 06103, USA
| | - Sangamesh G. Kumbar
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, USA
- Institute for Regenerative Engineering, UConn Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
34
|
Arora A, Kothari A, Katti DS. Pericellular plasma clot negates the influence of scaffold stiffness on chondrogenic differentiation. Acta Biomater 2016; 46:68-78. [PMID: 27693666 DOI: 10.1016/j.actbio.2016.09.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 11/26/2022]
Abstract
Matrix stiffness is known to play a pivotal role in cellular differentiation. Studies have shown that soft scaffolds (<2-3kPa) promote cellular aggregation and chondrogenesis, whereas, stiffer ones (>10kPa) show poor chondrogenesis in vitro. In this work we investigated if fibrin matrix from clotted blood can act as a soft surrogate which nullifies the influence of the underlying stiff scaffold, thus promoting chondrogenesis irrespective of bulk scale scaffold stiffness. For this we performed in vitro chondrogenesis on soft (∼1.5kPa) and stiff (∼40kPa) gelatin scaffolds in the presence and absence of pericellular plasma clot. Our results demonstrated that in absence of pericellular plasma clot, chondrocytes showed efficient condensation and cartilaginous matrix secretion only on soft scaffolds, whereas, in presence of pericellular plasma clot, cell rounding and cartilaginous matrix secretion was observed in both soft and stiff scaffolds. More specifically, significantly higher collagen II, chondroitin sulfate and aggrecan deposition was observed in soft scaffolds, and soft and stiff scaffolds with pericellular plasma clot as compared to stiff scaffolds without pericellular plasma clot. Moreover, collagen type I, a fibrocartilage/bone marker was significantly higher only in stiff scaffolds without plasma clot. Therefore, it can be concluded that chondrocytes surrounded by a soft fibrin network were unable to sense the stiffness of the underlying scaffold/substrate and hence facilitate chondrogenesis even on stiff scaffolds. This understanding can have significant implications in the design of scaffolds for cartilage tissue engineering. STATEMENT OF SIGNIFICANCE Cell fate is influenced by the mechanical properties of cell culture substrates. Outside the body, cartilage progenitor cells express significant amounts of cartilage-specific markers on soft scaffolds but not on stiff scaffolds. However, when implanted in joints, stiff scaffolds show equivalent expression of markers as seen in soft scaffolds. This disparity in existing literature prompted our study. Our results suggest that encapsulation of cells in a soft plasma clot, present in any surgical intervention, prevents their perception of stiffness of the underlying scaffold, and hence the ability to distinguish between soft and stiff scaffolds vanishes. This finding would aid the design of new scaffolds that elicit cartilage-like biochemical properties while simultaneously being mechanically comparable to cartilage tissue.
Collapse
|
35
|
Hsu HH, Uemura T, Yamaguchi I, Ikoma T, Tanaka J. Chondrogenic differentiation of human mesenchymal stem cells on fish scale collagen. J Biosci Bioeng 2016; 122:219-25. [DOI: 10.1016/j.jbiosc.2016.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/26/2015] [Accepted: 01/04/2016] [Indexed: 01/14/2023]
|
36
|
Yuan L, Li B, Yang J, Ni Y, Teng Y, Guo L, Fan H, Fan Y, Zhang X. Effects of Composition and Mechanical Property of Injectable Collagen I/II Composite Hydrogels on Chondrocyte Behaviors. Tissue Eng Part A 2016; 22:899-906. [DOI: 10.1089/ten.tea.2015.0513] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Lu Yuan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Bao Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Jirong Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yilu Ni
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yingying Teng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Likun Guo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Rowland CR, Colucci LA, Guilak F. Fabrication of anatomically-shaped cartilage constructs using decellularized cartilage-derived matrix scaffolds. Biomaterials 2016; 91:57-72. [PMID: 26999455 DOI: 10.1016/j.biomaterials.2016.03.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/02/2016] [Accepted: 03/06/2016] [Indexed: 12/29/2022]
Abstract
The native extracellular matrix of cartilage contains entrapped growth factors as well as tissue-specific epitopes for cell-matrix interactions, which make it a potentially attractive biomaterial for cartilage tissue engineering. A limitation to this approach is that the native cartilage extracellular matrix possesses a pore size of only a few nanometers, which inhibits cellular infiltration. Efforts to increase the pore size of cartilage-derived matrix (CDM) scaffolds dramatically attenuate their mechanical properties, which makes them susceptible to cell-mediated contraction. In previous studies, we have demonstrated that collagen crosslinking techniques are capable of preventing cell-mediated contraction in CDM disks. In the current study, we investigated the effects of CDM concentration and pore architecture on the ability of CDM scaffolds to resist cell-mediated contraction. Increasing CDM concentration significantly increased scaffold mechanical properties, which played an important role in preventing contraction, and only the highest CDM concentration (11% w/w) was able to retain the original scaffold dimensions. However, the increase in CDM concentration led to a concomitant