1
|
Sousa CS, Monteiro A, Salgado AJ, Silva NA. Combinatorial therapies for spinal cord injury repair. Neural Regen Res 2025; 20:1293-1308. [PMID: 38845223 PMCID: PMC11624878 DOI: 10.4103/nrr.nrr-d-24-00061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/28/2024] [Accepted: 05/02/2024] [Indexed: 07/31/2024] Open
Abstract
Spinal cord injuries have profound detrimental effects on individuals, regardless of whether they are caused by trauma or non-traumatic events. The compromised regeneration of the spinal cord is primarily attributed to damaged neurons, inhibitory molecules, dysfunctional immune response, and glial scarring. Unfortunately, currently, there are no effective treatments available that can fully repair the spinal cord and improve functional outcomes. Nevertheless, numerous pre-clinical approaches have been studied for spinal cord injury recovery, including using biomaterials, cells, drugs, or technological-based strategies. Combinatorial treatments, which target various aspects of spinal cord injury pathophysiology, have been extensively tested in the last decade. These approaches aim to synergistically enhance repair processes by addressing various obstacles faced during spinal cord regeneration. Thus, this review intends to provide scientists and clinicians with an overview of pre-clinical combinatorial approaches that have been developed toward the solution of spinal cord regeneration as well as update the current knowledge about spinal cord injury pathophysiology with an emphasis on the current clinical management.
Collapse
Affiliation(s)
- Carla S. Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar – gualtar, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Campus de Gualtar – gualtar, Braga, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar – gualtar, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Campus de Gualtar – gualtar, Braga, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar – gualtar, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Campus de Gualtar – gualtar, Braga, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar – gualtar, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Campus de Gualtar – gualtar, Braga, Portugal
| |
Collapse
|
2
|
Dill-Macky AS, Lee EN, Wertheim JA, Koss KM. Glia in tissue engineering: From biomaterial tools to transplantation. Acta Biomater 2024; 190:24-49. [PMID: 39396630 DOI: 10.1016/j.actbio.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Glia are imperative in nearly every function of the nervous system, including neurotransmission, neuronal repair, development, immunity, and myelination. Recently, the reparative roles of glia in the central and peripheral nervous systems have been elucidated, suggesting a tremendous potential for these cells as novel treatments to central nervous system disorders. Glial cells often behave as 'double-edged swords' in neuroinflammation, ultimately deciding the life or death of resident cells. Compared to glia, neuronal cells have limited mobility, lack the ability to divide and self-renew, and are generally more delicate. Glia have been candidates for therapeutic use in many successful grafting studies, which have been largely focused on restoring myelin with Schwann cells, olfactory ensheathing glia, and oligodendrocytes with support from astrocytes. However, few therapeutics of this class have succeeded past clinical trials. Several tools and materials are being developed to understand and re-engineer these grafting concepts for greater success, such as extra cellular matrix-based scaffolds, bioactive peptides, biomolecular delivery systems, biomolecular discovery for neuroinflammatory mediation, composite microstructures such as artificial channels for cell trafficking, and graft enhanced electrical stimulation. Furthermore, advances in stem cell-derived cortical/cerebral organoid differentiation protocols have allowed for the generation of patient-derived glia comparable to those acquired from tissues requiring highly invasive procedures or are otherwise inaccessible. However, research on bioengineered tools that manipulate glial cells is nowhere near as comprehensive as that for systems of neurons and neural stem cells. This article explores the therapeutic potential of glia in transplantation with an emphasis on novel bioengineered tools for enhancement of their reparative properties. STATEMENT OF SIGNIFICANCE: Neural glia are responsible for a host of developmental, homeostatic, and reparative roles in the central nervous system but are often a major cause of tissue damage and cellular loss in insults and degenerative pathologies. Most glial grafts have employed Schwann cells for remyelination, but other glial with novel biomaterials have been employed, emphasizing their diverse functionality. Promising strategies have emerged, including neuroimmune mediation of glial scar tissues and facilitated migration and differentiation of stem cells for neural replacement. Herein, a comprehensive review of biomaterial tools for glia in transplantation is presented, highlighting Schwann cells, astrocytes, olfactory ensheating glia, oligodendrocytes, microglia, and ependymal cells.
Collapse
Affiliation(s)
- A S Dill-Macky
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - E N Lee
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - J A Wertheim
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - K M Koss
- Department of Neurobiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0625, United States; Sealy Institute for Drug Discovery, University of Texas Medical Branch, 105 11th Street Galveston, TX 77555-1110, United States.
| |
Collapse
|
3
|
Ralph PC, Choi SW, Baek MJ, Lee SJ. Regenerative medicine approaches for the treatment of spinal cord injuries: Progress and challenges. Acta Biomater 2024; 189:57-72. [PMID: 39424019 DOI: 10.1016/j.actbio.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Spinal cord injury (SCI) is a profound medical condition that significantly hampers motor function, imposing substantial limitations on daily activities and exerting a considerable financial burden on patients and their families. The constrained regenerative capacity of endogenous spinal cord tissue, exacerbated by the inflammatory response following the initial trauma, poses a formidable obstacle to effective therapy. Recent advancements in the field, stem cells, biomaterials, and molecular therapy, show promising outcomes. This review provides a comprehensive analysis of tissue engineering and regenerative medicine approaches for SCI treatment, including cell transplantation, tissue-engineered construct implantation, and other potential therapeutic strategies. Additionally, it sheds light on preclinical animal studies and recent clinical trials incorporating these modalities, providing a glimpse into the evolving landscape of SCI management. STATEMENT OF SIGNIFICANCE: The investigation into spinal cord injury (SCI) treatments focuses on reducing long-term impacts by targeting scar inhibition and enhancing regeneration through stem cells, with or without growth factors. Induced pluripotent stem cells (iPSCs) show promise for autologous use, with clinical trials confirming their safety. Challenges include low cell viability and difficulty in targeted differentiation. Biomaterial scaffolds hold potential for improving cell viability and integration, and extracellular vesicles (EVs) are emerging as a novel therapy. While EV research is in its early stages, stem cell trials demonstrate safety and potential recovery. Advancing tissue engineering approaches with biomaterial scaffolds is crucial for human trials.
Collapse
Affiliation(s)
- Patrick C Ralph
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States
| | - Sung-Woo Choi
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States; Department of Orthopedic Surgery, Soonchunhyang University Hospital Seoul, Seoul 04401, Republic of Korea
| | - Min Jung Baek
- Department of Obstetrics and Gynecology, CHA University Bundang Medical Center, Seongnam, Gyeonggi-do 13496, Republic of Korea
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, United States.
| |
Collapse
|
4
|
Jeon J, Park SH, Choi J, Han SM, Kim HW, Shim SR, Hyun JK. Association between neural stem/progenitor cells and biomaterials in spinal cord injury therapies: A systematic review and network meta-analysis. Acta Biomater 2024; 183:50-60. [PMID: 38871200 DOI: 10.1016/j.actbio.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Spinal cord injury (SCI) is associated with substantial healthcare challenges, frequently resulting in enduring sensory and motor deficits alongside various chronic complications. While advanced regenerative therapies have shown promise in preclinical research, their translation into clinical application has been limited. In response, this study utilized a comprehensive network meta-analysis to evaluate the effectiveness of neural stem/progenitor cell (NSPC) transplantation across animal models of SCI. We analyzed 363 outcomes from 55 distinct studies, categorizing the treatments into NSPCs alone (cell only), NSPCs with scaffolds (cell + scaffold), NSPCs with hydrogels (cell + hydrogel), standalone scaffolds (scaffold), standalone hydrogels (hydrogel), and control groups. Our analysis demonstrated significant enhancements in motor recovery, especially in gait function, within the NSPC treatment groups. Notably, the cell only group showed considerable improvements (standardized mean difference [SMD], 2.05; 95 % credible interval [CrI]: 1.08 to 3.10, p < 0.01), as did the cell + scaffold group (SMD, 3.73; 95 % CrI: 2.26 to 5.22, p < 0.001) and the cell + hydrogel group (SMD, 3.37; 95 % CrI: 1.02 to 5.78, p < 0.05) compared to controls. These therapeutic combinations not only reduced lesion cavity size but also enhanced neuronal regeneration, outperforming the cell only treatments. By integrating NSPCs with supportive biomaterials, our findings pave the way for refining these regenerative strategies to optimize their potential in clinical SCI treatment. Although there is no overall violation of consistency, the comparison of effect sizes between individual treatments should be interpreted in light of the inconsistency. STATEMENT OF SIGNIFICANCE: This study presents a comprehensive network meta-analysis exploring the efficacy of neural stem cell (NSC) transplantation, with and without biomaterials, in animal models of spinal cord injury (SCI). We demonstrate that NSCs, particularly when combined with biomaterials like scaffolds or hydrogels, significantly enhance motor and histological recovery post-SCI. These findings underscore the potential of NSC-based therapies, augmented with biomaterials, to advance SCI treatment, offering new insights into regenerative strategies that could significantly impact clinical practices.
Collapse
Affiliation(s)
- Jooik Jeon
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
| | | | - Jonghyuk Choi
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Sun Mi Han
- Medical record team, Konyang University Hospital, Daejeon 35365, Republic of Korea
| | - Hae-Won Kim
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
| | - Sung Ryul Shim
- Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea.
| | - Jung Keun Hyun
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Wiregene, Co. Ltd., Osong 28160, Republic of Korea; Department of Rehabilitation Medicine, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea.
| |
Collapse
|
5
|
Jagrit V, Koffler J, Dulin JN. Combinatorial strategies for cell transplantation in traumatic spinal cord injury. Front Neurosci 2024; 18:1349446. [PMID: 38510468 PMCID: PMC10951004 DOI: 10.3389/fnins.2024.1349446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Spinal cord injury (SCI) substantially reduces the quality of life of affected individuals. Recovery of function is therefore a primary concern of the patient population and a primary goal for therapeutic interventions. Currently, even with growing numbers of clinical trials, there are still no effective treatments that can improve neurological outcomes after SCI. A large body of work has demonstrated that transplantation of neural stem/progenitor cells (NSPCs) can promote regeneration of the injured spinal cord by providing new neurons that can integrate into injured host neural circuitry. Despite these promising findings, the degree of functional recovery observed after NSPC transplantation remains modest. It is evident that treatment of such a complex injury cannot be addressed with a single therapeutic approach. In this mini-review, we discuss combinatorial strategies that can be used along with NSPC transplantation to promote spinal cord regeneration. We begin by introducing bioengineering and neuromodulatory approaches, and highlight promising work using these strategies in integration with NSPCs transplantation. The future of NSPC transplantation will likely include a multi-factorial approach, combining stem cells with biomaterials and/or neuromodulation as a promising treatment for SCI.
