1
|
Devina AA, Halim FC, Sulijaya B, Sumaringsih PR, Dewi RS. Simultaneous Implant and Guided Bone Regeneration Using Bovine-Derived Xenograft and Acellular Dermal Matrix in Aesthetic Zone. Dent J (Basel) 2024; 12:52. [PMID: 38534276 DOI: 10.3390/dj12030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
INTRODUCTION Implant placement in the maxillary anterior area requires sufficient quantity and quality of both soft and hard tissue. In cases where soft and hard tissues are insufficient, additional regeneration using biomaterials is recommended. Treatment using bovine-derived xenograft and acellular dermal matrix (ADM) may increase bone volume and soft tissue thickness. Case and management: A 65-year-old woman sought help for discomfort and aesthetic issues with her denture, reporting missing teeth (11, 12, 13, 14, and 21) and bone volume shrinkage due to disuse atrophy. Intraoral examination revealed 1 mm gingival thickness. CBCT showed labio-palatal bone thickness of 6.0 mm, 5.8 mm, and 4.7 mm for teeth 21, 12 and 14, respectively. Implant planning and surgical guide fabrication were carried out before the surgery. Surgery included the placement of implants 3.3 mm in diameter and 12 mm in length, with the use of xenograft and ADM. Three months post-op, improvements in soft and hard tissues were observed, with a final prosthesis being a long-span implant-supported bridge. CONCLUSIONS Disuse alveolar atrophy causes soft and hard tissue deficiency. The use of xenograft and ADM show favourable results even on a geriatric patient.
Collapse
Affiliation(s)
- Anggun Alfreda Devina
- Periodontology Specialist Program, Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Felita Clarissa Halim
- Periodontology Specialist Program, Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Benso Sulijaya
- Department of Periodontology, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Patricia Rinanti Sumaringsih
- Prosthodontics Specialist Program, Department of Prosthodontics, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Ratna Sari Dewi
- Department of Prosthodontics, Faculty of Dentistry, Universitas Indonesia, Jakarta 10430, Indonesia
| |
Collapse
|
2
|
Pyo SW, Paik JW, Lee DN, Seo YW, Park JY, Kim S, Choi SH. Comparative Analysis of Bone Regeneration According to Particle Type and Barrier Membrane for Octacalcium Phosphate Grafted into Rabbit Calvarial Defects. Bioengineering (Basel) 2024; 11:215. [PMID: 38534489 DOI: 10.3390/bioengineering11030215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024] Open
Abstract
This animal study was aimed to evaluate the efficacy of new bone formation and volume maintenance according to the particle type and the collagen membrane function for grafted octacalcium phosphate (OCP) in rabbit calvarial defects. The synthetic bone substitutes were prepared in powder form with 90% OCP and granular form with 76% OCP, respectively. The calvarial defects were divided into four groups according to the particle type and the membrane application. All specimens were acquired 2 weeks (n = 5) and 8 weeks (n = 5) after surgery. According to the micro-CT results, the new bone volume increased at 2 weeks in the 76% OCP groups compared to the 90% OCP groups, and the bone volume ratio was significantly lower in the 90% OCP group after 2 weeks. The histomorphometric analysis results indicated that the new bone area and its ratio in all experimental groups were increased at 8 weeks except for the group with 90% OCP without a membrane. Furthermore, the residual bone graft area and its ratio in the 90% OCP groups were decreased at 8 weeks. In conclusion, all types of OCP could be applied as biocompatible bone graft materials regardless of its density and membrane application. Neither the OCP concentration nor the membrane application had a significant effect on new bone formation in the defect area, but the higher the OCP concentration, the less graft volume maintenance was needed.
Collapse
Affiliation(s)
- Se-Wook Pyo
- Department of Prosthodontics, Gangnam Severance Dental Hospital, Yonsei University College of Dentistry, Seoul 06273, Republic of Korea
| | - Jeong-Won Paik
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Da-Na Lee
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Young-Wook Seo
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Jin-Young Park
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Sunjai Kim
- Department of Prosthodontics, Gangnam Severance Dental Hospital, Yonsei University College of Dentistry, Seoul 06273, Republic of Korea
| | - Seong-Ho Choi
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Saito MM, Onuma K, Yamakoshi Y. Cementum is key to periodontal tissue regeneration: A review on apatite microstructures for creation of novel cementum-based dental implants. Genesis 2023; 61:e23514. [PMID: 37067171 DOI: 10.1002/dvg.23514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/16/2023] [Accepted: 02/05/2023] [Indexed: 04/18/2023]
Abstract
The cementum is the outermost layer of hard tissue covering the dentin within the root portion of the teeth. It is the only hard tissue with a specialized structure and function that forms a part of both the teeth and periodontal tissue. As such, cementum is believed to be critical for periodontal tissue regeneration. In this review, we discuss the function and histological structure of the cementum to promote crystal engineering with a biochemical approach in cementum regenerative medicine. We review the microstructure of enamel and bone while discussing the mechanism underlying apatite crystal formation to infer the morphology of cementum apatite crystals and their complex structure with collagen fibers. Finally, the limitations of the current dental implant treatments in clinical practice are explored from the perspective of periodontal tissue regeneration. We anticipate the possibility of advancing periodontal tissue regenerative medicine via cementum regeneration using a combination of material science and biochemical methods.
Collapse
Affiliation(s)
- Mari M Saito
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Kazuo Onuma
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| |
Collapse
|
4
|
Effect of Octacalcium Phosphate Crystals on the Osteogenic Differentiation of Tendon Stem/Progenitor Cells In Vitro. Int J Mol Sci 2023; 24:ijms24021235. [PMID: 36674753 PMCID: PMC9866338 DOI: 10.3390/ijms24021235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Synthetic octacalcium phosphate (OCP) activates bone tissue-related cells, such as osteoblasts, osteoclasts, and vascular endothelial cells. However, the effect of OCP on tendon-related cell activation remains unknown. This study examined the response of rat tendon stem/progenitor cells (TSPCs) to OCP and related calcium phosphate crystals in vitro. TSPCs were cultured with OCP and Ca-deficient hydroxyapatite (CDHA) obtained from the original OCP hydrolysis to assess the activity of alkaline phosphatase (ALP) and the expression of osteogenesis-related genes. Compared with CDHA, the effect of OCP on promoting the osteogenic differentiation of TSPCs was apparent: the ALP activity and mRNA expression of RUNX2, Col1a1, OCN, and OPN were higher in OCP than in CDHA. To estimate the changes in the chemical environment caused by OCP and CDHA, we measured the calcium ion (Ca2+) and inorganic phosphate (Pi) ion concentrations and pH values of the TSPCs medium. The results suggest that the difference in the osteogenic differentiation of the TSPCs is related to the ionic environment induced by OCP and CDHA, which could be related to the progress of OCP hydrolysis into CDHA. These results support the previous in vivo observation that OCP has the healing function of rabbit rotator cuff tendon in vivo.
Collapse
|
5
|
Guastaldi FPS, Matheus HR, Faloni APDS, de Almeida-Filho E, Cominotte MA, Moretti LAC, Verzola MHA, Marcantonio E, de Almeida JM, Guastaldi AC, Cirelli JA. A new multiphase calcium phosphate graft material improves bone healing-An in vitro and in vivo analysis. J Biomed Mater Res B Appl Biomater 2022; 110:2686-2704. [PMID: 35779277 DOI: 10.1002/jbm.b.35121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 12/15/2022]
Abstract
This study aims to evaluate the potential of a novel biomaterial synthesized from amorphous calcium phosphate (ACP), octacalcium phosphate (OCP), and hydroxyapatite (HA) to repair critical-sized defects (CSD) in rabbit calvaria. In vitro analyses of cell viability, cell proliferation, formation of mineral nodules, and cell differentiation using qPCR were performed for comparing experimental calcium phosphate (ECP), deproteinized bovine bone (DBB), and beta-tricalcium phosphate (β-TCP). Bilateral CSDs were created in 45 rabbit calvaria. Six groups were evaluated: ECP, ECP + fibrin sealant (ECP + S), coagulum, autogenous bone, DBB, and β-TCP. Euthanasia was performed at 2, 4, and 8 weeks, followed by micro-computed tomography and histological and immunohistochemical analyses. Results from in vitro analyses revealed similar biocompatibility for all tested materials and a tendency for higher gene expression of some bone markers in the ECP group than in β-TCP and DBB groups at 7 days. In contrast to that in DBB and β-TCP groups, ECP displayed growing bone volume over total volume percentage (BV/TV%) with time in vivo. Histological analysis revealed a greater number of giant cells and reduced size of grafted particles in ECP during all periods of analysis. RUNX-2 expression was statistically lower in ECP than DBB at 2 and 4 weeks. Despite no statistical significance, ECP presented the highest absolute values for ALP-expression at 2, 4, and 8 weeks compared with other groups. Together, our findings indicate that a combination of the ACP, OCP, and HA phases into ECP is beneficial and promising for bone regeneration.