decrease in porosity and pore size. Generating a temperature gradient during the freezing process resulted in unidirectional freezing, which aligned the formation of ice crystals during the freezing process and in turn produced aligned pores in CDM scaffolds. These aligned pores increased the pore size of CDM scaffolds at all CDM concentrations, and greatly facilitated infiltration by mesenchymal stem cells (MSCs). These methods were used to fabricate of anatomically-relevant CDM hemispheres. CDM hemispheres with aligned pores supported uniform MSC infiltration and matrix deposition. Furthermore, these CDM hemispheres retained their original architecture and did not contract, warp, curl, or splay throughout the entire 28-day culture period. These findings demonstrate that given the appropriate fabrication parameters, CDM scaffolds are capable of maintaining complex structures that support MSC chondrogenesis.
Collapse
Affiliation(s)
- Christopher R Rowland
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, 63110, United States; Department of Developmental Biology, Washington University, St. Louis, MO, 63110, United States; Department of Biomedical Engineering, Washington University, St. Louis, MO, 63110, United States; Shriners Hospitals for Children - St. Louis Hospital, 3210 McKinley Research Building, St. Louis, MO, 63110, United States
| | - Lina A Colucci
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, 63110, United States; Department of Developmental Biology, Washington University, St. Louis, MO, 63110, United States; Department of Biomedical Engineering, Washington University, St. Louis, MO, 63110, United States; Shriners Hospitals for Children - St. Louis Hospital, 3210 McKinley Research Building, St. Louis, MO, 63110, United States
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, 63110, United States; Department of Developmental Biology, Washington University, St. Louis, MO, 63110, United States; Department of Biomedical Engineering, Washington University, St. Louis, MO, 63110, United States; Shriners Hospitals for Children - St. Louis Hospital, 3210 McKinley Research Building, St. Louis, MO, 63110, United States.
| |
Collapse
|
38
|
Chen S, Zhang Q, Nakamoto T, Kawazoe N, Chen G. Gelatin Scaffolds with Controlled Pore Structure and Mechanical Property for Cartilage Tissue Engineering. Tissue Eng Part C Methods 2016; 22:189-98. [DOI: 10.1089/ten.tec.2015.0281] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Shangwu Chen
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Qin Zhang
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomoko Nakamoto
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Naoki Kawazoe
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Guoping Chen
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
- Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
39
|
Panadero J, Lanceros-Mendez S, Ribelles JG. Differentiation of mesenchymal stem cells for cartilage tissue engineering: Individual and synergetic effects of three-dimensional environment and mechanical loading. Acta Biomater 2016; 33:1-12. [PMID: 26826532 DOI: 10.1016/j.actbio.2016.01.037] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/17/2015] [Accepted: 01/25/2016] [Indexed: 12/22/2022]
Abstract
Chondrogenesis of dedifferentiated chondrocytes and mesenchymal stem cells is influenced not only by soluble molecules like growth factors, but also by the cell environment itself. The latter is achieved through both mechanical cues - which act as stimulation factor and influences nutrient transport - and adhesion to extracellular matrix cues - which determine cell shape. Although the effects of soluble molecules and cell environment have been intensively addressed, few observations and conclusions about the interaction between the two have been achieved. In this work, we review the state of the art on the single effects between mechanical and biochemical cues, as well as on the combination of the two. Furthermore, we provide a discussion on the techniques currently used to determine the mechanical properties of materials and tissues generated in vitro, their limitations and the future research needs to properly address the identified problems. STATEMENT OF SIGNIFICANCE The importance of biomechanical cues in chondrogenesis is well known. This paper reviews the existing literature on the effect of mechanical stimulation on chondrogenic differentiation of mesenchymal stem cells in order to regenerate hyaline cartilage. Contradictory results found with respect to the effect of different modes of external loading can be explained by the different properties of the scaffolding system that holds the cells, which determine cell adhesion and morphology and spatial distribution of cells, as well as the stress transmission to the cells. Thus, this review seeks to provide an insight into the interplay between external loading program and scaffold properties during chondrogenic differentiation. The review of the literature reveals an important gap in the knowledge in this field and encourages new experimental studies. The main issue is that in each of the few cases in which the interplay is investigated, just two groups of scaffolds are compared, leaving intermediate adhesion conditions out of study. The authors propose broader studies implementing new high-throughput techniques for mechanical characterization of tissue engineering constructs and the inclusion of fatigue analysis as support methodology to more exhaustive mechanical characterization.