Collapse
Affiliation(s)
- Vipin Jagrit
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Jacob Koffler
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
- Veterans Affairs Medical Center, San Diego, CA, United States
| | - Jennifer N. Dulin
- Department of Biology, Texas A&M University, College Station, TX, United States
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
6
|
Ando Y, Chang FC, James M, Zhou Y, Zhang M. Chitosan Scaffolds as Microcarriers for Dynamic Culture of Human Neural Stem Cells. Pharmaceutics 2023; 15:1957. [PMID: 37514142 PMCID: PMC10384976 DOI: 10.3390/pharmaceutics15071957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Human neural stem cells (hNSCs) possess remarkable potential for regenerative medicine in the treatment of presently incurable diseases. However, a key challenge lies in producing sufficient quantities of hNSCs, which is necessary for effective treatment. Dynamic culture systems are recognized as a powerful approach to producing large quantities of hNSCs required, where microcarriers play a critical role in supporting cell expansion. Nevertheless, the currently available microcarriers have limitations, including a lack of appropriate surface chemistry to promote cell adhesion, inadequate mechanical properties to protect cells from dynamic forces, and poor suitability for mass production. Here, we present the development of three-dimensional (3D) chitosan scaffolds as microcarriers for hNSC expansion under defined conditions in bioreactors. We demonstrate that chitosan scaffolds with a concentration of 4 wt% (4CS scaffolds) exhibit desirable microstructural characteristics and mechanical properties suited for hNSC expansion. Furthermore, they could also withstand degradation in dynamic conditions. The 4CS scaffold condition yields optimal metabolic activity, cell adhesion, and protein expression, enabling sustained hNSC expansion for up to three weeks in a dynamic culture. Our study introduces an effective microcarrier approach for prolonged expansion of hNSCs, which has the potential for mass production in a three-dimensional setting.
Collapse
Affiliation(s)
- Yoshiki Ando
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
- Materials Department, Medical R&D Center, Corporate R&D Group, KYOCERA Corporation, Yasu 520-2362, Shiga, Japan
| | - Fei-Chien Chang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Matthew James
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Yang Zhou
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
7
|
Siddiqui AM, Thiele F, Stewart RN, Rangnick S, Weiss GJ, Chen BK, Silvernail JL, Strickland T, Nesbitt JJ, Lim K, Schwarzbauer JE, Schwartz J, Yaszemski MJ, Windebank AJ, Madigan NN. Open-Spaced Ridged Hydrogel Scaffolds Containing TiO 2-Self-Assembled Monolayer of Phosphonates Promote Regeneration and Recovery Following Spinal Cord Injury. Int J Mol Sci 2023; 24:10250. [PMID: 37373396 DOI: 10.3390/ijms241210250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The spinal cord has a poor ability to regenerate after an injury, which may be due to cell loss, cyst formation, inflammation, and scarring. A promising approach to treating a spinal cord injury (SCI) is the use of biomaterials. We have developed a novel hydrogel scaffold fabricated from oligo(poly(ethylene glycol) fumarate) (OPF) as a 0.08 mm thick sheet containing polymer ridges and a cell-attractive surface on the other side. When the cells are cultured on OPF via chemical patterning, the cells attach, align, and deposit ECM along the direction of the pattern. Animals implanted with the rolled scaffold sheets had greater hindlimb recovery compared to that of the multichannel scaffold control, which is likely due to the greater number of axons growing across it. The immune cell number (microglia or hemopoietic cells: 50-120 cells/mm2 in all conditions), scarring (5-10% in all conditions), and ECM deposits (Laminin or Fibronectin: approximately 10-20% in all conditions) were equal in all conditions. Overall, the results suggest that the scaffold sheets promote axon outgrowth that can be guided across the scaffold, thereby promoting hindlimb recovery. This study provides a hydrogel scaffold construct that can be used in vitro for cell characterization or in vivo for future neuroprosthetics, devices, or cell and ECM delivery.
Collapse
Affiliation(s)
- Ahad M Siddiqui
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Frederic Thiele
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Program in Human Medicine, Paracelsus Medical Private University, 5020 Salzburg, Austria
| | - Rachel N Stewart
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Simone Rangnick
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Program in Human Medicine, Paracelsus Medical Private University, 5020 Salzburg, Austria
| | - Georgina J Weiss
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Program in Human Medicine, Paracelsus Medical Private University, 90419 Nuremberg, Germany
| | - Bingkun K Chen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Tammy Strickland
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, H91 TK33 Galway, Ireland
| | | | - Kelly Lim
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Jean E Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jeffrey Schwartz
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
8
|
Li Z, Qi Y, Li Z, Chen S, Geng H, Han J, Wang J, Wang Z, Lei S, Huang B, Li G, Li X, Wu S, Ni S. Nervous tract-bioinspired multi-nanoyarn model system regulating neural differentiation and its transcriptional architecture at single-cell resolution. Biomaterials 2023; 298:122146. [PMID: 37149989 DOI: 10.1016/j.biomaterials.2023.122146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Bioinspired by native nervous tracts, a spinal cord-mimicking model system that was composed of multiple nanofibrous yarns (NYs) ensheathed in a nanofibrous tube was constructed by an innovative electrospinning-based fabrication and integration strategy. The infilling NYs exhibited uniaxially aligned nanofibrous architecture that had a great resemblance to spatially-arranged native nervous tracts, while the outer nanofibrous tubes functioned as an artificial dura matter to provide a stable intraluminal microenvironment. The three-dimensional (3D) NYs were demonstrated to induce alignment, facilitate migration, promote neuronal differentiation, and even phenotypic maturation of seeded neural stem and progenitor cells (NSPCs), while inhibiting gliogenesis. Single-cell transcriptome analysis showed that the NSPC-loaded 3D NY model shared many similarities with native spinal cords, with a great increase in excitatory/inhibitory (EI) neuron ratio. Curcumin, as a model drug, was encapsulated into nanofibers of NYs to exert an antioxidant effect and enhanced axon regeneration. Overall, this study provides a new paradigm for the development of a next-generation in vitro neuronal model system via anatomically accurate nervous tract simulation and constructs a blueprint for the research on NSPC diversification in the biomimetic microenvironment.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Ye Qi
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Zheng Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Shaojuan Chen
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China
| | - Huimin Geng
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Jinming Han
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Jiahao Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Zhaoqing Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Sun Lei
- Department of Endocrinology, Qilu Hospital of Shandong University and Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, 250012, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China
| | - Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, China.
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, 250117, China.
| |
Collapse
|
9
|
Sousa JPM, Stratakis E, Mano J, Marques PAAP. Anisotropic 3D scaffolds for spinal cord guided repair: Current concepts. BIOMATERIALS ADVANCES 2023; 148:213353. [PMID: 36848743 DOI: 10.1016/j.bioadv.2023.213353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
A spinal cord injury (SCI) can be caused by unforeseen events such as a fall, a vehicle accident, a gunshot, or a malignant illness, which has a significant impact on the quality of life of the patient. Due to the limited regenerative potential of the central nervous system (CNS), SCI is one of the most daunting medical challenges of modern medicine. Great advances have been made in tissue engineering and regenerative medicine, which include the transition from two-dimensional (2D) to three-dimensional (3D) biomaterials. Combinatory treatments that use 3D scaffolds may significantly enhance the repair and regeneration of functional neural tissue. In an effort to mimic the chemical and physical properties of neural tissue, scientists are researching the development of the ideal scaffold made of synthetic and/or natural polymers. Moreover, in order to restore the architecture and function of neural networks, 3D scaffolds with anisotropic properties that replicate the native longitudinal orientation of spinal cord nerve fibres are being designed. In an effort to determine if scaffold anisotropy is a crucial property for neural tissue regeneration, this review focuses on the most current technological developments relevant to anisotropic scaffolds for SCI. Special consideration is given to the architectural characteristics of scaffolds containing axially oriented fibres, channels, and pores. By analysing neural cell behaviour in vitro and tissue integration and functional recovery in animal models of SCI, the therapeutic efficacy is evaluated for its successes and limitations.
Collapse
Affiliation(s)
- Joana P M Sousa
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; LASI - Intelligent Systems Associate Laboratory, Portugal; Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), Heraklion, Greece; CICECO - Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), Heraklion, Greece
| | - João Mano
- CICECO - Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Paula A A P Marques
- TEMA - Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal; LASI - Intelligent Systems Associate Laboratory, Portugal.
| |
Collapse
|
10
|
Suzuki H, Imajo Y, Funaba M, Ikeda H, Nishida N, Sakai T. Current Concepts of Biomaterial Scaffolds and Regenerative Therapy for Spinal Cord Injury. Int J Mol Sci 2023; 24:ijms24032528. [PMID: 36768846 PMCID: PMC9917245 DOI: 10.3390/ijms24032528] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 02/03/2023] Open
Abstract
Spinal cord injury (SCI) is a catastrophic condition associated with significant neurological deficit and social and financial burdens. It is currently being managed symptomatically, with no real therapeutic strategies available. In recent years, a number of innovative regenerative strategies have emerged and have been continuously investigated in preclinical research and clinical trials. In the near future, several more are expected to come down the translational pipeline. Among ongoing and completed trials are those reporting the use of biomaterial scaffolds. The advancements in biomaterial technology, combined with stem cell therapy or other regenerative therapy, can now accelerate the progress of promising novel therapeutic strategies from bench to bedside. Various types of approaches to regeneration therapy for SCI have been combined with the use of supportive biomaterial scaffolds as a drug and cell delivery system to facilitate favorable cell-material interactions and the supportive effect of neuroprotection. In this review, we summarize some of the most recent insights of preclinical and clinical studies using biomaterial scaffolds in regenerative therapy for SCI and summarized the biomaterial strategies for treatment with simplified results data. One hundred and sixty-eight articles were selected in the present review, in which we focused on biomaterial scaffolds. We conducted our search of articles using PubMed and Medline, a medical database. We used a combination of "Spinal cord injury" and ["Biomaterial", or "Scaffold"] as search terms and searched articles published up until 30 April 2022. Successful future therapies will require these biomaterial scaffolds and other synergistic approaches to address the persistent barriers to regeneration, including glial scarring, the loss of a structural framework, and biocompatibility. This database could serve as a benchmark to progress in future clinical trials for SCI using biomaterial scaffolds.
Collapse
|
11
|
Lee S, Nam H, Joo KM, Lee SH. Advances in Neural Stem Cell Therapy for Spinal Cord Injury: Safety, Efficacy, and Future Perspectives. Neurospine 2022; 19:946-960. [PMID: 36351442 PMCID: PMC9816608 DOI: 10.14245/ns.2244658.329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating central nervous system injury that leads to severe disabilities in motor and sensory functions, causing significant deterioration in patients' quality of life. Owing to the complexity of SCI pathophysiology, there has been no effective treatment for reversing neural tissue damage and recovering neurological functions. Several novel therapies targeting different stages of pathophysiological mechanisms of SCI have been developed. Among these, treatments using stem cells have great potential for the regeneration of damaged neural tissues. In this review, we have summarized recent preclinical and clinical studies focusing on neural stem cells (NSCs). NSCs are multipotent cells with specific differentiation capabilities for neural lineage. Several preclinical studies have demonstrated the regenerative effects of transplanted NSCs in SCI animal models through both paracrine effects and direct neuronal differentiation, restoring synaptic connectivity and neural networks. Based on the positive results of several preclinical studies, phase I and II clinical trials using NSCs have been performed. Despite several hurdles and issues that need to be addressed in the clinical use of NSCs in patients with SCI, gradual progress in the technical development and therapeutic efficacy of NSCs treatments has enhanced the prospects for cell-based treatments in SCI.