Collapse
Affiliation(s)
- Fernando Pozzi Semeghini Guastaldi
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, São Paulo, Brazil.,Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Henrique Rinaldi Matheus
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Ana Paula de Souza Faloni
- Department of Health Sciences, University Center of Araraquara (UNIARA), Araraquara, São Paulo, Brazil
| | - Edson de Almeida-Filho
- Department of Physical Chemistry, São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| | - Mariana Aline Cominotte
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, São Paulo, Brazil
| | - Livia Alves Correa Moretti
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, São Paulo, Brazil
| | | | - Elcio Marcantonio
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, São Paulo, Brazil
| | - Juliano Milanezi de Almeida
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Antonio Carlos Guastaldi
- Department of Physical Chemistry, São Paulo State University (Unesp), Institute of Chemistry, Araraquara, São Paulo, Brazil
| | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, São Paulo State University (Unesp), School of Dentistry, São Paulo, Brazil
| |
Collapse
|
6
|
Calcium Phosphate-Based Biomaterials for Bone Repair. J Funct Biomater 2022; 13:jfb13040187. [PMID: 36278657 PMCID: PMC9589993 DOI: 10.3390/jfb13040187] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
Abstract
Traumatic, tumoral, and infectious bone defects are common in clinics, and create a big burden on patient's families and society. Calcium phosphate (CaP)-based biomaterials have superior properties and have been widely used for bone defect repair, due to their similarities to the inorganic components of human bones. The biological performance of CaPs, as a determining factor for their applications, are dependent on their physicochemical properties. Hydroxyapatite (HAP) as the most thermally stable crystalline phase of CaP is mostly used in the form of ceramics or composites scaffolds with polymers. Nanostructured CaPs with large surface areas are suitable for drug/gene delivery systems. Additionally, CaP scaffolds with hierarchical nano-/microstructures have demonstrated excellent ability in promoting bone regeneration. This review focuses on the relationships and interactions between the physicochemical/biological properties of CaP biomaterials and their species, sizes, and morphologies in bone regeneration, including synthesis strategies, structure control, biological behavior, and the mechanisms of CaP in promoting osteogenesis. This review will be helpful for scientists and engineers to further understand CaP-based biomaterials (CaPs), and be useful in developing new high-performance biomaterials for bone repair.
Collapse
|
7
|
Kovrlija I, Locs J, Loca D. Octacalcium phosphate: Innovative vehicle for the local biologically active substance delivery in bone regeneration. Acta Biomater 2021; 135:27-47. [PMID: 34450339 DOI: 10.1016/j.actbio.2021.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/09/2021] [Accepted: 08/14/2021] [Indexed: 12/29/2022]
Abstract
Disadvantages of conventional drug delivery systems (DDS), such as systemic circulation, interaction with physiochemical factors, reduced bioavailability, and insufficient drug concentration at bone defect site, have underlined the importance of developing efficacious local drug delivery systems. Octacalcium phosphate (OCP) is presumed to be the precursor of biologically formed apatite, owing to its similarity to hydroxyapatite (HAp) and readiness to convert to it. Specific crystal structure of OCP is constructed of compiled apatite layers and water layers, which make possible the incorporation of various ions in its structure, making it feasible to alter the overall effect OCP has in the system. Next to that intrinsic property, characteristics as high solubility, biodegradability and osteoconductivity have made it indispensable to tailor OCP as a carrier material. In this review, we present the main characteristics and progress done on utilizing OCP as an innovative vehicle and provide suggestions for possible research pathways and advantages for local drug delivery in bone tissue engineering. STATEMENT OF SIGNIFICANCE: Octacalcium phosphate (OCP), being a precursor to biologically formed apatite, has many assets when compared to other calcium phosphates. Owing to its highly pertinent structure, it is being used as a vehicle for biologically active substances or ions for bone regeneration. However, orchestrating drug delivery systems with OCP, in order to achieve the best possible outcome, is still a pioneering concept, and the all-encompassing data is still scarce. Although several articles have been published on this matter, to this date there is no systematic overview pointing out the benefits that OCP can bring in the field of drug delivery. Here we offer a comprehensive overview, starting from the OCP synthesis to its structure, morphology, and the biological significance OCP has.
Collapse
|
8
|
Fan L, Zhang Y, Hu J, Fang Y, Hu R, Shi W, Ren B, Lin C, Tian ZQ. Surface Properties of Octacalcium Phosphate Nanocrystals Are Crucial for Their Bioactivities. ACS OMEGA 2021; 6:25372-25380. [PMID: 34632195 PMCID: PMC8495883 DOI: 10.1021/acsomega.1c03278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 06/13/2023]
Abstract
The fundamental structure-biofunction relationship of calcium phosphates (CaPs) remains unclear despite their clinical successes as important biomaterials. Herein, a series of CaP coatings with gradual change of topography and crystallinity is constructed by electrochemical deposition, and the roles of the two basic physicochemical properties are scrutinized for further understanding the mechanism behind the superior bioactivities of octacalcium phosphate (OCP). We observe a distinct modulation on cell proliferation on the prepared CaP coatings for different cells. The magnitude of the modulation seems to depend on the cellular size, and the effect is attributed mainly to the microstructure of the coatings. On the other hand, the crystallinity manifests its significance for the osteogenic property of the OCP coatings. Further transmission electron microscopy analysis and density functional theory calculations reveal a surface rich in HPO4 2- for the high-crystalline OCP nanocrystals. The results highlight that the nanocrystal surface properties of the OCP coatings, including the periodic structure and the HPO4 2- composition, may play significant roles surpassing the ion release effect in determining its osteogenic property, probably via surface spatial and/or chemical recognitions. The present findings shed light on the fundamental understanding of the structure-biofunction relationship for CaP biomaterials.
Collapse
Affiliation(s)
- Lili Fan
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen, Fujian 361005, China
- Department
of Biomaterials, College of Materials, Xiamen
University, Xiamen, Fujian 361005, China
| | - Yanmei Zhang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen, Fujian 361005, China
| | - Jiejie Hu
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen, Fujian 361005, China
| | - Yuan Fang
- Department
of Chemistry, Fudan University, Shanghai 200433, China
| | - Ren Hu
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen, Fujian 361005, China
| | - Wei Shi
- Department
of Biomaterials, College of Materials, Xiamen
University, Xiamen, Fujian 361005, China
| | - Bin Ren
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen, Fujian 361005, China
| | - Changjian Lin
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen, Fujian 361005, China
| | - Zhong-Qun Tian
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, College of
Chemistry and Chemical Engineering, Xiamen
University, Xiamen, Fujian 361005, China
| |
Collapse
|
9
|
Shiwaku Y, Hamai R, Sato S, Sakai S, Tsuchiya K, Baba K, Takahashi T, Suzuki O. Bone Tissue Response to Different Grown Crystal Batches of Octacalcium Phosphate in Rat Long Bone Intramedullary Canal Area. Int J Mol Sci 2021; 22:9770. [PMID: 34575928 PMCID: PMC8466561 DOI: 10.3390/ijms22189770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/25/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022] Open
Abstract
The microstructure of biomaterials influences the cellular and biological responses in the bone. Octacalcium phosphate (OCP) exhibits higher biodegradability and osteoconductivity than hydroxyapatite (HA) during the conversion process from OCP to HA. However, the effect of the microstructure of OCP crystals on long tubular bones has not been clarified. In this study, two types of OCPs with different microstructures, fine-OCP (F-OCP) and coarse-OCP (C-OCP), were implanted in rat tibia for 4 weeks. F-OCP promoted cortical bone regeneration compared with C-OCP. The osteoclasts appearance was significantly higher in the C-OCP group than in the control group (defect only) at 1-week post-implantation. To investigate whether the solubility equilibrium depends on the different particle sizes of OCPs, Nano-OCP, which consisted of nanometer-sized OCPs, was prepared. The degree of supersaturation (DS) tended to decrease modestly in the order of C-OCP, F-OCP, and Nano-OCP with respect to HA and OCP in Tris-HCl buffer. F-OCP showed a higher phosphate ion concentration and lower calcium ion concentration after immersion in the buffer than C-OCP. The crystal structures of both OCPs tended to be converted to HA by rat abdominal implantation. These results suggest that differences in the microstructure of OCPs may affect osteoclastogenesis and result in osteoconductivity of this material in long tubular bone by altering dissolution behavior.
Collapse
Affiliation(s)
- Yukari Shiwaku
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (Y.S.); (R.H.); (S.S.); (S.S.); (K.T.); (K.B.)
- Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Ryo Hamai
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (Y.S.); (R.H.); (S.S.); (S.S.); (K.T.); (K.B.)
| | - Shinichi Sato
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (Y.S.); (R.H.); (S.S.); (S.S.); (K.T.); (K.B.)
- Division of Oral and Maxillofacial Surgery, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan;
| | - Susumu Sakai
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (Y.S.); (R.H.); (S.S.); (S.S.); (K.T.); (K.B.)
| | - Kaori Tsuchiya
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (Y.S.); (R.H.); (S.S.); (S.S.); (K.T.); (K.B.)
| | - Kazuyoshi Baba
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (Y.S.); (R.H.); (S.S.); (S.S.); (K.T.); (K.B.)