Collapse
|
40
|
Bornes TD, Jomha NM, Mulet-Sierra A, Adesida AB. Optimal Seeding Densities for In Vitro Chondrogenesis of Two- and Three-Dimensional-Isolated and -Expanded Bone Marrow-Derived Mesenchymal Stromal Stem Cells Within a Porous Collagen Scaffold. Tissue Eng Part C Methods 2016; 22:208-20. [PMID: 26651081 DOI: 10.1089/ten.tec.2015.0365] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal stem cells (BMSCs) are a promising cell source for treating articular cartilage defects. The objective of this study was to assess the impact of cell seeding density within a collagen I scaffold on in vitro BMSC chondrogenesis following isolation and expansion in two-dimensional (2D) and three-dimensional (3D) environments. It was hypothesized that both expansion protocols would produce BMSCs capable of hyaline-like chondrogenesis with an optimal seeding density of 10 × 10(6) cells/cm(3). Ovine BMSCs were isolated in a 2D environment by plastic adherence, expanded to passage two in flasks containing an expansion medium, and seeded within collagen I scaffolds at densities of 50, 10, 5, 1, and 0.5 × 10(6) BMSCs/cm(3). For 3D isolation and expansion, aspirates containing known quantities of mononucleated cells (bone marrow-derived mononucleated cells [BMNCs]) were seeded on scaffolds at 50, 10, 5, 1, and 0.5 × 10(6) BMNCs/cm(3) and cultured in the expansion medium for an equivalent duration to 2D expansion. Constructs were differentiated in vitro in the chondrogenic medium for 21 days and assessed with reverse-transcription quantitative polymerase chain reaction, safranin O staining, histological scoring using the Bern Score, collagen immunofluorescence, and glycosaminoglycan (GAG) quantification. Two-dimensional-expanded BMSCs seeded at all densities were capable of proteoglycan production and displayed increased expressions of aggrecan and collagen II messenger RNA (mRNA) relative to predifferentiation controls. Collagen II deposition was apparent in scaffolds seeded at 0.5-10 × 10(6) BMSCs/cm(3). Chondrogenesis of 2D-expanded BMSCs was most pronounced in scaffolds seeded at 5-10 × 10(6) BMSCs/cm(3) based on aggrecan and collagen II mRNA, safranin O staining, Bern Score, total GAG, and GAG/deoxyribonucleic acid (DNA). For 3D-expanded BMSC-seeded scaffolds, increased aggrecan and collagen II mRNA expressions relative to controls were noted with all densities. Proteoglycan deposition was present in scaffolds seeded at 0.5-50 × 10(6) BMNCs/cm(3), while collagen II deposition occurred in scaffolds seeded at 10-50 × 10(6) BMNCs/cm(3). The highest levels of aggrecan and collagen II mRNA, Bern Score, total GAG, and GAG/DNA occurred with seeding at 50 × 10(6) BMNCs/cm(3). Within a collagen I scaffold, 2D- and 3D-expanded BMSCs are capable of hyaline-like chondrogenesis with optimal cell seeding densities of 5-10 × 10(6) BMSCs/cm(3) and 50 × 10(6) BMNCs/cm(3), respectively.