Collapse
Affiliation(s)
- Sungjoon Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea,Stem Cell and Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea,Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Kyeung-Min Joo
- Stem Cell and Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea,Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea,Corresponding Author Kyeung-Min Joo Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Korea
| | - Sun-Ho Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea,Stem Cell and Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea,Co-corresponding Author Sun-Ho Lee Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| |
Collapse
|
12
|
Yousefifard M, Askarian-Amiri S, Nasseri Maleki S, Rafiei Alavi SN, Madani Neishaboori A, Haghani L, Vaccaro AR, Harrop JS, Lu Y, Rahimi-Movaghar V, Hosseini M. Combined application of neural stem/progenitor cells and scaffolds on locomotion recovery following spinal cord injury in rodents: a systematic review and meta-analysis. Neurosurg Rev 2022; 45:3469-3488. [DOI: 10.1007/s10143-022-01859-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
|
13
|
Zhang SY, Zhao J, Ni JJ, Li H, Quan ZZ, Qing H. Application and prospects of high-throughput screening for in vitro neurogenesis. World J Stem Cells 2022; 14:393-419. [PMID: 35949394 PMCID: PMC9244953 DOI: 10.4252/wjsc.v14.i6.393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/07/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Over the past few decades, high-throughput screening (HTS) has made great contributions to new drug discovery. HTS technology is equipped with higher throughput, minimized platforms, more automated and computerized operating systems, more efficient and sensitive detection devices, and rapid data processing systems. At the same time, in vitro neurogenesis is gradually becoming important in establishing models to investigate the mechanisms of neural disease or developmental processes. However, challenges remain in generating more mature and functional neurons with specific subtypes and in establishing robust and standardized three-dimensional (3D) in vitro models with neural cells cultured in 3D matrices or organoids representing specific brain regions. Here, we review the applications of HTS technologies on in vitro neurogenesis, especially aiming at identifying the essential genes, chemical small molecules and adaptive microenvironments that hold great prospects for generating functional neurons or more reproductive and homogeneous 3D organoids. We also discuss the developmental tendency of HTS technology, e.g., so-called next-generation screening, which utilizes 3D organoid-based screening combined with microfluidic devices to narrow the gap between in vitro models and in vivo situations both physiologically and pathologically.
Collapse
Affiliation(s)
- Shu-Yuan Zhang
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Juan Zhao
- Aerospace Medical Center, Aerospace Center Hospital, Beijing 100049, China
| | - Jun-Jun Ni
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hui Li
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhen-Zhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
14
|
Liu Q, Zhou S, Wang X, Gu C, Guo Q, Li X, Zhang C, Zhang N, Zhang L, Huang F. Apelin alleviated neuroinflammation and promoted endogenous neural stem cell proliferation and differentiation after spinal cord injury in rats. J Neuroinflammation 2022; 19:160. [PMID: 35725619 PMCID: PMC9208139 DOI: 10.1186/s12974-022-02518-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/05/2022] [Indexed: 12/14/2022] Open
Abstract
Background Spinal cord injury (SCI) causes devastating neurological damage, including secondary injuries dominated by neuroinflammation. The role of Apelin, an endogenous ligand that binds the G protein-coupled receptor angiotensin-like receptor 1, in SCI remains unclear. Thus, our aim was to investigate the effects of Apelin in inflammatory responses and activation of endogenous neural stem cells (NSCs) after SCI. Methods Apelin expression was detected in normal and injured rats, and roles of Apelin in primary NSCs were examined. In addition, we used induced pluripotent stem cells (iPSCs) as a carrier to prolong the effective duration of Apelin and evaluate its effects in a rat model of SCI. Results Co-immunofluorescence staining suggested that Apelin was expressed in both astrocytes, neurons and microglia. Following SCI, Apelin expression decreased from 1 to 14 d and re-upregulated at 28 d. In vitro, Apelin promoted NSCs proliferation and differentiation into neurons. In vivo, lentiviral-transfected iPSCs were used as a carrier to prolong the effective duration of Apelin. Transplantation of transfected iPSCs in situ immediately after SCI reduced polarization of M1 microglia and A1 astrocytes, facilitated recovery of motor function, and promoted the proliferation and differentiation of endogenous NSCs in rats. Conclusion Apelin alleviated neuroinflammation and promoted the proliferation and differentiation of endogenous NSCs after SCI, suggesting that it might be a promising target for treatment of SCI.
Collapse
Affiliation(s)
- Qing Liu
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Shuai Zhou
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Xiao Wang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Chengxu Gu
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Qixuan Guo
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Xikai Li
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Chunlei Zhang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Naili Zhang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China
| | - Luping Zhang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China.
| | - Fei Huang
- Institute of Neurobiology, Binzhou Medical University, 346 Guanhai Road, Laishan, 264003, Shandong, China. .,School of Health and Life Sciences, University of Health and Rehabilitation Sciences, 17 Shandong Road, Qingdao, 266071, China.
| |
Collapse
|
15
|
Siddiqui AM, Islam R, Cuellar CA, Silvernail JL, Knudsen B, Curley DE, Strickland T, Manske E, Suwan PT, Latypov T, Akhmetov N, Zhang S, Summer P, Nesbitt JJ, Chen BK, Grahn PJ, Madigan NN, Yaszemski MJ, Windebank AJ, Lavrov IA. Newly regenerated axons via scaffolds promote sub-lesional reorganization and motor recovery with epidural electrical stimulation. NPJ Regen Med 2021; 6:66. [PMID: 34671050 PMCID: PMC8528837 DOI: 10.1038/s41536-021-00176-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023] Open
Abstract
Here, we report the effect of newly regenerated axons via scaffolds on reorganization of spinal circuitry and restoration of motor functions with epidural electrical stimulation (EES). Motor recovery was evaluated for 7 weeks after spinal transection and following implantation with scaffolds seeded with neurotrophin producing Schwann cell and with rapamycin microspheres. Combined treatment with scaffolds and EES-enabled stepping led to functional improvement compared to groups with scaffold or EES, although, the number of axons across scaffolds was not different between groups. Re-transection through the scaffold at week 6 reduced EES-enabled stepping, still demonstrating better performance compared to the other groups. Greater synaptic reorganization in the presence of regenerated axons was found in group with combined therapy. These findings suggest that newly regenerated axons through cell-containing scaffolds with EES-enabled motor training reorganize the sub-lesional circuitry improving motor recovery, demonstrating that neuroregenerative and neuromodulatory therapies cumulatively enhancing motor function after complete SCI.
Collapse
Affiliation(s)
| | - Riazul Islam
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Carlos A Cuellar
- School of Sport Sciences, Universidad Anáhuac México, Campus Norte, Huixquilucan, State of Mexico, Mexico
| | | | - Bruce Knudsen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Dallece E Curley
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
| | | | - Emilee Manske
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Neuroscience, Scripps College, Claremont, CA, USA
| | - Parita T Suwan
- Paracelsus Medical Private University, Salzburg, Austria
| | - Timur Latypov
- Division of Brain, Imaging, and Behaviour - Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nafis Akhmetov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Shuya Zhang
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Priska Summer
- Paracelsus Medical Private University, Salzburg, Austria
| | | | - Bingkun K Chen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Peter J Grahn
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Igor A Lavrov
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
16
|
Siddiqui AM, Oswald D, Papamichalopoulos S, Kelly D, Summer P, Polzin M, Hakim J, Schmeichel AM, Chen B, Yaszemski MJ, Windebank AJ, Madigan NN. Defining Spatial Relationships Between Spinal Cord Axons and Blood Vessels in Hydrogel Scaffolds. Tissue Eng Part A 2021; 27:648-664. [PMID: 33764164 DOI: 10.1089/ten.tea.2020.0316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Positively charged oligo(poly(ethylene glycol) fumarate) (OPF+) hydrogel scaffolds, implanted into a complete transection spinal cord injury (SCI), facilitate a permissive regenerative environment and provide a platform for controlled observation of repair mechanisms. Axonal regeneration after SCI is critically dependent upon nutrients and oxygen from a newly formed blood supply. Our objective was to investigate fundamental characteristics of revascularization in association with the ingrowth of axons into hydrogel scaffolds, thereby defining spatial relationships between axons and the neovasculature. A novel combination of stereologic estimates and precision image analysis techniques quantitate neurovascular regeneration in rats. Multichannel hydrogel scaffolds containing Matrigel-only (MG), Schwann cells (SCs), or SCs with rapamycin-eluting poly(lactic co-glycolic acid) microspheres (RAPA) were implanted for 6 weeks following complete spinal cord transection. Image analysis of 72 scaffold channels identified a total of 2494 myelinated and 4173 unmyelinated axons at 10 μm circumferential intervals centered around 708 individual blood vessel profiles. Blood vessel number, density, volume, diameter, intervessel distances, total vessel surface and cross-sectional areas, and radial diffusion distances were compared. Axon number and density, blood vessel surface area, and vessel cross-sectional areas in the SC group exceeded that in the MG and RAPA groups. Individual axons were concentrated within a concentric radius of 200-250 μm from blood vessel walls, in Gaussian distributions, which identified a peak axonal number (Mean Peak Amplitude) corresponding to defined distances (Mean Peak Distance) from each vessel, the highest concentrations of axons were relatively excluded from a 25-30 μm zone immediately adjacent to the vessel, and from vessel distances >150 μm. Higher axonal densities correlated with smaller vessel cross-sectional areas. A statistical spatial algorithm was used to generate cumulative distribution F- and G-functions of axonal distribution in the reference channel space. Axons located around blood vessels were definitively organized as clusters and were not randomly distributed. A scoring system stratifies 5 direct measurements and 12 derivative parameters influencing regeneration outcomes. By providing methods to quantify the axonal-vessel relationships, these results may refine spinal cord tissue engineering strategies to optimize the regeneration of complete neurovascular bundles in their relevant spatial relationships after SCI. Impact statement Vascular disruption and impaired neovascularization contribute critically to the poor regenerative capacity of the spinal cord after injury. In this study, hydrogel scaffolds provide a detailed model system to investigate the regeneration of spinal cord axons as they directly associate with individual blood vessels, using novel methods to define their spatial relationships and the physiologic implications of that organization. These results refine future tissue engineering strategies for spinal cord repair to optimize the re-development of complete neurovascular bundles in their relevant spatial architectures.