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tetsu Takahashi
- Division of Oral and Maxillofacial Surgery, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan;
| | - Osamu Suzuki
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan; (Y.S.); (R.H.); (S.S.); (S.S.); (K.T.); (K.B.)
| |
Collapse
|
10
|
Saengdet P(M, Ogawa M. Directional growth of octacalcium phosphate using micro-flow reactor mixing and subsequent aging. RSC Adv 2021; 11:15969-15976. [PMID: 35481191 PMCID: PMC9031023 DOI: 10.1039/d1ra00827g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Well-defined belt-shaped particles of octacalcium phosphate were prepared by mixing aqueous solutions of calcium acetate and that of sodium phosphate monobasic with the aid of a micro-flow reactor. Higher crystallinity and narrower particle size distribution were achieved by the micro-flow reactor if compared with the results of the batch reaction using the same solutions. The width of the belt was controlled by the mixing temperature (0.8 and 2.3 μm for the preparation at 50 and 70 °C, respectively). Post mixing aging at 50 °C, resulted in the directional growth of belt-shaped particles to obtain particles with the length of 17 μm (aspect ratio of 53). XRD and TEM analysis indicated that the micro-flow reactor could separate nucleation and growth allowing preferential growth along the a-direction. Well-defined octacalcium phosphate particles with varied size and aspect ratio were prepared by a micro-flow reactor mixing and subsequent aging in different temperature and aging time. ![]()
Collapse
Affiliation(s)
- Ploypailin (Milin) Saengdet
- School of Energy Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| |
Collapse
|
11
|
Zhang Y, Wu D, Zhao X, Pakvasa M, Tucker AB, Luo H, Qin KH, Hu DA, Wang EJ, Li AJ, Zhang M, Mao Y, Sabharwal M, He F, Niu C, Wang H, Huang L, Shi D, Liu Q, Ni N, Fu K, Chen C, Wagstaff W, Reid RR, Athiviraham A, Ho S, Lee MJ, Hynes K, Strelzow J, He TC, El Dafrawy M. Stem Cell-Friendly Scaffold Biomaterials: Applications for Bone Tissue Engineering and Regenerative Medicine. Front Bioeng Biotechnol 2020; 8:598607. [PMID: 33381499 PMCID: PMC7767872 DOI: 10.3389/fbioe.2020.598607] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Bone is a dynamic organ with high regenerative potential and provides essential biological functions in the body, such as providing body mobility and protection of internal organs, regulating hematopoietic cell homeostasis, and serving as important mineral reservoir. Bone defects, which can be caused by trauma, cancer and bone disorders, pose formidable public health burdens. Even though autologous bone grafts, allografts, or xenografts have been used clinically, repairing large bone defects remains as a significant clinical challenge. Bone tissue engineering (BTE) emerged as a promising solution to overcome the limitations of autografts and allografts. Ideal bone tissue engineering is to induce bone regeneration through the synergistic integration of biomaterial scaffolds, bone progenitor cells, and bone-forming factors. Successful stem cell-based BTE requires a combination of abundant mesenchymal progenitors with osteogenic potential, suitable biofactors to drive osteogenic differentiation, and cell-friendly scaffold biomaterials. Thus, the crux of BTE lies within the use of cell-friendly biomaterials as scaffolds to overcome extensive bone defects. In this review, we focus on the biocompatibility and cell-friendly features of commonly used scaffold materials, including inorganic compound-based ceramics, natural polymers, synthetic polymers, decellularized extracellular matrix, and in many cases, composite scaffolds using the above existing biomaterials. It is conceivable that combinations of bioactive materials, progenitor cells, growth factors, functionalization techniques, and biomimetic scaffold designs, along with 3D bioprinting technology, will unleash a new era of complex BTE scaffolds tailored to patient-specific applications.
Collapse
Affiliation(s)
- Yongtao Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Di Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine and the Affiliated Hospitals, Chongqing Medical University, Chongqing, China
| | - Xia Zhao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Andrew Blake Tucker
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Huaxiu Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Kevin H. Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Daniel A. Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Eric J. Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Alexander J. Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Meng Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yukun Mao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Departments of Orthopaedic Surgery and Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Maya Sabharwal
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Fang He
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Changchun Niu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Laboratory Diagnostic Medicine, The Affiliated Hospital of the University of Chinese Academy of Sciences, Chongqing General Hospital, Chongqing, China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine and the Affiliated Hospitals, Chongqing Medical University, Chongqing, China
| | - Linjuan Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine and the Affiliated Hospitals, Chongqing Medical University, Chongqing, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine and the Affiliated Hospitals, Chongqing Medical University, Chongqing, China
| | - Kai Fu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Departments of Orthopaedic Surgery and Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Surgery Section of Plastic and Reconstructive Surgery, The University of Chicago Medical Center, Chicago, IL, United States
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Kelly Hynes
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Mostafa El Dafrawy
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| |
Collapse
|
12
|
Evaluation of New Octacalcium Phosphate-Coated Xenograft in Rats Calvarial Defect Model on Bone Regeneration. MATERIALS 2020; 13:ma13194391. [PMID: 33019762 PMCID: PMC7579475 DOI: 10.3390/ma13194391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 02/01/2023]
Abstract
Bone graft material is essential for satisfactory and sufficient bone growth which leads to a successful implant procedure. It is classified into autogenous bone, allobone, xenobone and alloplastic materials. Among them, it has been reported that heterogeneous bone graft material has a porous microstructure that increases blood vessels and bone formation, and shows faster bone formation than other types of bone graft materials. We observed new bone tissue formation and bone remodeling using Ti-oss® (Chiyewon Co., Ltd., Guri, Korea), a heterologous bone graft material. Using a Sprague–Dawley rat calvarial defect model to evaluate the bone healing effect of biomaterials, the efficacy of the newly developed xenograft Ti-oss® and Bio-Oss® (Geistilch Pharma AG, Wolhusen, Switzerland). The experimental animals were sacrificed at 8 and 12 weeks after surgery for each group and the experimental site was extracted. The average new bone area for the Ti-oss® experimental group at 8 weeks was 17.6%. The remaining graft material was 22.7% for the experimental group. The average new bone area for the Ti-oss® group was 24.3% at 12 weeks. The remaining graft material was 22.8% for the experimental group. It can be evaluated that the new bone-forming ability of Ti-oss® with octacalcium phosphate (OCP) has the bone-forming ability corresponding to the conventional products.
Collapse
|
13
|
Tsuchiya K, Hamai R, Sakai S, Suzuki O. Comparative analysis of bovine serum albumin adsorption onto octacalcium phosphate crystals prepared using different methods. Dent Mater J 2020; 39:883-891. [PMID: 32448850 DOI: 10.4012/dmj.2019-250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study compared bovine serum albumin (BSA) adsorption onto octacalcium phosphate (OCP) materials prepared from two wet preparations in the absence (w-OCP) and presence (c-OCP) of gelatin. Raman spectroscopy was used to analyze the BSA adsorption onto OCPs in a 150 mM Tris-HCl buffer containing 0.5 mM calcium and inorganic phosphate (Pi) ions at pH 7.4 and at 37°C. The degree of supersaturation of the supernatants after the adsorption was determined by measuring the ion composition. The results showed that BSA adsorption onto w-OCP was higher than that for c-OCP. The calcium ion concentration of the supernatant decreased for both w-OCP and c-OCP, whereas the Pi ion concentration increased, approaching OCP equilibria at different saturation levels. BSA adsorbed even onto c-OCP, which included a small amount of gelatin during c-OCP preparation. These results indicate that the biodegradability of w-OCP and c-OCP may be modulated through interactions with serum proteins.
Collapse
Affiliation(s)
- Kaori Tsuchiya
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry
| | - Ryo Hamai
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry
| | - Susumu Sakai
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry
| | - Osamu Suzuki
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry
| |
Collapse
|
14
|
Suzuki O, Shiwaku Y, Hamai R. Octacalcium phosphate bone substitute materials: Comparison between properties of biomaterials and other calcium phosphate materials. Dent Mater J 2020; 39:187-199. [PMID: 32161239 DOI: 10.4012/dmj.2020-001] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Octacalcium phosphate (OCP) is a material that can be converted to hydroxyapatite (HA) under physiological environments and is considered a mineral precursor to bone apatite crystals. The structure of OCP consists of apatite layers stacked alternately with hydrated layers, and closely resembles the structure of HA. The performance of OCP as a bone substitute differs from that of HA materials in terms of their osteoconductivity and biodegradability. OCP manifests a cellular phagocytic response through osteoclast-like cells similar to that exhibited by the biodegradable material β-tricalcium phosphate (β-TCP). The use of OCP for human cranial bone defects involves using its granule or composite form with one of the natural polymers, viz., the reconstituted collagen. This review article discusses the differences and similarities in these calcium phosphate (Ca-P)-based materials from the viewpoint of the structure and their material chemistry, and attempts to elucidate why Ca-P materials, particularly OCP, display unique osteoconductive property.
Collapse
Affiliation(s)
- Osamu Suzuki
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry
| | - Yukari Shiwaku
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry
| | - Ryo Hamai
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry
| |
Collapse
|
15
|
Baba K, Shiwaku Y, Hamai R, Mori Y, Anada T, Tsuchiya K, Oizumi I, Miyatake N, Itoi E, Suzuki O. Chemical Stability-Sensitive Osteoconductive Performance of Octacalcium Phosphate Bone Substitute in an Ovariectomized Rat Tibia Defect. ACS APPLIED BIO MATERIALS 2020; 3:1444-1458. [DOI: 10.1021/acsabm.9b01091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kazuyoshi Baba
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Yukari Shiwaku
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
- Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Ryo Hamai
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Yu Mori
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takahisa Anada
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
- Department of Applied Chemistry, Graduate School of Engineering Kyushu University, Fukuoka 819-0395, Japan
| | - Kaori Tsuchiya
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Itsuki Oizumi
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Naohisa Miyatake
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
- Tohoku Orthopedic Hospital, Sendai 981-3121, Japan
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Osamu Suzuki
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| |
Collapse
|
16
|
Su Y, Cockerill I, Zheng Y, Tang L, Qin YX, Zhu D. Biofunctionalization of metallic implants by calcium phosphate coatings. Bioact Mater 2019; 4:196-206. [PMID: 31193406 PMCID: PMC6529680 DOI: 10.1016/j.bioactmat.2019.05.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 01/07/2023] Open
Abstract
Metallic materials have been extensively applied in clinical practice due to their unique mechanical properties and durability. Recent years have witnessed broad interests and advances on surface functionalization of metallic implants for high-performance biofunctions. Calcium phosphates (CaPs) are the major inorganic component of bone tissues, and thus owning inherent biocompatibility and osseointegration properties. As such, they have been widely used in clinical orthopedics and dentistry. The new emergence of surface functionalization on metallic implants with CaP coatings shows promise for a combination of mechanical properties from metals and various biofunctions from CaPs. This review provides a brief summary of state-of-art of surface biofunctionalization on implantable metals by CaP coatings. We first glance over different types of CaPs with their coating methods and in vitro and in vivo performances, and then give insight into the representative biofunctions, i.e. osteointegration, corrosion resistance and biodegradation control, and antibacterial property, provided by CaP coatings for metallic implant materials.