Collapse
Affiliation(s)
- Troy D Bornes
- Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, University of Alberta , Edmonton, Canada
| | - Nadr M Jomha
- Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, University of Alberta , Edmonton, Canada
| | - Aillette Mulet-Sierra
- Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, University of Alberta , Edmonton, Canada
| | - Adetola B Adesida
- Divisions of Orthopaedic Surgery and Surgical Research, Department of Surgery, University of Alberta , Edmonton, Canada
| |
Collapse
|
41
|
Schneider-Barthold C, Baganz S, Wilhelmi M, Scheper T, Pepelanova I. Hydrogels based on collagen and fibrin – frontiers and applications. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/bnm-2015-0025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
AbstractHydrogels are a versatile tool for a multitude of applications in biomedical research and clinical practice. Especially collagen and fibrin hydrogels are distinguished by their excellent biocompatibility, natural capacity for cell adhesion and low immunogenicity. In many ways, collagen and fibrin represent an ideal biomaterial, as they can serve as a scaffold for tissue regeneration and promote the migration of cells, as well as the ingrowth of tissues. On the other hand, pure collagen and fibrin materials are marked by poor mechanical properties and rapid degradation, which limits their use in practice. This paper will review methods of modification of natural collagen and fibrin materials to next-generation materials with enhanced stability. A special focus is placed on biomedical products from fibrin and collagen already on the market. In addition, recent research on the in vivo applications of collagen and fibrin-based materials will be showcased.
Collapse
|
42
|
Quinlan E, Thompson EM, Matsiko A, O'Brien FJ, López-Noriega A. Functionalization of a Collagen-Hydroxyapatite Scaffold with Osteostatin to Facilitate Enhanced Bone Regeneration. Adv Healthc Mater 2015; 4:2649-56. [PMID: 26414944 DOI: 10.1002/adhm.201500439] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/30/2015] [Indexed: 01/05/2023]
Abstract
Defects within bones caused by trauma and other pathological complications may often require the use of a range of therapeutics to facilitate tissue regeneration. A number of approaches have been widely utilized for the delivery of such therapeutics via physical encapsulation or chemical immobilization suggesting significant promise in the healing of bone defects. The study focuses on the chemical immobilization of osteostatin, a pentapeptide of the parathyroid hormone (PTHrP107-111), within a collagen-hydroxyapatite scaffold. The chemical attachment method via crosslinking supports as little as 4% release of the peptide from the scaffolds after 21 d whereas non-crosslinking leads to 100% of the peptide being released by as early as 4 d. In vitro characterization demonstrates that this cross-linking method of immobilization supports a pro-osteogenic effect on osteoblasts. Most importantly, when implanted in a critical-sized calvarial defect within a rat, these scaffolds promote significantly greater new bone volume and area compared to nonfunctionalized scaffolds (**p < 0.01) and an empty defect control (***p < 0.001). Collectively, this study suggests that such an approach of chemical immobilization offers greater spatiotemporal control over growth factors and can significantly modulate tissue regeneration. Such a system may be adopted for a range of different proteins and thus offers the potential for the treatment of various complex pathologies that require localized mediation of drug delivery.