Collapse
Affiliation(s)
- Ahad M Siddiqui
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States
| | - David Oswald
- Program in Human Medicine, Paracelsus Medical University, Salzburg, Austria
| | | | - Domnhall Kelly
- Regenerative Medicine Institute (REMEDI), National University of Ireland Galway, Galway, Ireland
| | - Priska Summer
- Program in Human Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Michael Polzin
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States
| | - Jeffrey Hakim
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States
| | - Ann M Schmeichel
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States
| | - Bingkun Chen
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States
| | - Michael J Yaszemski
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, Unites States
| | | | - Nicolas N Madigan
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
17
|
Siddiqui AM, Brunner R, Harris GM, Miller AL, Waletzki BE, Schmeichel AM, Schwarzbauer JE, Schwartz J, Yaszemski MJ, Windebank AJ, Madigan NN. Promoting Neuronal Outgrowth Using Ridged Scaffolds Coated with Extracellular Matrix Proteins. Biomedicines 2021; 9:biomedicines9050479. [PMID: 33925613 PMCID: PMC8146557 DOI: 10.3390/biomedicines9050479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/25/2022] Open
Abstract
Spinal cord injury (SCI) results in cell death, demyelination, and axonal loss. The spinal cord has a limited ability to regenerate, and current clinical therapies for SCI are not effective in helping promote neurologic recovery. We have developed a novel scaffold biomaterial that is fabricated from the biodegradable hydrogel oligo(poly(ethylene glycol)fumarate) (OPF). We have previously shown that positively charged OPF scaffolds (OPF+) in an open spaced, multichannel design can be loaded with Schwann cells to support axonal generation and functional recovery following SCI. We have now developed a hybrid OPF+ biomaterial that increases the surface area available for cell attachment and that contains an aligned microarchitecture and extracellular matrix (ECM) proteins to better support axonal regeneration. OPF+ was fabricated as 0.08 mm thick sheets containing 100 μm high polymer ridges that self-assemble into a spiral shape when hydrated. Laminin, fibronectin, or collagen I coating promoted neuron attachment and axonal outgrowth on the scaffold surface. In addition, the ridges aligned axons in a longitudinal bipolar orientation. Decreasing the space between the ridges increased the number of cells and neurites aligned in the direction of the ridge. Schwann cells seeded on laminin coated OPF+ sheets aligned along the ridges over a 6-day period and could myelinate dorsal root ganglion neurons over 4 weeks. This novel scaffold design, with closer spaced ridges and Schwann cells, is a novel biomaterial construct to promote regeneration after SCI.
Collapse
Affiliation(s)
- Ahad M. Siddiqui
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; (A.M.S.); (A.M.S.); (A.J.W.)
| | - Rosa Brunner
- Program in Human Medicine, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria;
| | - Gregory M. Harris
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA; (G.M.H.); (J.E.S.)
| | - Alan Lee Miller
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (A.L.M.II); (B.E.W.)
| | - Brian E. Waletzki
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (A.L.M.II); (B.E.W.)
| | - Ann M. Schmeichel
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; (A.M.S.); (A.M.S.); (A.J.W.)
| | - Jean E. Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA; (G.M.H.); (J.E.S.)
| | - Jeffrey Schwartz
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA; (J.S.); (M.J.Y.)
| | - Michael J. Yaszemski
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA; (J.S.); (M.J.Y.)
| | - Anthony J. Windebank
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; (A.M.S.); (A.M.S.); (A.J.W.)
| | - Nicolas N. Madigan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; (A.M.S.); (A.M.S.); (A.J.W.)
- Correspondence:
| |
Collapse
|
18
|
Neurospheres: a potential in vitro model for the study of central nervous system disorders. Mol Biol Rep 2021; 48:3649-3663. [PMID: 33765252 DOI: 10.1007/s11033-021-06301-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/18/2021] [Indexed: 02/08/2023]
Abstract
Neurogenesis was believed to end after the period of embryonic development. However, the possibility of obtaining an expressive number of cells with functional neuronal characteristics implied a great advance in experimental research. New techniques have emerged to demonstrate that the birth of new neurons continues to occur in the adult brain. Two main rich sources of these cells are the subventricular zone (SVZ) and the subgranular zone of the hippocampal dentate gyrus (SGZ) where adult neural stem cells (aNSCs) have the ability to proliferate and differentiate into mature cell lines. The cultivation of neurospheres is a method to isolate, maintain and expand neural stem cells (NSCs) and has been used extensively by several research groups to analyze the biological properties of NSCs and their potential use in injured brains from animal models. Throughout this review, we highlight the areas where this type of cell culture has been applied and the advantages and limitations of using this model in experimental studies for the neurological clinical scenario.
Collapse
|
19
|
Ciciriello AJ, Smith DR, Munsell MK, Boyd SJ, Shea LD, Dumont CM. Acute Implantation of Aligned Hydrogel Tubes Supports Delayed Spinal Progenitor Implantation. ACS Biomater Sci Eng 2020; 6:5771-5784. [DOI: 10.1021/acsbiomaterials.0c00844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Andrew J. Ciciriello
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, Florida 33156, United States
- Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, 1951 NW Seventh Avenue Suite 475, Miami, Florida 33136, United States
| | - Dominique R. Smith
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109, United States
| | - Mary K. Munsell
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109, United States
| | - Sydney J. Boyd
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, Florida 33156, United States
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109, United States
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, Michigan 48109, United States
| | - Courtney M. Dumont
- Department of Biomedical Engineering, University of Miami, 1251 Memorial Drive, Coral Gables, Florida 33156, United States
- Biomedical Nanotechnology Institute at the University of Miami (BioNIUM), University of Miami, 1951 NW Seventh Avenue Suite 475, Miami, Florida 33136, United States
| |
Collapse
|
20
|
Preparation of Bioscaffolds Delivering Stem Cells for Neural Regeneration. Methods Mol Biol 2020. [PMID: 32474867 DOI: 10.1007/978-1-0716-0655-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Bioscaffolds have been proven for their feasibility in neural repair. Neural conduits have been investigated in the repair of wounded peripheral nerve and spinal cord. These conduits support axonal growth by providing structural guidance. Induced pluripotent stem cells (iPSCs) that are induced from a patient's own somatic cells have demonstrated significant neural cell differentiation capability and can circumvent immune system rejection. The combinatorial implantation of neural conduits and iPSCs may significantly enhance neural regeneration. The repair of nerves and spinal cords using biodegradable multichannel collagen conduits has been reported in our previous studies. In this review, we describe a method to fabricate a collagen neural conduit containing iPSC-derived neural cells.
Collapse
|
21
|
Huang L, Wang Y, Zhu M, Wan X, Zhang H, Lei T, Blesch A, Liu S. Anisotropic Alginate Hydrogels Promote Axonal Growth across Chronic Spinal Cord Transections after Scar Removal. ACS Biomater Sci Eng 2020; 6:2274-2286. [PMID: 33455324 DOI: 10.1021/acsbiomaterials.9b01802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have previously reported that cell-seeded alginate hydrogels (AHs) with anisotropic capillaries can restore the continuity of the spinal cord and support axonal regeneration in a rat model of acute partial spinal cord transection. Whether similar effects can be found after transplantation into sites of complete chronic spinal cord transections without additional growth-promoting stimuli has not been investigated. We therefore implanted AHs into the cavity of a chronic thoracic transection following scar resection (SR) 4 weeks postinjury and examined electrophysiological and functional recovery as well as regeneration of descending and ascending projections within and beyond the AH scaffold up to 3 months after engraftment. Our results indicate that both electrophysiological conductivity and locomotor function are significantly improved after AH engraftment. SR transiently impairs locomotor function immediately after surgery but does not affect long-term outcomes. Histological analysis shows numerous host cells migrating into the scaffold channels and a reduction of fibroglial scaring around the lesion by AH grafts. In contrast to corticospinal axons, raphaespinal and propriospinal descending axons and ascending sensory axons regenerate throughout the scaffolds and extend into the distal host parenchyma. These results further support the pro-regenerative properties of AHs and their therapeutic potential for chronic SCI in combination with other strategies to improve functional outcomes after spinal cord injury.
Collapse
Affiliation(s)
- Lulu Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Yu Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Mingxin Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Xueyan Wan
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| | - Armin Blesch
- Department of Neurosciences, Center for Neural Repair, University of California, San Diego, Biomedical Research Facility 2, Room 2131, 9500 Gilman Drive, La Jolla, California 92093-0626, United States
| | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
22
|
Li J, Zhang Y, Yang Z, Zhang J, Lin R, Luo D. Salidroside promotes sciatic nerve regeneration following combined application epimysium conduit and Schwann cells in rats. Exp Biol Med (Maywood) 2020; 245:522-531. [PMID: 32053008 DOI: 10.1177/1535370220906541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jiaqi Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Yongguang Zhang
- Department of Orthopaedics, 900 Hospital of the Joint Logistics Support Force/Xiamen University Dongfang Hospital, and Fuzong Clinical Medicine College of Fujian Medical University, Fuzhou 350025, China
| | - Zhimin Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Jingxian Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Ren Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou 350122, China
| | - Daoshu Luo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.,Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fuzhou 350122, China
| |
Collapse
|
23
|
Chen SY, Lin MC, Tsai JS, He PL, Luo WT, Chiu IM, Herschman HR, Li HJ. Exosomal 2',3'-CNP from mesenchymal stem cells promotes hippocampus CA1 neurogenesis/neuritogenesis and contributes to rescue of cognition/learning deficiencies of damaged brain. Stem Cells Transl Med 2020; 9:499-517. [PMID: 31943851 PMCID: PMC7103625 DOI: 10.1002/sctm.19-0174] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/25/2019] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been used in clinical studies to treat neurological diseases and damage. However, implanted MSCs do not achieve their regenerative effects by differentiating into and replacing neural cells. Instead, MSC secretome components mediate the regenerative effects of MSCs. MSC-derived extracellular vesicles (EVs)/exosomes carry cargo responsible for rescuing brain damage. We previously showed that EP4 antagonist-induced MSC EVs/exosomes have enhanced regenerative potential to rescue hippocampal damage, compared with EVs/exosomes from untreated MSCs. Here we show that EP4 antagonist-induced MSC EVs/exosomes promote neurosphere formation in vitro and increase neurogenesis and neuritogenesis in damaged hippocampi; basal MSC EVs/exosomes do not contribute to these regenerative effects. 2',3'-Cyclic nucleotide 3'-phosphodiesterase (CNP) levels in EP4 antagonist-induced MSC EVs/exosomes are 20-fold higher than CNP levels in basal MSC EVs/exosomes. Decreasing elevated exosomal CNP levels in EP4 antagonist-induced MSC EVs/exosomes reduced the efficacy of these EVs/exosomes in promoting β3-tubulin polymerization and in converting toxic 2',3'-cAMP into neuroprotective adenosine. CNP-depleted EP4 antagonist-induced MSC EVs/exosomes lost the ability to promote neurogenesis and neuritogenesis in damaged hippocampi. Systemic administration of EV/exosomes from EP4 -antagonist derived MSC EVs/exosomes repaired cognition, learning, and memory deficiencies in mice caused by hippocampal damage. In contrast, CNP-depleted EP4 antagonist-induced MSC EVs/exosomes failed to repair this damage. Exosomal CNP contributes to the ability of EP4 antagonist-elicited MSC EVs/exosomes to promote neurogenesis and neuritogenesis in damaged hippocampi and recovery of cognition, memory, and learning. This experimental approach should be generally applicable to identifying the role of EV/exosomal components in eliciting a variety of biological responses.