Collapse
Affiliation(s)
- Yingchao Su
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Irsalan Cockerill
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, China
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Donghui Zhu
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| |
Collapse
|
17
|
Sato T, Anada T, Hamai R, Shiwaku Y, Tsuchiya K, Sakai S, Baba K, Sasaki K, Suzuki O. Culture of hybrid spheroids composed of calcium phosphate materials and mesenchymal stem cells on an oxygen-permeable culture device to predict in vivo bone forming capability. Acta Biomater 2019; 88:477-490. [PMID: 30844570 DOI: 10.1016/j.actbio.2019.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/28/2019] [Accepted: 03/03/2019] [Indexed: 12/30/2022]
Abstract
Three-dimensional (3-D) cell culture can better mimic physiological conditions in which cells interact with adjacent cells and the extracellular matrix than monolayer culture. We have developed a 3-D cell culture device, the Oxy chip, which can be used to generate and supply oxygen to cell spheroids to prevent hypoxia. Here, we used the Oxy chip to generate hybrid spheroids comprising calcium phosphate (CaP) particles (hydroxyapatite (HA), β-tricalcium phosphate (β-TCP) or octacalcium phosphate (OCP)) and mesenchymal stem cells (MSCs, C3H10T1/2 cells or D1 cells) that can be used to analyze cell differentiation mechanisms. We showed that the 3-D cell-cell and cell-material interactions and oxygenation offered by the Oxy chip promoted osteoblastic differentiation of MSCs. We also used histomorphometric analysis of hematoxylin and eosin staining, quality analyses by μCT and collagen orientation observation with picrosirius red staining in bone regeneration following implantation of three CaPs in a critical-sized defect in mouse calvaria. The in vivo bone formation capacity of the three tested CaP materials was OCP ≥ β-TCP > HA: the newly formed bone by OCP had a structure relatively close to that of the calvaria intact bone. When MSCs were 3-D cultured with the CaP materials using the Oxy chip, the in vitro osteogenic capacity of these materials was highly similar to trends observed in vivo. The in vitro alkaline phosphatase activity of D1 cells had the highest correlation with in vivo bone volume (R = 0.900). Chemical and FTIR spectroscopic analyses confirmed that differentiation of D1 cells could be associated with amorphous calcium phosphate (ACP) precipitation concomitant with OCP hydrolysis. Taken together, hybrid spheroid cultures using the Oxy chip can be used to screen and predict bone forming potential of bone substitute materials. STATEMENT OF SIGNIFICANCE: An oxygen permeable-culture chip (Oxy chip) can be used to induce formation of cell spheroids by mesenchymal stem cells (MSCs). Use of the Oxy chip avoids hypoxia in the spheroid core and enhances MSC osteoblastic differentiation relative to conventional spheroid culture methods. The present study showed that the Oxy chip mimics the in vivo environment associated with bone formation and can be used to generate hybrid spheroids consisting of calcium phosphates and MSCs that are useful for analyzing cell differentiation mechanisms. Bone formation analysis following implantation of calcium phosphate materials in mouse calvaria defects showed positive correlation with the in vitro results. We propose that hybrid spheroids cultured on the Oxy chip can be used to screen and predict the bone forming potential of bone substitute materials.
Collapse
|
18
|
Takeda Y, Honda Y, Kakinoki S, Yamaoka T, Baba S. Surface modification of porous alpha-tricalcium phosphate granules with heparin enhanced their early osteogenic capability in a rat calvarial defect model. Dent Mater J 2018; 37:575-581. [PMID: 29491202 DOI: 10.4012/dmj.2017-305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Heparin binds to and modulates various growth factors, potentially augmenting the bone-forming capability of biomaterials. Here, α-tricalcium phosphate (α-TCP) granules were modified with peptide containing the marine mussel-derived adhesive sequence, which reacts with α-TCP surface, and cationic sequence, which binds to heparin (α-Ph). α-Ph retained the α-TCP phase and intergranule spaces after the surface modification. The existence of heparin on α-Ph granules was confirmed using X-ray photoelectron spectroscopy. Granules of α-TCP and α-Ph were implanted into critical-size defects in rat calvaria for 4 weeks. Micro-computed tomography, histological evaluation, and Alcian blue staining revealed that α-Ph induced superior bone formation compared with α-TCP. Newly formed bone on α-Ph was preferentially in contact with the Alcian blue-stained surfaces of granules. These results suggested that heparinization enhanced the early osteogenic capacity of α-TCP, possibly by modulating the secretion of Alcian blue-stained extracellular matrixes.
Collapse
Affiliation(s)
| | | | - Sachiro Kakinoki
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute
| | - Tetsuji Yamaoka
- Department of Biomedical Engineering, National Cerebral and Cardiovascular Center Research Institute
| | - Shunsuke Baba
- Department of Oral Implantology, Osaka Dental University
| |
Collapse
|
19
|
Capacity of octacalcium phosphate to promote osteoblastic differentiation toward osteocytes in vitro. Acta Biomater 2018; 69:362-371. [PMID: 29378325 DOI: 10.1016/j.actbio.2018.01.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/05/2018] [Accepted: 01/18/2018] [Indexed: 11/21/2022]
Abstract
Octacalcium phosphate (OCP) has been shown to act as a nucleus for initial bone deposition and enhancing the early stages of osteoblastic differentiation. However, the effect on differentiation at the late stage into osteocytes has not been elucidated. The present study was designed to investigate whether OCP can promote the differentiation lineage from osteoblasts to late osteocytes using a clonal cell line IDG-SW3 compared to commercially available sintered β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) in a transwell cell culture. Special attention was paid to detect the progress of OCP hydrolysis associated with ionic dissolution products from this material. OCP induced the appearance of an alkaline phosphatase (ALP) peak in the IDG-SW3 cells compared to β-TCP and HA and increased SOST/sclerostin and FGF23 gene expression after 35 days of incubation. Analyses by X-ray diffraction, curve fitting of Fourier transform infrared spectra, and acid phosphate inclusion of the materials showed that OCP tended to hydrolyze to an apatitic structure during the incubation. Since the hydrolysis enhanced inorganic phosphate ion (Pi) release from OCP in the media, IDG-SW3 cells were further incubated in the conditioned media with an increased concentration of Pi in the presence or absence of phosphonoformic acid (PFA), which is an inhibitor of Pi transport within the cells. An increase in Pi concentration up to 1.5 mM raised ALP activity, while its positive effect was eliminated in the presence of 0.1 to 0.5 mM PFA. Calcium ions did not show such an effect. These results indicate the stimulatory capacity of OCP on osteoblastic differentiation toward osteocytes. STATEMENT OF SIGNIFICANCE Octacalcium phosphate (OCP) has been shown to have a superior osteoconductivity due to its capacity to enhance initial stage of osteoblast differentiation. However, the effect of OCP on the late osteoblastic differentiation into osteocyte is unknown. This study showed the capacity associated with the structural change of OCP. The data show that OCP released inorganic phosphate (Pi) ions while the hydrolysis advanced if soaked in the media, determined by chemical and physical analyses, and enhanced osteocytes differentiation of IDG-SW3 cells more than hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP). Conditioned elevated Pi-containing media in the absence of OCP enhanced the osteocyte differentiation in the range of the concentration induced by OCP, the effect of which was cancelled by the inhibitor of Pi-transporters.
Collapse
|
20
|
Shen D, Horiuchi N, Nozaki S, Miyashin M, Yamashita K, Nagai A. Synthesis and enhanced bone regeneration of carbonate substituted octacalcium phosphate. Biomed Mater Eng 2017; 28:9-21. [PMID: 28269740 DOI: 10.3233/bme-171651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Using a wet method, we have synthesized octacalcium phosphate carbonate, in which HPO42- in octacalcium phosphate is replaced with CO32-. The physical, crystal, and chemical properties of this new material were compared to octacalcium phosphate, Ca-deficient hydroxyapatite, and Ca-deficient carbonate apatite using X-ray diffraction, Fourier-transform infrared spectroscopy, inductively coupled plasma spectroscopy, and scanning electron microscopy. Surface roughness and morphology were also characterized, along with the ability to support proliferation and differentiation of MG63 cells, as measured by MTT and alkaline phosphatase assay. We found that octacalcium phosphate carbonate enhanced osteoblast proliferation more strongly than all other materials tested. Similarly, Ca-deficient carbonate apatite, a hydrolysate of octacalcium phosphate carbonate, stimulated osteoblast differentiation to a better extent than Ca-deficient hydroxyapatite, a carbonate-free hydrolysate of octacalcium phosphate. These results indicate that octacalcium phosphate carbonate has good biocompatibility and osteoconduction, and incorporation of carbonate into octacalcium phosphate and apatite enhances bone regeneration.