Collapse
Affiliation(s)
- Elaine Quinlan
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland; Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; RCSI & TCD; Dublin 2 Ireland
| | - Emmet M. Thompson
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland; Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; RCSI & TCD; Dublin 2 Ireland
| | - Amos Matsiko
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland; Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; RCSI & TCD; Dublin 2 Ireland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland; Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; RCSI & TCD; Dublin 2 Ireland
| | - Adolfo López-Noriega
- Tissue Engineering Research Group; Department of Anatomy; Royal College of Surgeons in Ireland; Dublin 2 Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin; Dublin 2 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre; RCSI & TCD; Dublin 2 Ireland
- School of Pharmacy; Royal College of Surgeons in Ireland; Dublin 2 Ireland
| |
Collapse
|
43
|
|
44
|
Arora A, Kothari A, Katti DS. Pore orientation mediated control of mechanical behavior of scaffolds and its application in cartilage-mimetic scaffold design. J Mech Behav Biomed Mater 2015; 51:169-83. [DOI: 10.1016/j.jmbbm.2015.06.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/25/2015] [Accepted: 06/27/2015] [Indexed: 01/30/2023]
|
45
|
Mittelstaedt D, Xia Y. Depth-Dependent Glycosaminoglycan Concentration in Articular Cartilage by Quantitative Contrast-Enhanced Micro-Computed Tomography. Cartilage 2015; 6:216-25. [PMID: 26425259 PMCID: PMC4568736 DOI: 10.1177/1947603515596418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE A quantitative contrast-enhanced micro-computed tomography (qCECT) method was developed to investigate the depth dependency and heterogeneity of the glycosaminoglycan (GAG) concentration of ex vivo cartilage equilibrated with an anionic radiographic contrast agent, Hexabrix. DESIGN Full-thickness fresh native (n = 19 in 3 subgroups) and trypsin-degraded (n = 6) articular cartilage blocks were imaged using micro-computed tomography (μCT) at high resolution (13.4 μm(3)) before and after equilibration with various Hexabrix bathing concentrations. The GAG concentration was calculated depth-dependently based on Gibbs-Donnan equilibrium theory. Analysis of variance with Tukey's post hoc was used to test for statistical significance (P < 0.05) for effect of Hexabrix bathing concentration, and for differences in bulk and zonal GAG concentrations individually and compared between native and trypsin-degraded cartilage. RESULTS The bulk GAG concentration was calculated to be 74.44 ± 6.09 and 11.99 ± 4.24 mg/mL for native and degraded cartilage, respectively. A statistical difference was demonstrated for bulk and zonal GAG between native and degraded cartilage (P < 0.032). A statistical difference was not demonstrated for bulk GAG when comparing Hexabrix bathing concentrations (P > 0.3214) for neither native nor degraded cartilage. Depth-dependent GAG analysis of native cartilage revealed a statistical difference only in the radial zone between 30% and 50% Hexabrix bathing concentrations. CONCLUSIONS This nondestructive qCECT methodology calculated the depth-dependent GAG concentration for both native and trypsin-degraded cartilage at high spatial resolution. qCECT allows for more detailed understanding of the topography and depth dependency, which could help diagnose health, degradation, and repair of native and contrived cartilage.
Collapse
Affiliation(s)
- Daniel Mittelstaedt
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI, USA
| | - Yang Xia
- Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI, USA
| |
Collapse
|
46
|
Kinneberg KRC, Nelson A, Stender ME, Aziz AH, Mozdzen LC, Harley BAC, Bryant SJ, Ferguson VL. Reinforcement of Mono- and Bi-layer Poly(Ethylene Glycol) Hydrogels with a Fibrous Collagen Scaffold. Ann Biomed Eng 2015; 43:2618-29. [PMID: 26001970 DOI: 10.1007/s10439-015-1337-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/12/2015] [Indexed: 12/26/2022]
Abstract
Biomaterial-based tissue engineering strategies hold great promise for osteochondral tissue repair. Yet significant challenges remain in joining highly dissimilar materials to achieve a biomimetic, mechanically robust design for repairing interfaces between soft tissue and bone. This study sought to improve interfacial properties and function in a bi-layer hydrogel interpenetrated with a fibrous collagen scaffold. 'Soft' 10% (w/w) and 'stiff' 30% (w/w) PEGDM was formed into mono- or bi-layer hydrogels possessing a sharp diffusional interface. Hydrogels were evaluated as single-(hydrogel only) or multi-phase (hydrogel + fibrous scaffold penetrating throughout the stiff layer and extending >500 μm into the soft layer). Including a fibrous scaffold into both soft and stiff mono-layer hydrogels significantly increased tangent modulus and toughness and decreased lateral expansion under compressive loading. Finite element simulations predicted substantially reduced stress and strain gradients across the soft-stiff hydrogel interface in multi-phase, bilayer hydrogels. When combining two low moduli constituent materials, composites theory poorly predicts the observed, large modulus increases. These results suggest material structure associated with the fibrous scaffold penetrating within the PEG hydrogel as the major contributor to improved properties and function-the hydrogel bore compressive loads and the 3D fibrous scaffold was loaded in tension thus resisting lateral expansion.