Collapse
Affiliation(s)
- Shih-Yin Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Meng-Chieh Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Jia-Shiuan Tsai
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Pei-Lin He
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Wen-Ting Luo
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ing-Ming Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Harvey R Herschman
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California.,Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California
| | - Hua-Jung Li
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
24
|
Farrag M, Abri S, Leipzig ND. pH-dependent RNA isolation from cells encapsulated in chitosan-based biomaterials. Int J Biol Macromol 2020; 146:422-430. [PMID: 31904458 DOI: 10.1016/j.ijbiomac.2019.12.263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/20/2019] [Accepted: 12/30/2019] [Indexed: 02/05/2023]
Abstract
Chitosan has emerged as a useful biomaterial employed in tissue engineering and drug delivery applications due to its tunable and interesting properties. However, chitosan is protonated at biological pH and thus carries positive charges, which renders chitosan incompatible with conventional methods of RNA extraction. RNA extraction is an important step in investigating cell responses and behavior through studying their gene expression transcriptional profiles. While some researchers have tried different techniques to improve the yield and purity of RNA extracted from cells encapsulated in chitosan-based biomaterials, no single study has investigated the effects of manipulating pH of the homogenate during RNA extraction on the yield and quality of total RNA. This study confirms the release and binding of RNA from chitosan to be pH dependent while analyzing the impact of pH changes during the tissue disruption and homogenization step of extraction on the resulting yield and quality of isolated RNA. This concept was applied to three commonly used methods of RNA extraction, using adult neural stem/progenitor cells (aNSPCs) encapsulated within methacrylamide chitosan (MAC) as a model chitosan-based bioscaffold. High pH conditions resulted in high yields with good quality using both TRIzol and CTAB. pH of the homogenate did not affect RNeasy spin columns, which worked best in neutral conditions with good quality, however, the overall yield was low. Results in total show that pH affected RNA interaction with a chitosan-based bioscaffold, and thus altered the concentration, purity, and integrity of isolated RNA, dependent on the method used.
Collapse
Affiliation(s)
- Mahmoud Farrag
- Integrated Bioscience Program, the University of Akron, Akron, OH, USA.
| | - Shahrzad Abri
- Department of Chemical, Biomolecular, and Corrosion Engineering, the University of Akron, Akron, OH, USA
| | - Nic D Leipzig
- Integrated Bioscience Program, the University of Akron, Akron, OH, USA; Department of Chemical, Biomolecular, and Corrosion Engineering, the University of Akron, Akron, OH, USA.
| |
Collapse
|
25
|
Doostmohammadi M, Forootanfar H, Ramakrishna S. Regenerative medicine and drug delivery: Progress via electrospun biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110521. [PMID: 32228899 DOI: 10.1016/j.msec.2019.110521] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
Worldwide research on electrospinning enabled it as a versatile technique for producing nanofibers with specified physio-chemical characteristics suitable for diverse biomedical applications. In the case of tissue engineering and regenerative medicine, the nanofiber scaffolds' characteristics are custom designed based on the cells and tissues specific needs. This fabrication technique is also innovated for the production of nanofibers with special micro-structure and secondary structure characteristics such as porous fibers, hollow structure, and core- sheath structure. This review attempts to critically and succinctly capture the vast number of developments reported in the literature over the past two decades. We then discuss their applications as scaffolds for induction of cells growth and differentiation or as architecture for being used as graft for tissue engineering. The special nanofibers designed for improving regeneration of several tissues including heart, bone, central nerve system, spinal cord, skin and ocular tissue are introduced. We also discuss the potential of the electrospinning in drug delivery applications, which is a critical factor for cell culture, tissue formation and wound healing applications.
Collapse
Affiliation(s)
- Mohsen Doostmohammadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran; Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore.
| |
Collapse
|
26
|
Ashammakhi N, Kim HJ, Ehsanipour A, Bierman RD, Kaarela O, Xue C, Khademhosseini A, Seidlits SK. Regenerative Therapies for Spinal Cord Injury. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:471-491. [PMID: 31452463 DOI: 10.1089/ten.teb.2019.0182] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Spinal cord injury (SCI) is a serious problem that primarily affects younger and middle-aged adults at its onset. To date, no effective regenerative treatment has been developed. Over the last decade, researchers have made significant advances in stem cell technology, biomaterials, nanotechnology, and immune engineering, which may be applied as regenerative therapies for the spinal cord. Although the results of clinical trials using specific cell-based therapies have proven safe, their efficacy has not yet been demonstrated. The pathophysiology of SCI is multifaceted, complex and yet to be fully understood. Thus, combinatorial therapies that simultaneously leverage multiple approaches will likely be required to achieve satisfactory outcomes. Although combinations of biomaterials with pharmacologic agents or cells have been explored, few studies have combined these modalities in a systematic way. For most strategies, clinical translation will be facilitated by the use of minimally invasive therapies, which are the focus of this review. In addition, this review discusses previously explored therapies designed to promote neuroregeneration and neuroprotection after SCI, while highlighting present challenges and future directions. Impact Statement To date there are no effective treatments that can regenerate the spinal cord after injury. Although there have been significant preclinical advances in bioengineering and regenerative medicine over the last decade, these have not translated into effective clinical therapies for spinal cord injury. This review focuses on minimally invasive therapies, providing extensive background as well as updates on recent technological developments and current clinical trials. This review is a comprehensive resource for researchers working towards regenerative therapies for spinal cord injury that will help guide future innovation.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland.,Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | - Han-Jun Kim
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | | | | | - Outi Kaarela
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland
| | - Chengbin Xue
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, P.R. China
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.,Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Chemical and Biological Engineering, University of California, Los Angeles, California
| | - Stephanie K Seidlits
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.,Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, California.,Brain Research Institute, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
27
|
Bonaventura G, Iemmolo R, La Cognata V, Zimbone M, La Via F, Fragalà ME, Barcellona ML, Pellitteri R, Cavallaro S. Biocompatibility between Silicon or Silicon Carbide surface and Neural Stem Cells. Sci Rep 2019; 9:11540. [PMID: 31395932 PMCID: PMC6687690 DOI: 10.1038/s41598-019-48041-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/05/2019] [Indexed: 01/09/2023] Open
Abstract
Silicon has been widely used as a material for microelectronic for more than 60 years, attracting considerable scientific interest as a promising tool for the manufacture of implantable medical devices in the context of neurodegenerative diseases. However, the use of such material involves responsibilities due to its toxicity, and researchers are pushing towards the generation of new classes of composite semiconductors, including the Silicon Carbide (3C-SiC). In the present work, we tested the biocompatibility of Silicon and 3C-SiC using an in vitro model of human neuronal stem cells derived from dental pulp (DP-NSCs) and mouse Olfactory Ensheathing Cells (OECs), a particular glial cell type showing stem cell characteristics. Specifically, we investigated the effects of 3C-SiC on neural cell morphology, viability and mitochondrial membrane potential. Data showed that both DP-NSCs and OECs, cultured on 3C-SiC, did not undergo consistent oxidative stress events and did not exhibit morphological modifications or adverse reactions in mitochondrial membrane potential. Our findings highlight the possibility to use Neural Stem Cells plated on 3C-SiC substrate as clinical tool for lesioned neural areas, paving the way for future perspectives in novel cell therapies for neuro-degenerated patients.
Collapse
Affiliation(s)
- Gabriele Bonaventura
- Institute for Biomedical Research and Innovation, Italian National Research Council, Catania, Italy
| | - Rosario Iemmolo
- Institute for Biomedical Research and Innovation, Italian National Research Council, Catania, Italy
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation, Italian National Research Council, Catania, Italy
| | - Massimo Zimbone
- Institute for Microelectronics and Microsystems, Italian National Research Council, Catania, Italy
| | - Francesco La Via
- Institute for Microelectronics and Microsystems, Italian National Research Council, Catania, Italy
| | | | | | - Rosalia Pellitteri
- Institute for Biomedical Research and Innovation, Italian National Research Council, Catania, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, Italian National Research Council, Catania, Italy.
| |
Collapse
|
28
|
Sharifi F, Patel BB, McNamara MC, Meis PJ, Roghair MN, Lu M, Montazami R, Sakaguchi DS, Hashemi NN. Photo-Cross-Linked Poly(ethylene glycol) Diacrylate Hydrogels: Spherical Microparticles to Bow Tie-Shaped Microfibers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18797-18807. [PMID: 31042026 DOI: 10.1021/acsami.9b05555] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bow tie-shaped fibers and spherical microparticles with controlled dimensions and shapes were fabricated with poly(ethylene glycol) diacrylate hydrogel utilizing hydrodynamic shear principles and a photopolymerization strategy under a microfluidic regime. Decreasing the flow rate ratio between the core and sheath fluids from 25 (50:2) to 1.25 (100:80) resulted in increasing the particles size and reducing the production rate by 357 and 86%, respectively. The width of the fibers increased by a factor of 1.4 when the flow rate ratio was reduced from 2.5 to 1 due to the decrease of the shear force at the fluid/fluid interface. The stress at break and Young's modulus of the fibers were enhanced by 32 and 63%, respectively, when the sheath-to-core flow rate ratio decreased from 100:40 to 100:80. The fiber fabrication was simulated using the finite element method, and the numerical and experimental results were in agreement. Adult hippocampal stem/progenitor cells and bone-marrow-derived multipotent mesenchymal stromal cells were seeded onto the fibrous scaffolds in vitro, and cellular adhesion, proliferation, and differentiation were investigated. Microgrooves on the fibers' surface were shown to positively affect cell adhesion when compared to flat fibers and planar controls.
Collapse
|
29
|
Zhang Q, Shi B, Ding J, Yan L, Thawani JP, Fu C, Chen X. Polymer scaffolds facilitate spinal cord injury repair. Acta Biomater 2019; 88:57-77. [PMID: 30710714 DOI: 10.1016/j.actbio.2019.01.056] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/10/2019] [Accepted: 01/28/2019] [Indexed: 12/23/2022]
Abstract
During the past decades, improving patient neurological recovery following spinal cord injury (SCI) has remained a challenge. An effective treatment for SCI would not only reduce fractured elements and isolate developing local glial scars to promote axonal regeneration but also ameliorate secondary effects, including inflammation, apoptosis, and necrosis. Three-dimensional (3D) scaffolds provide a platform in which these mechanisms can be addressed in a controlled manner. Polymer scaffolds with favorable biocompatibility and appropriate mechanical properties have been engineered to minimize cicatrization, customize drug release, and ensure an unobstructed space to promote cell growth and differentiation. These properties make polymer scaffolds an important potential therapeutic platform. This review highlights the recent developments in polymer scaffolds for SCI engineering. STATEMENT OF SIGNIFICANCE: How to improve the efficacy of neurological recovery after spinal cord injury (SCI) is always a challenge. Tissue engineering provides a promising strategy for SCI repair, and scaffolds are one of the most important elements in addition to cells and inducing factors. The review highlights recent development and future prospects in polymer scaffolds for SCI therapy. The review will guide future studies by outlining the requirements and characteristics of polymer scaffold technologies employed against SCI. Additionally, the peculiar properties of polymer materials used in the therapeutic process of SCI also have guiding significance to other tissue engineering approaches.