Collapse
Affiliation(s)
- Donghe Shen
- Department of Pediatric Dentistry, Division of Developmental Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan.,Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Naohiro Horiuchi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Sosuke Nozaki
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Michiyo Miyashin
- Department of Pediatric Dentistry, Division of Developmental Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo 113-8549, Japan
| | - Kimihiro Yamashita
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Akiko Nagai
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
21
|
Kent NW, Blunn G, Karpukhina N, Davis G, de Godoy RF, Wilson RM, Coathup M, Onwordi L, Quak WY, Hill R. In vitro
and in vivo
study of commercial calcium phosphate cement HydroSet™. J Biomed Mater Res B Appl Biomater 2016; 106:21-30. [DOI: 10.1002/jbm.b.33809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Niall W. Kent
- Dental Physical Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London E1 4NS UK
- Centre for Nature Inspired Engineering; University College London, Torrington Place; London WC1E 7JE UK
- Warwick Medical School; University of Warwick; Coventry CV4 7AL UK
| | - Gordon Blunn
- John Scales Centre for Biomedical Engineering; Institute of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital; Stanmore UK
| | - Natalia Karpukhina
- Dental Physical Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London E1 4NS UK
| | - Graham Davis
- Dental Physical Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London E1 4NS UK
| | - Roberta Ferro de Godoy
- John Scales Centre for Biomedical Engineering; Institute of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital; Stanmore UK
| | - Rory M. Wilson
- School of Engineering and Materials Science; Queen Mary University of London; London E1 4NS UK
| | - Melanie Coathup
- John Scales Centre for Biomedical Engineering; Institute of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital; Stanmore UK
| | - Lyris Onwordi
- John Scales Centre for Biomedical Engineering; Institute of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital; Stanmore UK
| | - Wen Yu Quak
- John Scales Centre for Biomedical Engineering; Institute of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital; Stanmore UK
| | - Robert Hill
- Dental Physical Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London E1 4NS UK
| |
Collapse
|
22
|
Li X, Liu X, Wu S, Yeung KWK, Zheng Y, Chu PK. Design of magnesium alloys with controllable degradation for biomedical implants: From bulk to surface. Acta Biomater 2016; 45:2-30. [PMID: 27612959 DOI: 10.1016/j.actbio.2016.09.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 01/24/2023]
Abstract
The combination of high strength, light weight, and natural biodegradability renders magnesium (Mg)-based alloys promising in orthopedic implants and cardiovascular stents. Being metallic materials, Mg and Mg alloys made for scaffolds provide the necessary mechanical support for tissue healing and cell growth in the early stage, while natural degradation and reabsorption by surrounding tissues in the later stage make an unnecessarily follow-up removal surgery. However, uncontrolled degradation may collapse the scaffolds resulting in premature implant failure, and there has been much research in controlling the degradation rates of Mg alloys. This paper reviews recent progress in the design of novel Mg alloys, surface modification and corrosion mechanisms under different conditions, and describes the effects of the structure, composition, and surface conditions on the degradation behavior in vitro and in vivo. STATEMENT OF SIGNIFICANCE Owing to their unique mechanical properties, biodegradability, biocompatibility, Mg based biomaterials are becoming the most promising substitutes for tissue regeneration for impaired bone, vascular and other tissues because these scaffolds can provide not only ideal space for the growth and differentiation of seeded cells but also enough strength before the formation of normal tissues. The most important is that these scaffolds can be fully degraded after tissue regeneration, which can satisfy the increasing demand for better biomedical devices and functional tissue engineering biomaterials in the world. However, the rapid degradation rate of these scaffolds restricts the wide application in clinic. This paper reviews recent progress on how to control the degrdation rate based on the relevant corrosion mechanisms through the design of porous structure, phase structure, grains, and amorphous structure as well as surface modification, which will be beneficial to the better understanding and functional design of Mg-based scaffolds for wide clinical applications in tissue reconstruction in near futures.
Collapse
Affiliation(s)
- Xia Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Faculty of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Xiangmei Liu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Faculty of Materials Science & Engineering, Hubei University, Wuhan 430062, China.
| | - Shuilin Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Faculty of Materials Science & Engineering, Hubei University, Wuhan 430062, China.
| | - K W K Yeung
- Division of Spine Surgery, Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Paul K Chu
- Department of Physics & Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
23
|
Singh SS, Roy A, Lee B, Parekh S, Kumta PN. Murine osteoblastic and osteoclastic differentiation on strontium releasing hydroxyapatite forming cements. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:429-38. [DOI: 10.1016/j.msec.2016.02.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/01/2016] [Accepted: 02/19/2016] [Indexed: 01/06/2023]
|
24
|
Ishiko-Uzuka R, Anada T, Kobayashi K, Kawai T, Tanuma Y, Sasaki K, Suzuki O. Oriented bone regenerative capacity of octacalcium phosphate/gelatin composites obtained through two-step crystal preparation method. J Biomed Mater Res B Appl Biomater 2016; 105:1029-1039. [DOI: 10.1002/jbm.b.33640] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/21/2016] [Accepted: 02/03/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Risa Ishiko-Uzuka
- Division of Maxillofacial Prosthetic Clinic; Tohoku University Hospital; Sendai 980-8575 Japan
- Division of Craniofacial Function Engineering; Tohoku University Graduate of Dentistry; Sendai 980-8575 Japan
- Division of Advanced Prosthetic Dentistry; Tohoku University Graduate School of Dentistry; Sendai 980-8575 Japan
| | - Takahisa Anada
- Division of Craniofacial Function Engineering; Tohoku University Graduate of Dentistry; Sendai 980-8575 Japan
| | - Kazuhito Kobayashi
- Division of Craniofacial Function Engineering; Tohoku University Graduate of Dentistry; Sendai 980-8575 Japan
| | - Tadashi Kawai
- Division of Oral and Maxillofacial Surgery; Tohoku University Graduate School of Dentistry; Sendai 980-8575 Japan
| | - Yuji Tanuma
- Division of Oral and Maxillofacial Surgery; Tohoku University Graduate School of Dentistry; Sendai 980-8575 Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry; Tohoku University Graduate School of Dentistry; Sendai 980-8575 Japan
| | - Osamu Suzuki
- Division of Craniofacial Function Engineering; Tohoku University Graduate of Dentistry; Sendai 980-8575 Japan
| |
Collapse
|
25
|
Hirayama B, Anada T, Shiwaku Y, Miyatake N, Tsuchiya K, Nakamura M, Takahashi T, Suzuki O. Immune cell response and subsequent bone formation induced by implantation of octacalcium phosphate in a rat tibia defect. RSC Adv 2016. [DOI: 10.1039/c6ra10834b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present study was designed to investigate how octacalcium phosphate (OCP) induces an immune response and whether the response is involved in the biodegradation and subsequent bone formation by OCP implantation in bone defects.
Collapse
Affiliation(s)
- Bunichi Hirayama
- Division of Oral and Maxillofacial Surgery
- Tohoku University Graduate School of Dentistry
- Sendai
- Japan
- Division of Craniofacial Function Engineering
| | - Takahisa Anada
- Division of Craniofacial Function Engineering
- Tohoku University Graduate School of Dentistry
- Sendai 980-8575
- Japan
| | - Yukari Shiwaku
- Division of Craniofacial Function Engineering
- Tohoku University Graduate School of Dentistry
- Sendai 980-8575
- Japan
- Liaison Center for Innovative Dentistry
| | | | - Kaori Tsuchiya
- Division of Craniofacial Function Engineering
- Tohoku University Graduate School of Dentistry
- Sendai 980-8575
- Japan
| | - Masanori Nakamura
- Department of Oral Anatomy
- Showa University School of Dentistry
- Tokyo
- Japan
| | - Tetsu Takahashi
- Division of Oral and Maxillofacial Surgery
- Tohoku University Graduate School of Dentistry
- Sendai
- Japan
| | - Osamu Suzuki
- Division of Craniofacial Function Engineering
- Tohoku University Graduate School of Dentistry
- Sendai 980-8575
- Japan
| |
Collapse
|
26
|
Saito K, Anada T, Shiwaku Y, Chiba S, Miyatake N, Suzuki K, Tsuchiya K, Suzuki O. Dose-dependent enhancement of octacalcium phosphate biodegradation with a gelatin matrix during bone regeneration in a rabbit tibial defect model. RSC Adv 2016. [DOI: 10.1039/c6ra07602e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present study was designed to investigate how the dose of granular octacalcium phosphate in a gelatin matrix affects its bone regenerative and biodegradable properties in a rabbit tibia defect.