Collapse
Affiliation(s)
- K R C Kinneberg
- Department of Mechanical Engineering, University of Colorado, 1111 Engineering Drive; UCB 427, Boulder, CO, 80309, USA
| | - A Nelson
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
| | - M E Stender
- Department of Mechanical Engineering, University of Colorado, 1111 Engineering Drive; UCB 427, Boulder, CO, 80309, USA
| | - A H Aziz
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA.,BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - L C Mozdzen
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - B A C Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - S J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA.,BioFrontiers Institute, University of Colorado, Boulder, CO, USA.,Material Science & Engineering Program, University of Colorado, Boulder, CO, USA
| | - V L Ferguson
- Department of Mechanical Engineering, University of Colorado, 1111 Engineering Drive; UCB 427, Boulder, CO, 80309, USA. .,BioFrontiers Institute, University of Colorado, Boulder, CO, USA. .,Material Science & Engineering Program, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
47
|
Siddiqui N, Pramanik K, Jabbari E. Osteogenic differentiation of human mesenchymal stem cells in freeze-gelled chitosan/nano β-tricalcium phosphate porous scaffolds crosslinked with genipin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 54:76-83. [PMID: 26046270 DOI: 10.1016/j.msec.2015.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/28/2015] [Accepted: 05/02/2015] [Indexed: 11/16/2022]
Abstract
The objective of this work was to investigate material properties and osteogenic differentiation of human mesenchymal stem cells (hMSCs) in genipin (GN) crosslinked chitosan/nano β-tricalcium phosphate (CS/nano β-TCP) scaffolds, and compare the results with tripolyphosphate (TPP) crosslinked scaffolds. Porous crosslinked CS/nano β-TCP scaffolds were produced by freeze-gelation using GN (CBG scaffold) and TPP (CBT scaffold) as crosslinkers. The prepared CBT and CBG scaffolds were characterized with respect to porosity, pore size, water content, wettability, compressive strength, mass loss, and osteogenic differentiation of hMSCs. All scaffolds displayed interconnected honeycomb-like microstructures. There was a significant difference between the average pore size, porosity, contact angle, and percent swelling of CBT and CBG scaffolds. The average pore size of CBG scaffolds was higher than CBT, the porosity of CBG was lower than CBT, the water contact angle of CBG was higher than CBT, and the percent swelling of CBG was lower than CBT. At a given crosslinker concentration, there was not a significant difference in compressive modulus and mass loss of CBG and CBT scaffolds. Metabolic activity of hMSCs seeded in CBG scaffolds was slightly higher than CBT. Furthermore, CBG scaffolds displayed slightly higher extent of mineralization after 21 days of incubation in osteogenic medium compared to CBT.
Collapse
Affiliation(s)
- Nadeem Siddiqui
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India
| | - Krishna Pramanik
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India
| | - Esmaiel Jabbari
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
48
|
Ma BL, Zhou PH, Xie T, Shi L, Qiu B, Wang Q. Inhibition of interleukin-1beta-stimulated dedifferentiation of chondrocytes via controlled release of CrmA from hyaluronic acid-chitosan microspheres. BMC Musculoskelet Disord 2015; 16:61. [PMID: 25888442 PMCID: PMC4384377 DOI: 10.1186/s12891-015-0521-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 03/04/2015] [Indexed: 11/23/2022] Open
Abstract
Background The previous studies indicated that CrmA could ameliorate the interleukin-1β induced osteoarthritis. In this study, we investigated the controlled-released cytokine response modifier A (CrmA) from hyaluronic acid (HA)-chitosan (CS) microspheres to improve interleukin-1β (IL-1β)-stimulated dedifferentiation of chondrocytes. Methods A rat model of osteoarthritis (OA) in vitro was established using 10 ng/ml IL-1β as modulating and chondrocytes inducing agent. HA-CS-CrmA microspheres were added to the medium after IL-1β was co-cultured with freshly isolated rat chondrocytes for 48 hours. The chondrocytes viability and glycosaminoglycan (GAG) content were determined. The level of CrmA secreted was detected by Enzyme-Linked Immunosorbent Assay (ELISA). The protein levels of type II collagen, aggrecan, collagen I and IL-1β were detected using western blotting analyses. Results The CrmA release kinetics were characterized by an initial burst release, which was reduced to a linear release over ten days. The production of GAG and the expression of type II collagen, aggrecan significantly increased compared with the control group, while the expression of collagen I and IL-1β decreased. Conclusions This study demonstrated that HA-CS microspheres containing CrmA could attenuate the degeneration of articular cartilage by maintaining the phenotype of chondrocytes during culture expansion. The suppression of inflammatory cytokines activity within the joint might be one important mechanism of the action of the microspheres in the treatment of OA.