Collapse
|
30
|
Hakim JS, Rodysill BR, Chen BK, Schmeichel AM, Yaszemski MJ, Windebank AJ, Madigan NN. Combinatorial tissue engineering partially restores function after spinal cord injury. J Tissue Eng Regen Med 2019; 13:857-873. [PMID: 30808065 DOI: 10.1002/term.2840] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 01/23/2019] [Accepted: 02/21/2019] [Indexed: 12/13/2022]
Abstract
Hydrogel scaffolds provide a beneficial microenvironment in transected rat spinal cord. A combinatorial biomaterials-based strategy provided a microenvironment that facilitated regeneration while reducing foreign body reaction to the three-dimensional spinal cord construct. We used poly lactic-co-glycolic acid microspheres to provide sustained release of rapamycin from Schwann cell (SC)-loaded, positively charged oligo-polyethylene glycol fumarate scaffolds. The biological activity and dose-release characteristics of rapamycin from microspheres alone and from microspheres embedded in the scaffold were determined in vitro. Three dose formulations of rapamycin were compared with controls in 53 rats. We observed a dose-dependent reduction in the fibrotic reaction to the scaffold and improved functional recovery over 6 weeks. Recovery was replicated in a second cohort of 28 animals that included retransection injury. Immunohistochemical and stereological analysis demonstrated that blood vessel number, surface area, vessel diameter, basement membrane collagen, and microvessel phenotype within the regenerated tissue was dependent on the presence of SCs and rapamycin. TRITC-dextran injection demonstrated enhanced perfusion into scaffold channels. Rapamycin also increased the number of descending regenerated axons, as assessed by Fast Blue retrograde axonal tracing. These results demonstrate that normalization of the neovasculature was associated with enhanced axonal regeneration and improved function after spinal cord transection.
Collapse
Affiliation(s)
- Jeffrey S Hakim
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Bingkun K Chen
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | |
Collapse
|
31
|
Shin JE, Han J, Lim JH, Eun HS, Park KI. Human Neural Stem Cells: Translational Research for Neonatal Hypoxic-Ischemic Brain Injury. NEONATAL MEDICINE 2019. [DOI: 10.5385/nm.2019.26.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
32
|
Koffler J, Zhu W, Qu X, Platoshyn O, Dulin JN, Brock J, Graham L, Lu P, Sakamoto J, Marsala M, Chen S, Tuszynski MH. Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat Med 2019; 25:263-269. [PMID: 30643285 DOI: 10.1038/s41591-018-0296-z] [Citation(s) in RCA: 381] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 11/08/2018] [Indexed: 12/22/2022]
Abstract
Current methods for bioprinting functional tissue lack appropriate biofabrication techniques to build complex 3D microarchitectures essential for guiding cell growth and promoting tissue maturation1. 3D printing of central nervous system (CNS) structures has not been accomplished, possibly owing to the complexity of CNS architecture. Here, we report the use of a microscale continuous projection printing method (μCPP) to create a complex CNS structure for regenerative medicine applications in the spinal cord. μCPP can print 3D biomimetic hydrogel scaffolds tailored to the dimensions of the rodent spinal cord in 1.6 s and is scalable to human spinal cord sizes and lesion geometries. We tested the ability of µCPP 3D-printed scaffolds loaded with neural progenitor cells (NPCs) to support axon regeneration and form new 'neural relays' across sites of complete spinal cord injury in vivo in rodents1,2. We find that injured host axons regenerate into 3D biomimetic scaffolds and synapse onto NPCs implanted into the device and that implanted NPCs in turn extend axons out of the scaffold and into the host spinal cord below the injury to restore synaptic transmission and significantly improve functional outcomes. Thus, 3D biomimetic scaffolds offer a means of enhancing CNS regeneration through precision medicine.
Collapse
Affiliation(s)
- Jacob Koffler
- Department of Neuroscience, University of California San Diego, La Jolla, CA, USA.
| | - Wei Zhu
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Xin Qu
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA
| | - Oleksandr Platoshyn
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Jennifer N Dulin
- Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| | - John Brock
- Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| | - Lori Graham
- Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| | - Paul Lu
- Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| | - Jeff Sakamoto
- Mechanical Engineering Department, University of Michigan, Ann Arbor, MI, USA
| | - Martin Marsala
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA.
| | - Mark H Tuszynski
- Department of Neuroscience, University of California San Diego, La Jolla, CA, USA. .,Veterans Affairs Medical Center, San Diego, CA, USA.
| |
Collapse
|
33
|
Guest JD, Moore SW, Aimetti AA, Kutikov AB, Santamaria AJ, Hofstetter CP, Ropper AE, Theodore N, Ulich TR, Layer RT. Internal decompression of the acutely contused spinal cord: Differential effects of irrigation only versus biodegradable scaffold implantation. Biomaterials 2018; 185:284-300. [DOI: 10.1016/j.biomaterials.2018.09.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/04/2018] [Accepted: 09/16/2018] [Indexed: 12/13/2022]
|
34
|
Dumont CM, Munsell MK, Carlson MA, Cummings BJ, Anderson AJ, Shea LD. Spinal Progenitor-Laden Bridges Support Earlier Axon Regeneration Following Spinal Cord Injury. Tissue Eng Part A 2018; 24:1588-1602. [PMID: 30215293 DOI: 10.1089/ten.tea.2018.0053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPACT STATEMENT Spinal cord injury (SCI) results in loss of tissue innervation below the injury. Spinal progenitors have a greater ability to repair the damage and can be injected into the injury, but their regenerative potential is hampered by their poor survival after transplantation. Biomaterials can create a cell delivery platform and generate a more hospitable microenvironment for the progenitors within the injury. In this work, polymeric bridges are used to deliver embryonic spinal progenitors to the injury, resulting in increased progenitor survival and subsequent regeneration and functional recovery, thus demonstrating the importance of combined therapeutic approaches for SCI.
Collapse
Affiliation(s)
- Courtney M Dumont
- 1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan
| | - Mary K Munsell
- 1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan
| | - Mitchell A Carlson
- 1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan
| | - Brian J Cummings
- 2 Institute for Memory Impairments and Neurological Disorders (iMIND), University of California , Irvine, California.,3 Sue and Bill Gross Stem Cell Research Center, University of California , Irvine, California.,4 Department of Anatomy and Neurobiology and University of California , Irvine, California.,5 Department of Physical Medicine and Rehabilitation, University of California , Irvine, California
| | - Aileen J Anderson
- 2 Institute for Memory Impairments and Neurological Disorders (iMIND), University of California , Irvine, California.,3 Sue and Bill Gross Stem Cell Research Center, University of California , Irvine, California.,4 Department of Anatomy and Neurobiology and University of California , Irvine, California.,5 Department of Physical Medicine and Rehabilitation, University of California , Irvine, California
| | - Lonnie D Shea
- 1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan.,6 Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
35
|
Shin JE, Jung K, Kim M, Hwang K, Lee H, Kim IS, Lee BH, Lee IS, Park KI. Brain and spinal cord injury repair by implantation of human neural progenitor cells seeded onto polymer scaffolds. Exp Mol Med 2018; 50:1-18. [PMID: 29674624 PMCID: PMC5938022 DOI: 10.1038/s12276-018-0054-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022] Open
Abstract
Hypoxic-ischemic (HI) brain injury and spinal cord injury (SCI) lead to extensive tissue loss and axonal degeneration. The combined application of the polymer scaffold and neural progenitor cells (NPCs) has been reported to enhance neural repair, protection and regeneration through multiple modes of action following neural injury. This study investigated the reparative ability and therapeutic potentials of biological bridges composed of human fetal brain-derived NPCs seeded upon poly(glycolic acid)-based scaffold implanted into the infarction cavity of a neonatal HI brain injury or the hemisection cavity in an adult SCI. Implantation of human NPC (hNPC)–scaffold complex reduced the lesion volume, induced survival, engraftment, and differentiation of grafted cells, increased neovascularization, inhibited glial scar formation, altered the microglial/macrophage response, promoted neurite outgrowth and axonal extension within the lesion site, and facilitated the connection of damaged neural circuits. Tract tracing demonstrated that hNPC–scaffold grafts appear to reform the connections between neurons and their targets in both cerebral hemispheres in HI brain injury and protect some injured corticospinal fibers in SCI. Finally, the hNPC–scaffold complex grafts significantly improved motosensory function and attenuated neuropathic pain over that of the controls. These findings suggest that, with further investigation, this optimized multidisciplinary approach of combining hNPCs with biomaterial scaffolds provides a more versatile treatment for brain injury and SCI. Biodegradable scaffolds seeded with human fetal brain cells can help repair neurological injuries in rodents. A team led by Kook In Park and Il-Shin Lee from the Yonsei University College of Medicine in Seoul, South Korea, created a mesh of plastic fibers that they bathed in neural progenitor cells. Over the course of several days, these cells differentiated into different types of brain cells, including neurons and glia. The researchers implanted these cell-scaffold complexes into the sites of injury in two rodent models: newborn mice with oxygen deprivation to the brain, and adult rats with severed spinal cords. In both cases, the treatment helped the injured tissues heal and improved the neurological or motor function of the animals. The authors suggest these tissue-engineered structures could also help people with brain or spine injuries.
Collapse
Affiliation(s)
- Jeong Eun Shin
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Kwangsoo Jung
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Miri Kim
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Kyujin Hwang
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Haejin Lee
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Il-Sun Kim
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Bae Hwan Lee
- Department of Physiology, Brain Research Institute, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Il-Shin Lee
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Korea.
| | - Kook In Park
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, 03722, Korea. .,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea. .,Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
36
|
Mukhamedshina YO, Akhmetzyanova ER, Kostennikov AA, Zakirova EY, Galieva LR, Garanina EE, Rogozin AA, Kiassov AP, Rizvanov AA. Adipose-Derived Mesenchymal Stem Cell Application Combined With Fibrin Matrix Promotes Structural and Functional Recovery Following Spinal Cord Injury in Rats. Front Pharmacol 2018; 9:343. [PMID: 29692732 PMCID: PMC5902567 DOI: 10.3389/fphar.2018.00343] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/26/2018] [Indexed: 01/05/2023] Open
Abstract
The use of stem and progenitor cells to restore damaged organs and tissues, in particular, the central nervous system, is currently considered a most promising therapy in regenerative medicine. At the same time, another approach aimed at stimulating regeneration with the use of stem cells encapsulated into a biopolymer matrix and capable of creating a specific microenvironment for the implanted cells similar to the natural extracellular matrix is under active development. Here, we study effects of the application of adipose-derived mesenchymal stem cells (AD-MSCs) combined with a fibrin matrix on post-traumatic reactions in the spinal cord in rats. The AD-MSC application is found to exert a positive impact on the functional and structural recovery after spinal cord injury (SCI) that has been confirmed by the results of behavioral/electrophysiological and morphometric studies demonstrating reduced area of abnormal cavities and enhanced tissue retention in the site of injury. Immunohistochemical and real-time PCR analyses provide evidence that AD-MSC application decreases the GFAP expression in the area of SCI that might indicate the reduction of astroglial activation. Our results also demonstrate that AD-MSC application contributes to marked upregulation of PDGFβR and HSPA1b mRNA expression and decrease of Iba1 expression at the site of the central canal. Thus, the application of AD-MSCs combined with fibrin matrix at the site of SCI during the subacute period can stimulate important mechanisms of nervous tissue regeneration and should be further developed for clinical applications.