Collapse
Affiliation(s)
- Keisuke Saito
- Division of Craniofacial Function Engineering
- Tohoku University Graduate School of Dentistry
- Sendai 980-8575
- Japan
| | - Takahisa Anada
- Division of Craniofacial Function Engineering
- Tohoku University Graduate School of Dentistry
- Sendai 980-8575
- Japan
| | - Yukari Shiwaku
- Division of Craniofacial Function Engineering
- Tohoku University Graduate School of Dentistry
- Sendai 980-8575
- Japan
- Liaison Center for Innovative Dentistry
| | - Shinpei Chiba
- Department of Orthopaedic Surgery
- Tohoku University School of Medicine
- Sendai
- Japan
| | | | | | - Kaori Tsuchiya
- Division of Craniofacial Function Engineering
- Tohoku University Graduate School of Dentistry
- Sendai 980-8575
- Japan
| | - Osamu Suzuki
- Division of Craniofacial Function Engineering
- Tohoku University Graduate School of Dentistry
- Sendai 980-8575
- Japan
| |
Collapse
|
27
|
Honda Y, Tanaka T, Tokuda T, Kashiwagi T, Kaida K, Hieda A, Umezaki Y, Hashimoto Y, Imai K, Matsumoto N, Baba S, Shimizutani K. Local Controlled Release of Polyphenol Conjugated with Gelatin Facilitates Bone Formation. Int J Mol Sci 2015; 16:14143-57. [PMID: 26110386 PMCID: PMC4490544 DOI: 10.3390/ijms160614143] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/28/2015] [Accepted: 06/08/2015] [Indexed: 11/16/2022] Open
Abstract
Catechins are extensively used in health care treatments. Nevertheless, there is scarce information about the feasibility of local administration with polyphenols for bone regeneration therapy, possibly due to lack of effective delivery systems. Here we demonstrated that the epigallocatechin-3-gallate-conjugated gelatin (EGCG/Gel) prepared by an aqueous chemical synthesis using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-morpholinium chloride (DMT-MM) gradually disintegrated with time and facilitated bone formation in a critical size defect of a mouse calvaria. Conjugation of EGCG with the Gel generated cross-linking between the two molecules, thereby leading to a retardation of the degradation of the EGCG/Gel and to a delayed release of EGCG. The prepared EGCG/Gels represented significant osteogenic capability compared with that of the uncross-linked Gel and the cross-linked Gel with uncombined-EGCG. In vitro experiments disclosed that the EGCG/Gel induced osteoblastogenesis of a mouse mesenchymal stem cell line (D1 cells) within 14 days. Using fluorescently-labeled EGCG/Gel, we found that the fraction of EGCG/Gel adsorbed onto the cell membrane of the D1 cells possibly via a Gel-cell interaction. The interaction might confer the long-term effects of EGCG on the cells, resulting in a potent osteogenic capability of the EGCG/Gel in vivo. These results should provide insight into local controlled release of polyphenols for bone therapy.
Collapse
Affiliation(s)
- Yoshitomo Honda
- Institute of Dental Research, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan.
| | - Tomonari Tanaka
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Tomoko Tokuda
- Department of Orthodontics, Osaka Dental University, 8-1, Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan.
| | - Takahiro Kashiwagi
- Department of Oral Implantology, Osaka Dental University; 8-1 Kuzuhahanazonocho, Hirakata, Osaka, 573-1121, Japan.
| | - Koji Kaida
- Department of Oral Implantology, Osaka Dental University; 8-1 Kuzuhahanazonocho, Hirakata, Osaka, 573-1121, Japan.
| | - Ayato Hieda
- Department of Oral Implantology, Osaka Dental University; 8-1 Kuzuhahanazonocho, Hirakata, Osaka, 573-1121, Japan.
| | - Yasuyuki Umezaki
- Department of Oral Implantology, Osaka Dental University; 8-1 Kuzuhahanazonocho, Hirakata, Osaka, 573-1121, Japan.
| | - Yoshiya Hashimoto
- Osaka Dental University; 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan.
| | - Koichi Imai
- Osaka Dental University; 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan.
| | - Naoyuki Matsumoto
- Department of Orthodontics, Osaka Dental University, 8-1, Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan.
| | - Shunsuke Baba
- Department of Oral Implantology, Osaka Dental University; 8-1 Kuzuhahanazonocho, Hirakata, Osaka, 573-1121, Japan.
| | - Kimishige Shimizutani
- Institute of Dental Research, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan.
- Department of Oral Radiology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata, Osaka 573-1121, Japan.
| |
Collapse
|
28
|
Suzuki K, Anada T, Miyazaki T, Miyatake N, Honda Y, Kishimoto KN, Hosaka M, Imaizumi H, Itoi E, Suzuki O. Effect of addition of hyaluronic acids on the osteoconductivity and biodegradability of synthetic octacalcium phosphate. Acta Biomater 2014; 10:531-43. [PMID: 24035888 DOI: 10.1016/j.actbio.2013.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 08/28/2013] [Accepted: 09/04/2013] [Indexed: 10/26/2022]
Abstract
The present study was designed to investigate whether three sodium hyaluronic acid (HyA) medical products, Artz(®), Suvenyl(®) and a chemically modified derivative of sodium HyA Synvisc(®), can be used as suitable vehicles for an osteoconductive octacalcium phosphate (OCP). OCP granules (300-500 μm diameter) were mixed with these sodium HyAs with molecular weights of 90 × 10(4) (Artz(®)), 190 × 10(4) (Suvenyl(®)) and 600 × 10(4) (Synvisc(®)) (referred to as HyA90, HyA190 and HyA600, respectively). OCP-HyA composites were injected using a syringe into a polytetrafluoroethylene ring, placed on the subperiosteal region of mouse calvaria for 3 and 6 weeks, and then bone formation was assessed by histomorphometry. The capacity of the HyAs for osteoclast formation from RAW264 cells with RANKL was examined by TRAP staining in vitro. Bone formation was enhanced by the OCP composites with HyA90 and HyA600, compared to OCP alone, through enhanced osteoclastic resorption of OCP. HyA90 and HyA600 facilitated in vitro osteoclast formation. The results suggest that the osteoconductive property of OCP was accelerated by the HyAs-associated osteoclastic resorption of OCP, and therefore that HyA/OCP composites are attractive bone substitutes which are injectable and bioactive materials.
Collapse
|
29
|
NISHIKAWA R, ANADA T, ISHIKO-UZUKA R, SUZUKI O. Osteoblastic differentiation of stromal ST-2 cells from octacalcium phosphate exposure via p38 signaling pathway. Dent Mater J 2014; 33:242-51. [DOI: 10.4012/dmj.2013-226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Bone regeneration in rat cranium critical-size defects induced by Cementum Protein 1 (CEMP1). PLoS One 2013; 8:e78807. [PMID: 24265720 PMCID: PMC3827101 DOI: 10.1371/journal.pone.0078807] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 09/22/2013] [Indexed: 01/26/2023] Open
Abstract
Gene therapy approaches to bone and periodontal tissue engineering are being widely explored. While localized delivery of osteogenic factors like BMPs is attractive for promotion of bone regeneration; method of delivery, dosage and side effects could limit this approach. A novel protein, Cementum Protein 1 (CEMP1), has recently been shown to promote regeneration of periodontal tissues. In order to address the possibility that CEMP1 can be used to regenerate other types of bone, experiments were designed to test the effect of hrCEMP1 in the repair/regeneration of a rat calvaria critical-size defect. Histological and microcomputed tomography (µCT) analyses of the calvaria defect sites treated with CEMP1 showed that after 16 weeks, hrCEMP1 is able to induce 97% regeneration of the defect. Furthermore, the density and characteristics of the new mineralized tissues were normal for bone. This study demonstrates that hrCEMP1 stimulates bone formation and regeneration and has therapeutic potential for the treatment of bone defects and regeneration of mineralized tissues.
Collapse
|
31
|
Suzuki O. Octacalcium phosphate (OCP)-based bone substitute materials. JAPANESE DENTAL SCIENCE REVIEW 2013. [DOI: 10.1016/j.jdsr.2013.01.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
32
|
Suzuki O, Anada T. Synthetic octacalcium phosphate: a possible carrier for mesenchymal stem cells in bone regeneration. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2013:397-400. [PMID: 24109707 DOI: 10.1109/embc.2013.6609520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The present paper reviews biomaterial studies of synthetic octacalcium phosphate (OCP) as a scaffold of osteoblastic cells. OCP crystals have been suggested to be one of precursor phases in hydroxyapatite (HA) crystal formation in bone and tooth. The recent intensive biomaterials and tissue engineering studies using synthetic OCP disclosed the potential function of OCP as a bioactive material as well as synthetic HA materials due to its highly osteoconductive and biodegradable properties. In vitro studies showed that OCP crystals exhibit a positive effect on osteoblastic cell differentiation. In vivo studies confirmed that the materials of OCP in a granule forms and OCP-based composite materials with natural polymers, such as gelatin and collagen, enhance bone regeneration if implanted in various model bone defects with critical-sized diameters, defined as a defect which does not heal spontaneously throughout the lifetime of the animals. One of particular characteristics of OCP, found as a mechanism to enhance bone regeneration in vivo, is a process of progressive conversion from OCP to HA at physiological conditions. The OCP-HA conversion is accompanied by progressive physicochemical changes of the material properties, which affects the tissue reaction around the crystals where osteoblastic cells are encountered. Mesenchymal stem cells (MSCs) seeded in an OCP-based material enhanced bone regeneration in the rat critical-sized calvaria defect more than that by the material alone. The overall results reveal that OCP crystals have an effect on osteoblastic cell differentiation including the differentiation of MSCs in vivo. The evidence collected experimentally in the laboratory was presented.