Collapse
Affiliation(s)
- Bei-lei Ma
- Department of Laboratory, Qilu Hospital of Shandong University, 250012, Jinan, China.
| | - Pang-Hu Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, 430060, Wuhan, China.
| | - Ting Xie
- Department of Women Health Care, Hubei Women and Children Hospital, 430070, Wuhan, China.
| | - Lei Shi
- Department of Oncology, Renmin Hospital of Wuhan University, 430060, Wuhan, China.
| | - Bo Qiu
- Department of Orthopedics, Renmin Hospital of Wuhan University, 430060, Wuhan, China.
| | - Qian Wang
- Department of Laboratory, Qilu Hospital of Shandong University, 250012, Jinan, China.
| |
Collapse
|
49
|
Ren CD, Gao S, Kurisawa M, Ying JY. Cartilage synthesis in hyaluronic acid-tyramine constructs. J Mater Chem B 2015; 3:1942-1956. [PMID: 32262266 DOI: 10.1039/c4tb01229a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The objective of this study was to determine the potential for cartilage production within a hyaluronic acid-tyramine (HA-Tyr) hydrogel scaffold. Chondrocytes were encapsulated within HA-Tyr hydrogels and subcutaneously implanted in mice. The HA-Tyr hydrogels were formed by the oxidative coupling of Tyr moieties catalyzed by hydrogen peroxide (H2O2) and horseradish peroxidase (HRP). Harvested constructs were shown to achieve a glycosaminoglycan (GAG) content of 1.2 wt%, and they demonstrated 40% of the collagen content of normal articular cartilage, including the presence of Type II collagen, which is the characteristic of articular cartilage. Matrix production was found to be influenced by the initial cell density, scaffold degradation rate and Type II collagen concentration. Injectability was also imparted to the system by delivering HRP through thermoresponsive liposomes. The method of HRP delivery, either by simple addition or through thermoresponsive liposomes, was not shown to have an effect on matrix production.
Collapse
Affiliation(s)
- Cindy D Ren
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669.
| | | | | | | |
Collapse
|
50
|
Choi B, Kim S, Lin B, Wu BM, Lee M. Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering. ACS APPLIED MATERIALS & INTERFACES 2014; 6:20110-21. [PMID: 25361212 DOI: 10.1021/am505723k] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cartilaginous extracellular matrix (ECM) components such as type-II collagen (Col II) and chondroitin sulfate (CS) play a crucial role in chondrogenesis. However, direct clinical use of natural Col II or CS as scaffolds for cartilage tissue engineering is limited by their instability and rapid enzymatic degradation. Here, we investigate the incorporation of Col II and CS into injectable chitosan hydrogels designed to gel upon initiation by exposure to visible blue light (VBL) in the presence of riboflavin. Unmodified chitosan hydrogel supported proliferation and deposition of cartilaginous ECM by encapsulated chondrocytes and mesenchymal stem cells. The incorporation of native Col II or CS into chitosan hydrogels further increased chondrogenesis. The incorporation of Col II, in particular, was found to be responsible for the enhanced cellular condensation and chondrogenesis observed in modified hydrogels. This was mediated by integrin α10 binding to Col II, increasing cell-matrix adhesion. These findings demonstrate the potential of cartilage ECM-modified chitosan hydrogels as biomaterials to promote cartilage regeneration.
Collapse
Affiliation(s)
- Bogyu Choi
- Division of Advanced Prosthodontics, ‡Department of Bioengineering, University of California, Los Angeles , Los Angeles, California 90095, United States
| | | | | | | | | |
Collapse
|