Collapse
Affiliation(s)
- Yana O Mukhamedshina
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| | - Elvira R Akhmetzyanova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Alexander A Kostennikov
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Elena Y Zakirova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Luisa R Galieva
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Ekaterina E Garanina
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Alexander A Rogozin
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Department of Neurology and Manual Therapy, Kazan State Medical Academy, Kazan, Russia
| | - Andrey P Kiassov
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Albert A Rizvanov
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
37
|
Huang Q, Zou Y, Arno MC, Chen S, Wang T, Gao J, Dove AP, Du J. Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chem Soc Rev 2018; 46:6255-6275. [PMID: 28816316 DOI: 10.1039/c6cs00052e] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Natural extracellular matrices (ECMs) have been widely used as a support for the adhesion, migration, differentiation, and proliferation of adipose-derived stem cells (ADSCs). However, poor mechanical behavior and unpredictable biodegradation properties of natural ECMs considerably limit their potential for bioapplications and raise the need for different, synthetic scaffolds. Hydrogels are regarded as the most promising alternative materials as a consequence of their excellent swelling properties and their resemblance to soft tissues. A variety of strategies have been applied to create synthetic biomimetic hydrogels, and their biophysical and biochemical properties have been modulated to be suitable for cell differentiation. In this review, we first give an overview of common methods for hydrogel preparation with a focus on those strategies that provide potential advantages for ADSC encapsulation, before summarizing the physical properties of hydrogel scaffolds that can act as biological cues. Finally, the challenges in the preparation and application of hydrogels with ADSCs are explored and the perspectives are proposed for the next generation of scaffolds.
Collapse
Affiliation(s)
- Qiutong Huang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Liu S, Schackel T, Weidner N, Puttagunta R. Biomaterial-Supported Cell Transplantation Treatments for Spinal Cord Injury: Challenges and Perspectives. Front Cell Neurosci 2018; 11:430. [PMID: 29375316 PMCID: PMC5768640 DOI: 10.3389/fncel.2017.00430] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI), resulting in para- and tetraplegia caused by the partial or complete disruption of descending motor and ascending sensory neurons, represents a complex neurological condition that remains incurable. Following SCI, numerous obstacles comprising of the loss of neural tissue (neurons, astrocytes, and oligodendrocytes), formation of a cavity, inflammation, loss of neuronal circuitry and function must be overcome. Given the multifaceted primary and secondary injury events that occur with SCI treatment options are likely to require combinatorial therapies. While several methods have been explored, only the intersection of two, cell transplantation and biomaterial implantation, will be addressed in detail here. Owing to the constant advance of cell culture technologies, cell-based transplantation has come to the forefront of SCI treatment in order to replace/protect damaged tissue and provide physical as well as trophic support for axonal regrowth. Biomaterial scaffolds provide cells with a protected environment from the surrounding lesion, in addition to bridging extensive damage and providing physical and directional support for axonal regrowth. Moreover, in this combinatorial approach cell transplantation improves scaffold integration and therefore regenerative growth potential. Here, we review the advances in combinatorial therapies of Schwann cells (SCs), astrocytes, olfactory ensheathing cells (OECs), mesenchymal stem cells, as well as neural stem and progenitor cells (NSPCs) with various biomaterial scaffolds.
Collapse
Affiliation(s)
- Shengwen Liu
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Thomas Schackel
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Radhika Puttagunta
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
39
|
Functional Test Scales for Evaluating Cell-Based Therapies in Animal Models of Spinal Cord Injury. Stem Cells Int 2017; 2017:5160261. [PMID: 29109741 PMCID: PMC5646345 DOI: 10.1155/2017/5160261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/28/2017] [Accepted: 08/01/2017] [Indexed: 01/22/2023] Open
Abstract
Recently, spinal cord researchers have focused on multifaceted approaches for the treatment of spinal cord injury (SCI). However, as there is no cure for the deficits produced by SCI, various therapeutic strategies have been examined using animal models. Due to the lack of standardized functional assessment tools for use in such models, it is important to choose a suitable animal model and precise behavioral test when evaluating the efficacy of potential SCI treatments. In the present review, we discuss recent evidence regarding functional recovery in various animal models of SCI, summarize the representative models currently used, evaluate recent cell-based therapeutic approaches, and aim to identify the most precise and appropriate scales for functional assessment in such research.
Collapse
|
40
|
Tang Y, Yu P, Cheng L. Current progress in the derivation and therapeutic application of neural stem cells. Cell Death Dis 2017; 8:e3108. [PMID: 29022921 PMCID: PMC5682670 DOI: 10.1038/cddis.2017.504] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022]
Abstract
Neural stem cells (NSCs) have a unique role in neural regeneration. Cell therapy based on NSC transplantation is a promising tool for the treatment of nervous system diseases. However, there are still many issues and controversies associated with the derivation and therapeutic application of these cells. In this review, we summarize the different sources of NSCs and their derivation methods, including direct isolation from primary tissues, differentiation from pluripotent stem cells and transdifferentiation from somatic cells. We also review the current progress in NSC implantation for the treatment of various neural defects and injuries in animal models and clinical trials. Finally, we discuss potential optimization strategies for NSC derivation and propose urgent challenges to the clinical translation of NSC-based therapies in the near future.
Collapse
Affiliation(s)
- Yuewen Tang
- National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Institute of Haematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei Yu
- Department of Orthopaedics, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Cheng
- National Research Center for Translational Medicine, State Key Laboratory of Medical Genomics, Shanghai Institute of Haematology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Chen BK, Madigan NN, Hakim JS, Dadsetan M, McMahon SS, Yaszemski MJ, Windebank AJ. GDNF Schwann cells in hydrogel scaffolds promote regional axon regeneration, remyelination and functional improvement after spinal cord transection in rats. J Tissue Eng Regen Med 2017; 12:e398-e407. [DOI: 10.1002/term.2431] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/08/2017] [Accepted: 02/24/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Bingkun K. Chen
- Department of Neurology, Mayo Clinic College of Medicine; Mayo Clinic; Rochester Minnesota
| | - Nicolas N. Madigan
- Department of Neurology, Mayo Clinic College of Medicine; Mayo Clinic; Rochester Minnesota
| | - Jeffrey S. Hakim
- Department of Neurology, Mayo Clinic College of Medicine; Mayo Clinic; Rochester Minnesota
| | - Mahrokh Dadsetan
- Department of Orthopedic Surgery; Mayo Clinic College of Medicine; Rochester Minnesota
| | - Siobhan S. McMahon
- Department of Medicine; Regenerative Medicine Institute (REMEDI), National University of Ireland; Galway
| | - Michael J. Yaszemski
- Department of Orthopedic Surgery; Mayo Clinic College of Medicine; Rochester Minnesota
| | - Anthony J. Windebank
- Department of Neurology, Mayo Clinic College of Medicine; Mayo Clinic; Rochester Minnesota
| |
Collapse
|
42
|
The Proliferation Enhancing Effects of Salidroside on Schwann Cells In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4673289. [PMID: 28680451 PMCID: PMC5478829 DOI: 10.1155/2017/4673289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/02/2017] [Accepted: 04/10/2017] [Indexed: 01/26/2023]
Abstract
Derived from Rhodiola rosea L., which is a popular plant in Eastern Europe and Asia, salidroside has pharmacological properties including antiviral, anticancer, hepatoprotective, antidiabetic, and antioxidative effects. Recent studies show that salidroside has neurotrophic and neuroprotective effects. However, the effect of salidroside on Schwann cells (SCs) and the underlying mechanisms of the salidroside-induced neurotrophin secretion have seldom been studied. In this study, the effect of salidroside on the survival, proliferation, and gene expression of Schwann cells lineage (RSC96) was studied through the examinations of the cell viability, proliferation, morphology, and expression of neurotrophic factor related genes including BDNF, GDNF, and CDNF at 2, 4, and 6 days, respectively. These results showed that salidroside significantly enhanced survival and proliferation of SCs. The underlying mechanism might involve that salidroside affected SCs growth through the modulation of several neurotrophic factors including BDNF, GDNF, and CDNF. As for the concentration, 0.4 mM, 0.2 mM, and 0.1 mM of salidroside were recommended, especially 0.2 mM. This investigation indicates that salidroside is capable of enhancing SCs survival and function in vitro, which highlights the possibility that salidroside as a drug agent to promote nerve regeneration in cellular nerve scaffold through salidroside-induced neurotrophin secretion in SCs.
Collapse
|
43
|
Ziemba AM, Gilbert RJ. Biomaterials for Local, Controlled Drug Delivery to the Injured Spinal Cord. Front Pharmacol 2017; 8:245. [PMID: 28539887 PMCID: PMC5423911 DOI: 10.3389/fphar.2017.00245] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/19/2017] [Indexed: 11/13/2022] Open
Abstract
Affecting approximately 17,000 new people each year, spinal cord injury (SCI) is a devastating injury that leads to permanent paraplegia or tetraplegia. Current pharmacological approaches are limited in their ability to ameliorate this injury pathophysiology, as many are not delivered locally, for a sustained duration, or at the correct injury time point. With this review, we aim to communicate the importance of combinatorial biomaterial and pharmacological approaches that target certain aspects of the dynamically changing pathophysiology of SCI. After reviewing the pathophysiology timeline, we present experimental biomaterial approaches to provide local sustained doses of drug. In this review, we present studies using a variety of biomaterials, including hydrogels, particles, and fibers/conduits for drug delivery. Subsequently, we discuss how each may be manipulated to optimize drug release during a specific time frame following SCI. Developing polymer biomaterials that can effectively release drug to target specific aspects of SCI pathophysiology will result in more efficacious approaches leading to better regeneration and recovery following SCI.
Collapse
Affiliation(s)
| | - Ryan J. Gilbert
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, TroyNY, USA
| |
Collapse
|
44
|
Murphy AR, Laslett A, O'Brien CM, Cameron NR. Scaffolds for 3D in vitro culture of neural lineage cells. Acta Biomater 2017; 54:1-20. [PMID: 28259835 DOI: 10.1016/j.actbio.2017.02.046] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 12/22/2022]
Abstract
Understanding how neurodegenerative disorders develop is not only a key challenge for researchers but also for the wider society, given the rapidly aging populations in developed countries. Advances in this field require new tools with which to recreate neural tissue in vitro and produce realistic disease models. This in turn requires robust and reliable systems for performing 3D in vitro culture of neural lineage cells. This review provides a state of the art update on three-dimensional culture systems for in vitro development of neural tissue, employing a wide range of scaffold types including hydrogels, solid porous polymers, fibrous materials and decellularised tissues as well as microfluidic devices and lab-on-a-chip systems. To provide some context with in vivo development of the central nervous system (CNS), we also provide a brief overview of the neural stem cell niche, neural development and neural differentiation in vitro. We conclude with a discussion of future directions for this exciting and important field of biomaterials research. STATEMENT OF SIGNIFICANCE Neurodegenerative diseases, including dementia, Parkinson's and Alzheimer's diseases and motor neuron diseases, are a major societal challenge for aging populations. Understanding these conditions and developing therapies against them will require the development of new physical models of healthy and diseased neural tissue. Cellular models resembling neural tissue can be cultured in the laboratory with the help of 3D scaffolds - materials that allow the organization of neural cells into tissue-like structures. This review presents recent work on the development of different types of scaffolds for the 3D culture of neural lineage cells and the generation of functioning neural-like tissue. These in vitro culture systems are enabling the development of new approaches for modelling and tackling diseases of the brain and CNS.