Collapse
|
33
|
Tanuma Y, Matsui K, Kawai T, Matsui A, Suzuki O, Kamakura S, Echigo S. Comparison of bone regeneration between octacalcium phosphate/collagen composite and β-tricalcium phosphate in canine calvarial defect. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 115:9-17. [DOI: 10.1016/j.oooo.2011.12.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 12/28/2011] [Indexed: 11/28/2022]
|
34
|
The effect of an octacalcium phosphate co-precipitated gelatin composite on the repair of critical-sized rat calvarial defects. Acta Biomater 2012; 8:1190-200. [PMID: 22198138 DOI: 10.1016/j.actbio.2011.12.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/03/2011] [Accepted: 12/05/2011] [Indexed: 11/23/2022]
Abstract
This study was designed to investigate the extent to which an octacalcium phosphate/gelatin (OCP/Gel) composite can repair rat calvarial critical-sized defects (CSD). OCP crystals were grown with various concentrations of gelatin molecules and the OCP/Gel composites were characterized by chemical analysis, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), selected area electron diffraction (SAED) and mercury intrusion porosimetry. The OCP/Gel composite disks received vacuum dehydrothermal treatment, were implanted in Wistar rat calvarial CSD for 4, 8 and 16 weeks, and then subjected to radiologic, histologic, histomorphometric and histochemical assessment. The attachment of mouse bone marrow stromal ST-2 cells on the disks of the OCP/Gel composites was also examined after 1 day of incubation. OCP/Gel composites containing 24 wt.%, 31 wt.% and 40 wt.% of OCP and with approximate pore sizes of 10-500 μm were obtained. Plate-like crystals were observed closely associated with the Gel matrices. TEM, XRD, FTIR and SAED confirmed that the plate-like crystals were identical to those of the OCP phase, but contained a small amount of sphere-like amorphous material adjacent to the OCP crystals. The OCP (40 wt.%)/Gel composite repaired 71% of the CSD in conjunction with material degradation by osteoclastic cells, which reduced the percentage of the remaining implant to less than 3% within 16 weeks. Of the seeded ST-2 cells, 60-70% were able to migrate and attach to the OCP/Gel composites after 1 day of incubation, regardless of the OCP content. These results indicate that an OCP/Gel composite can repair rat calvarial CSD very efficiently and has favorable biodegradation characteristics. Therefore, it is hypothesized that host osteoblastic cells can easily migrate into an OCP/Gel composite.
Collapse
|
35
|
Tanuma Y, Anada T, Honda Y, Kawai T, Kamakura S, Echigo S, Suzuki O. Granule size-dependent bone regenerative capacity of octacalcium phosphate in collagen matrix. Tissue Eng Part A 2012; 18:546-57. [PMID: 21942921 PMCID: PMC3286816 DOI: 10.1089/ten.tea.2011.0349] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 09/21/2011] [Indexed: 11/13/2022] Open
Abstract
The present study was designed to determine whether the osteoconductivity of octacalcium phosphate-collagen (OCP/Col) composite can be improved by controlling the granule size of OCP. The granules of synthetic OCP, with diameters in the range of 53 to 300, 300 to 500, and 500 to 1000 μm, were used as an inorganic source of composite materials mixed with atelo-Col. After vacuum dehydrothemal treatment, OCP/Col disks were implanted into critical-sized calvaria defects in Wistar rats for 4, 8, and 12 weeks and examined radiographically, histologically, histomorphometrically, and histochemically. The materials were characterized according to mercury intrusion porosimetry and scanning electron microscopy. X-ray diffraction was performed before and after implantation. The dissolution of OCP crystals in a Col matrix was determined by immersing OCP/Col disks in a culture medium. OCP/Col had a constant pore size (~30 μm) regardless of OCP granule size. OCP in the Col matrix tended to convert to hydroxyapatite (HA) during the implantation. OCP/Col with the smallest granules of OCP enhances both bone regeneration and biodegradation the most through tartrate-resistant acid phosphatase (TRAP)-positive osteoclastic cellular resorption of OCP granules. The smallest OCP granules in the Col matrix showed the highest dissolution and had the greatest potential to form HA. The results indicated that the size of the included OCP granules can controll the osteoconductivity of OCP/Col. The overall results suggest that the physicochemical property of OCP crystals is a factor that determines the bone regenerative capacity of OCP/Col in critical-sized calvaria large bone defects in rats.
Collapse
Affiliation(s)
- Yuji Tanuma
- Division of Oral Surgery, Tohoku University, Sendai, Japan
- Division of Craniofacial Function Engineering, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Takahisa Anada
- Division of Craniofacial Function Engineering, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Yoshitomo Honda
- Division of Craniofacial Function Engineering, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Tadashi Kawai
- Division of Oral Surgery, Tohoku University, Sendai, Japan
| | - Shinji Kamakura
- Division of Bone Regenerative Engineering Laboratory, Graduate School of Biomedical Engineering, Tohoku University
| | - Seishi Echigo
- Division of Oral Surgery, Tohoku University, Sendai, Japan
| | - Osamu Suzuki
- Division of Craniofacial Function Engineering, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| |
Collapse
|
36
|
Shadanbaz S, Dias GJ. Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Acta Biomater 2012; 8:20-30. [PMID: 22040686 DOI: 10.1016/j.actbio.2011.10.016] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/13/2011] [Accepted: 10/13/2011] [Indexed: 12/13/2022]
Abstract
Magnesium has been suggested as a revolutionary biodegradable metal for use as an orthopaedic material. As a biocompatible and degradable metal, it has several advantages over the permanent metallic materials currently in use, including eliminating the effects of stress shielding, improving biocompatibility concerns in vivo and improving degradation properties, removing the requirement of a second surgery for implant removal. The rapid degradation of magnesium, however, is a double-edged sword as it is necessary to control the corrosion rates of the materials to match the rates of bone healing. In response, calcium phosphate coatings have been suggested as a means to control these corrosion rates. The potential calcium phosphate phases and their coating techniques on substrates are numerous and can provide several different properties for different applications. The reactivity and low melting point of magnesium, however, require specific parameters for calcium phosphate coatings to be successful. Within this review, an overview of the different calcium phosphate phases, their properties and their behaviour in vitro and in vivo has been provided, followed by the current coating techniques used for calcium phosphates that may be or may have been adapted for magnesium substrates.
Collapse
Affiliation(s)
- Shaylin Shadanbaz
- Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
37
|
Kaneko H, Kamiie J, Kawakami H, Anada T, Honda Y, Shiraishi N, Kamakura S, Terasaki T, Shimauchi H, Suzuki O. Proteome analysis of rat serum proteins adsorbed onto synthetic octacalcium phosphate crystals. Anal Biochem 2011; 418:276-85. [DOI: 10.1016/j.ab.2011.07.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 07/15/2011] [Accepted: 07/19/2011] [Indexed: 11/26/2022]
|
38
|
Komlev VS, Fadeeva IV, Barinov SM, Rau JV, Fosca M, Gurin AN, Gurin NA. Phase Development During Setting and Hardening of a Bone Cement Based on α-Tricalcium and Octacalcium Phosphates. J Biomater Appl 2011; 26:1051-68. [DOI: 10.1177/0885328210390403] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, the phase development in the cement system α-TCP–OCP with phosphoric acid as a setting liquid was studied. The most promising formulation of α-TCP (60 wt%) and OCP (40 wt%) is proposed. This cement has the following characteristics: setting time 10 min, pH = 6.7, the compressive strength about 30 MPa, and high dissolution rate in an isotonic solution; the final wt% composition of α-TCP/DCPD/HA/OCP equals 27/38/20/15. Energy dispersive X-ray diffraction techniques were used for in situ monitoring of the processes taking place in the cement in real time.
Collapse
Affiliation(s)
- Vladimir S. Komlev
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninsky Prospect 49, 119991 Moscow, Russia
| | - Inna V. Fadeeva
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninsky Prospect 49, 119991 Moscow, Russia
| | - Sergey M. Barinov
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninsky Prospect 49, 119991 Moscow, Russia
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche Via del Fosso del Cavaliere, 100–00133 Rome, Italy
| | - Marco Fosca
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche Via del Fosso del Cavaliere, 100–00133 Rome, Italy
| | - Alexey N. Gurin
- Federal Public Institution ‘Central Scientific Research Institute of Dentistry and Oral and Maxillofacial Surgery Federal Agency for High-Tech Medical Assistance,’ Timura Frunze 16, 119991 Moscow, Russia
| | - Nikolay A. Gurin
- Federal Public Institution ‘Central Scientific Research Institute of Dentistry and Oral and Maxillofacial Surgery Federal Agency for High-Tech Medical Assistance,’ Timura Frunze 16, 119991 Moscow, Russia
| |
Collapse
|
39
|
Chai YC, Roberts SJ, Schrooten J, Luyten FP. Probing the osteoinductive effect of calcium phosphate by using an in vitro biomimetic model. Tissue Eng Part A 2011; 17:1083-97. [PMID: 21091326 DOI: 10.1089/ten.tea.2010.0160] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The use of calcium phosphate (CaP)-based carriers in bone engineering is a promising approach to induce in vivo bone formation. However, the exact mechanism of osteoinduction by CaP is not known. Here, by mimicking the in vivo Ca(2+) and P(i)-enriched environment in an in vitro model, we assessed the effects of these ions on human periosteum-derived cells. We observed a significant Ca(2+) and P(i)-induced cell proliferation, which was found to be through the modulation of cell cycle progression, in a dose- and time-dependent manner. In addition, Ca(2+), P(i), and combined Ca-P upregulated osteogenic gene expression in a dose- and time-dependent manner. Encouragingly, both ions administered individually or in combination persistently and dose dependently upregulated bone morphogenetic protein-2 gene expression. This suggested a potential osteoinductive effect through an autonomous activation of the bone morphogenetic protein signaling pathway by released Ca(2+) and P(i), which may serve as an autocrine/paracrine osteoinduction loop that drives the cellularized CaP constructs toward effective bone formation in vivo. In conclusion, through an in vitro biomimetic model, we have partially probed the roles of the released Ca(2+) and P(i) on the osteoinductivity of CaP-based biomaterials.
Collapse
Affiliation(s)
- Yoke Chin Chai
- Laboratory for Skeletal Development and Joint Disorders, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
40
|
Matsui K, Matsui A, Handa T, Kawai T, Suzuki O, Kamakura S, Echigo S. Bone regeneration by octacalcium phosphate collagen composites in a dog alveolar cleft model. Int J Oral Maxillofac Surg 2010; 39:1218-25. [PMID: 20863660 DOI: 10.1016/j.ijom.2010.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 06/22/2010] [Accepted: 07/27/2010] [Indexed: 11/19/2022]
Abstract
Octacalcium phosphate (OCP) and porcine atelocollagen sponge composites (OCP/Col) markedly enhanced bone regeneration in a rat cranial defect model. To assess clinical application, the authors examined whether OCP/Col would enhance bone regeneration in an alveolar cleft model in an adult dog, which was assumed to reflect patients with alveolar cleft. Disks of OCP/Col or collagen were implanted into the defect and bone regeneration by OCP/Col or collagen was investigated 4 months after implantation. Macroscopically, the OCP/Col-treated alveolus was obviously augmented and occupied by radio-opacity, and the border between the original bone and the defect was indistinguishable. Histological analysis revealed it was filled and bridged with newly formed bone; a small quantity of the remaining implanted OCP was observed. X-ray diffraction patterns of the area of implanted OCP/Col indicated no difference from those of dog bone. In the collagen-treated alveolus, the hollowed alveolus was mainly filled with fibrous connective tissue, and a small amount of new bone was observed at the defect margin. These results suggest that bone was obviously repaired when OCP/Col was implanted into the alveolar cleft model in a dog, and OCP/Col would be a significant bone regenerative material to substitute for autogeneous bone.
Collapse
Affiliation(s)
- K Matsui
- Division of Oral Surgery, Department of Oral Medicine and Surgery, Tohoku University Graduate School of Dentistry, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Suzuki O. Octacalcium phosphate: osteoconductivity and crystal chemistry. Acta Biomater 2010; 6:3379-87. [PMID: 20371385 DOI: 10.1016/j.actbio.2010.04.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/31/2010] [Accepted: 04/01/2010] [Indexed: 12/20/2022]
Abstract
Octacalcium phosphate (OCP), which is structurally similar to hydroxyapatite (HA), is a possible precursor of bone apatite crystals. Although disagreement remains as to whether OCP comprises the initial mineral crystals in the early stage of bone mineralization, the results of recent biomaterial studies using synthetic OCP indicate the potential role of OCP as a bone substitute material, owing to its highly osteoconductive and biodegradable characteristics. OCP tends to convert to HA not only in an in vitro environment, but also as an implant in bone defects. Several lines of evidence from both in vivo and in vitro studies suggest that the conversion process could be involved in the stimulatory capacity of OCP for osteoblastic differentiation and osteoclast formation. However, the osteoconductivity of OCP cannot always be secured if an OCP with distinct crystal characteristics is used, because the stoichiometry and microstructure of OCP crystals greatly affect bone-regenerative properties. Osteoconductivity and stimulatory capabilities may be caused by the chemical characteristics of OCP, which allows the release or exchange of calcium and phosphate ions with the surrounding of this salt, and its tendency to grow towards specific crystal faces, which could be a variable of the synthesis condition. This paper reviews the effect of calcium phosphates on osteoblastic activity and bone regeneration, with a special emphasis on OCP, since OCP seems to be performing better than other calcium phosphates in vivo.
Collapse
Affiliation(s)
- O Suzuki
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, 4-1, Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| |
Collapse
|
42
|
Komlev VS, Fadeeva IV, Fomin AS, Shvorneva LI, Ferro D, Barinov SM. Synthesis of octacalcium phosphate by precipitation from solution. DOKLADY CHEMISTRY 2010. [DOI: 10.1134/s0012500810060066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Orii Y, Masumoto H, Honda Y, Anada T, Goto T, Sasaki K, Suzuki O. Enhancement of octacalcium phosphate deposition on a titanium surface activated by electron cyclotron resonance plasma oxidation. J Biomed Mater Res B Appl Biomater 2010; 93:476-83. [PMID: 20166123 DOI: 10.1002/jbm.b.31605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The present study was designed to investigate whether the formation of octacalcium phosphate (OCP) is accelerated on titanium (Ti) surface by an electron cyclotron resonance (ECR) plasma oxidation at various pressures and temperatures. X-ray diffraction (XRD) of Ti-oxidized substrates showed that the rutile TiO(2) phase on its surfaces appeared at 300 degrees C and was crystallized when the oxidation temperature increased up to 600 degrees C. The thickness of TiO(2) film on the substrates increased progressively as the temperature increased. The oxidized Ti surfaces were soaked in calcium and phosphate solutions supersaturated with respect to both hydroxyapatite (HA) and OCP but slightly supersaturated with dicalcium phosphate dihydrate (DCPD). OCP crystals with a blade-like morphology were deposited as the primary crystalline phase on Ti substrates, while DCPD was included as a minor constituent. The amount of OCP deposition was maximized under 0.015 Pa in 300 degrees C. On the other hand, the oxidation temperature did not show a significant effect on the deposit in the range examined. The phase conversion from OCP to HA, determined by XRD, was demonstrated to occur even at 1 day and to advance until 7 days by immersing the Ti substrate with the deposit in simulated body fluid at 37 degrees C. The present results suggest that ECR plasma oxidation could be used to improve a Ti surface regarding its bioactivity due to the enhancement of osteoconductive OCP deposition.
Collapse
Affiliation(s)
- Yusuke Orii
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
KAWAI T, ANADA T, HONDA Y, KAMAKURA S, MATSUI A, MATSUI K, ECHIGO S, SUZUKI O. Analysis of osteoblastic cell differentiation by synthetic octacalcium phosphate (OCP) as compared with commercially available β-TCP ceramic. ACTA ACUST UNITED AC 2010. [DOI: 10.5794/jjoms.56.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
45
|
HOSHIKA S, NAGANO F, TANAKA T, IKEDA T, WADA T, ASAKURA K, KOSHIRO K, SELIMOVIC D, MIYAMOTO Y, SIDHU SK, SANO H. Effect of application time of colloidal platinum nanoparticles on the microtensile bond strength to dentin. Dent Mater J 2010; 29:682-9. [DOI: 10.4012/dmj.2009-125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Matsui A, Anada T, Masuda T, Honda Y, Miyatake N, Kawai T, Kamakura S, Echigo S, Suzuki O. Mechanical Stress-Related Calvaria Bone Augmentation by Onlayed Octacalcium Phosphate–Collagen Implant. Tissue Eng Part A 2010; 16:139-51. [DOI: 10.1089/ten.tea.2009.0284] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Aritsune Matsui
- Division of Oral Surgery, Tohoku University Graduate of Dentistry, Sendai, Japan
- Division of Craniofacial Function Engineering, Tohoku University Graduate of Dentistry, Sendai, Japan
| | - Takahisa Anada
- Division of Craniofacial Function Engineering, Tohoku University Graduate of Dentistry, Sendai, Japan
| | - Taisuke Masuda
- Division of Craniofacial Function Engineering, Tohoku University Graduate of Dentistry, Sendai, Japan
| | - Yoshitomo Honda
- Division of Craniofacial Function Engineering, Tohoku University Graduate of Dentistry, Sendai, Japan
| | - Naohisa Miyatake
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tadashi Kawai
- Division of Oral Surgery, Tohoku University Graduate of Dentistry, Sendai, Japan
- Division of Craniofacial Function Engineering, Tohoku University Graduate of Dentistry, Sendai, Japan
| | - Shinji Kamakura
- Bone Regenerative Engineering Laboratory, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Seishi Echigo
- Division of Oral Surgery, Tohoku University Graduate of Dentistry, Sendai, Japan
| | - Osamu Suzuki
- Division of Craniofacial Function Engineering, Tohoku University Graduate of Dentistry, Sendai, Japan
| |
Collapse
|
47
|
Takami M, Mochizuki A, Yamada A, Tachi K, Zhao B, Miyamoto Y, Anada T, Honda Y, Inoue T, Nakamura M, Suzuki O, Kamijo R. Osteoclast Differentiation Induced by Synthetic Octacalcium Phosphate Through Receptor Activator of NF-κB Ligand Expression in Osteoblasts. Tissue Eng Part A 2009; 15:3991-4000. [DOI: 10.1089/ten.tea.2009.0065] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Masamichi Takami
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| | - Ayako Mochizuki
- Department of Oral Physiology, School of Dentistry, Showa University, Tokyo, Japan
| | - Atsushi Yamada
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| | - Keita Tachi
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
- Department of Prosthodontics, School of Dentistry, Showa University, Tokyo, Japan
| | - Baohong Zhao
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| | - Yoichi Miyamoto
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| | - Takahisa Anada
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Miyagi, Japan
| | - Yoshitomo Honda
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Miyagi, Japan
| | - Tomio Inoue
- Department of Oral Physiology, School of Dentistry, Showa University, Tokyo, Japan
| | - Masanori Nakamura
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, Tokyo, Japan
| | - Osamu Suzuki
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Miyagi, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
48
|
Fuji T, Anada T, Honda Y, Shiwaku Y, Koike H, Kamakura S, Sasaki K, Suzuki O. Octacalcium Phosphate–Precipitated Alginate Scaffold for Bone Regeneration. Tissue Eng Part A 2009; 15:3525-35. [DOI: 10.1089/ten.tea.2009.0048] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Takeshi Fuji
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Takahisa Anada
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yoshitomo Honda
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yukari Shiwaku
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hiroko Koike
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Shinji Kamakura
- Division of Bone Regenerative Engineering, Department of Regenerative Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Osamu Suzuki
- Division of Craniofacial Function Engineering, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
49
|
Gou Z, Yang X, Gao X, Zhang X, Ting K, Wu BM, Gao C. Octacalcium phosphate microscopic superstructure self-assembly and evolution by dual-mediating combination. CrystEngComm 2009. [DOI: 10.1039/b823210p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|