Collapse
Affiliation(s)
- Ashley R Murphy
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC 3800, Australia
| | - Andrew Laslett
- CSIRO Manufacturing, Bag 10, Clayton South MDC, VIC 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and Innovation Precinct (STRIP), Monash University, Clayton Campus, Wellington Road, Clayton, VIC 3800, Australia
| | - Carmel M O'Brien
- CSIRO Manufacturing, Bag 10, Clayton South MDC, VIC 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and Innovation Precinct (STRIP), Monash University, Clayton Campus, Wellington Road, Clayton, VIC 3800, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC 3800, Australia.
| |
Collapse
|
45
|
Xu B, Zhao Y, Xiao Z, Wang B, Liang H, Li X, Fang Y, Han S, Li X, Fan C, Dai J. A Dual Functional Scaffold Tethered with EGFR Antibody Promotes Neural Stem Cell Retention and Neuronal Differentiation for Spinal Cord Injury Repair. Adv Healthc Mater 2017; 6. [PMID: 28233428 DOI: 10.1002/adhm.201601279] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/24/2017] [Indexed: 12/22/2022]
Abstract
Neural stem cells (NSCs) transplantation is a promising strategy to restore neuronal relays and neurological function of injured spinal cord because of the differentiation potential into functional neurons, but the transplanted NSCs often largely diffuse from the transplanted site and mainly differentiate into glial cells rather than neurons due to the adverse microenviornment after spinal cord injury (SCI). This paper fabricates a dual functional collagen scaffold tethered with a collagen-binding epidermal growth factor receptor (EGFR) antibody to simultaneously promote NSCs retention and neuronal differentiation by specifically binding to EGFR molecule expressed on NSCs and attenuating EGFR signaling, which is responsible for the inhibition of differentiation of NSCs toward neurons. Compared to unmodified control scaffold, the dual functional scaffold promotes the adhesion and neuronal differentiation of NSCs in vitro. Moreover, the implantation of the dual functional scaffold with exogenous NSCs in rat SCI model can capture and retain NSCs at the injury sites, and promote the neuronal differentiation of the retained NSCs into functional neurons, and finally dedicate to improving motor function of SCI rats, which provides a potential strategy for synchronously promoting stem cell retention and differentiation with biomaterials for SCI repair.
Collapse
Affiliation(s)
- Bai Xu
- Key Laboratory for Nano-Bio Interface Research; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 P. R. China
| | - Yannan Zhao
- Center for Regenerative Medicine; State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 P. R. China
| | - Zhifeng Xiao
- Center for Regenerative Medicine; State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 P. R. China
| | - Bin Wang
- Center for Regenerative Medicine; State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 P. R. China
| | - Hui Liang
- Key Laboratory for Nano-Bio Interface Research; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 P. R. China
| | - Xing Li
- Key Laboratory for Nano-Bio Interface Research; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 P. R. China
- Center for Regenerative Medicine; State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 P. R. China
| | - Yongxiang Fang
- Center for Regenerative Medicine; State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 P. R. China
| | - Sufang Han
- Center for Regenerative Medicine; State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 P. R. China
| | - Xiaoran Li
- Key Laboratory for Nano-Bio Interface Research; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 P. R. China
| | - Caixia Fan
- Key Laboratory for Nano-Bio Interface Research; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 P. R. China
| | - Jianwu Dai
- Key Laboratory for Nano-Bio Interface Research; Division of Nanobiomedicine; Suzhou Institute of Nano-Tech and Nano-Bionics; Chinese Academy of Sciences; Suzhou 215123 P. R. China
- Center for Regenerative Medicine; State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Beijing 100101 P. R. China
| |
Collapse
|
46
|
Yu Z, Men Y, Dong P. Schwann cells promote the capability of neural stem cells to differentiate into neurons and secret neurotrophic factors. Exp Ther Med 2017; 13:2029-2035. [PMID: 28565804 PMCID: PMC5443174 DOI: 10.3892/etm.2017.4183] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/20/2017] [Indexed: 11/05/2022] Open
Abstract
The present study investigated whether co-culturing Schwann cells (SCs) with neural stem cells (NSCs) improves viability, direction of differentiation and secretion of brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF) in NSCs. The three groups assessed were as follows: SCs, NSCs, and a co-culture of SCs and NSCs. Cellular morphological changes were observed under an inverted phase contrast microscope and quantified. Cells were identified by immunofluorescence staining: S100 for SCs, Nestin for NSCs, microtubule associated protein (Map) 2 and NeuN for neurons and glial fibrillary acidic protein for astrocytes. Cell viability was evaluated by MTT assay. Secretion of BDNF and GDNF was quantified; mRNA expression was quantified by reverse transcription-quantitative polymerase chain reaction. The majority of NSCs in the co-cultured group differentiated into neurons. The cell survival rate of the co-culture group was significantly higher than the other groups on days 3, 5 and 10 (P<0.01). The secretion of BDNF in the co-culture group was significantly higher than NSCs on days 3, 5 and 7 (P<0.05), while the amount of GDNF in co-culture was significantly higher than both NSCs and SCs on day 1 (P<0.05). BDNF and GDNF gene expression in the co-culture group was significantly higher than SCs (P<0.01). Gene expression of Map2 in co-culture group was also significantly higher than both NSC and SC groups (P<0.01). Therefore, co-cultured SCs and NSCs promote differentiation of NSCs into neurons and secrete higher levels of neurotropic factors including BDNF and GDNF.
Collapse
Affiliation(s)
- Ziwei Yu
- Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Yongzhi Men
- Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Pin Dong
- Department of Otolaryngology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
47
|
Iyer NR, Wilems TS, Sakiyama-Elbert SE. Stem cells for spinal cord injury: Strategies to inform differentiation and transplantation. Biotechnol Bioeng 2017; 114:245-259. [PMID: 27531038 PMCID: PMC5642909 DOI: 10.1002/bit.26074] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/20/2016] [Accepted: 08/07/2016] [Indexed: 12/13/2022]
Abstract
The complex pathology of spinal cord injury (SCI), involving a cascade of secondary events and the formation of inhibitory barriers, hampers regeneration across the lesion site and often results in irreversible loss of motor function. The limited regenerative capacity of endogenous cells after SCI has led to a focus on the development of cell therapies that can confer both neuroprotective and neuroregenerative benefits. Stem cells have emerged as a candidate cell source because of their ability to self-renew and differentiate into a multitude of specialized cell types. While ethical and safety concerns impeded the use of stem cells in the past, advances in isolation and differentiation methods have largely mitigated these issues. A confluence of work in stem cell biology, genetics, and developmental neurobiology has informed the directed differentiation of specific spinal cell types. After transplantation, these stem cell-derived populations can replace lost cells, provide trophic support, remyelinate surviving axons, and form relay circuits that contribute to functional recovery. Further refinement of stem cell differentiation and transplantation methods, including combinatorial strategies that involve biomaterial scaffolds and drug delivery, is critical as stem cell-based treatments enter clinical trials. Biotechnol. Bioeng. 2017;114: 245-259. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nisha R Iyer
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton St., Stop C0800 BME 3.314, Austin, Texas 78712
| | - Thomas S Wilems
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton St., Stop C0800 BME 3.314, Austin, Texas 78712
| | - Shelly E Sakiyama-Elbert
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton St., Stop C0800 BME 3.314, Austin, Texas 78712
| |
Collapse
|
48
|
Ortuño-Lizarán I, Vilariño-Feltrer G, Martínez-Ramos C, Pradas MM, Vallés-Lluch A. Influence of synthesis parameters on hyaluronic acid hydrogels intended as nerve conduits. Biofabrication 2016; 8:045011. [DOI: 10.1088/1758-5090/8/4/045011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Dumont CM, Margul DJ, Shea LD. Tissue Engineering Approaches to Modulate the Inflammatory Milieu following Spinal Cord Injury. Cells Tissues Organs 2016; 202:52-66. [PMID: 27701152 PMCID: PMC5067186 DOI: 10.1159/000446646] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2016] [Indexed: 12/11/2022] Open
Abstract
Tissue engineering strategies have shown promise in promoting healing and regeneration after spinal cord injury (SCI); however, these strategies are limited by inflammation and the immune response. Infiltration of cells of the innate and adaptive immune responses and the inflammation that follows cause secondary damage adjacent to the injury, increased scarring, and a potently inhibitory environment for the regeneration of damaged neurons. While the inflammation that ensues is typically associated with limited regeneration, the immune response is a crucial element in the closing of the blood-brain barrier, minimizing the spread of injury, and initiating healing. This review summarizes the strategies that have been developed to modulate the immune response towards an anti-inflammatory environment that is permissive to the regeneration of neurons, glia, and parenchyma. We focus on the use of biomaterials, biologically active molecules, gene therapy, nanoparticles, and stem cells to modulate the immune response, and illustrate concepts for future therapies. Current clinical treatments for SCI are limited to systemic hypothermia or methylprednisolone, which both act by systemically mitigating the effects of immune response but have marginal efficacy. Herein, we discuss emerging research strategies to further enhance these clinical treatments by directly targeting specific aspects of the immune response.
Collapse
Affiliation(s)
- Courtney. M. Dumont
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Daniel J. Margul
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Lonnie. D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
50
|
Kim YC, Kim YH, Kim JW, Ha KY. Transplantation of Mesenchymal Stem Cells for Acute Spinal Cord Injury in Rats: Comparative Study between Intralesional Injection and Scaffold Based Transplantation. J Korean Med Sci 2016; 31:1373-82. [PMID: 27510379 PMCID: PMC4974177 DOI: 10.3346/jkms.2016.31.9.1373] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/13/2016] [Indexed: 01/01/2023] Open
Abstract
Experimental stem cell therapy for spinal cord injury (SCI) has been extensively investigated. The selection of effective cell transplantation route is also an important issue. Although various types of scaffold have been widely tried as a carrier of stem cells to the injured spinal cord, there was little comparative study to investigate the efficacy of transplantation comparing with conventional transplantation route. A total of 48 Sprague-Dawley rats were subjected to standardized SCI, followed by transplantation of allogeneic mesenchymal stem cells (MSCs), either via intralesional injection (IL group), or via the poly (lactic-co-glycolic acid) (PLGA) scaffold (IP group) or chitosan scaffold (IC group). Engraftment and differentiation of the transplanted cells, expression of neurotrophic factors in the injured spinal cord, and functional recovery were compared with those of the control group. The mean numbers of engrafted MSCs in the IL, IP, and IC groups were 20.6 ± 0.7, 25.6 ± 1.7 and 26.7 ± 1.8 cells/high power filed (HPF), respectively. Results showed higher success rate of MSCs engraftment in the scaffold groups compared to the IL group. Expression of neuroprotective growth factors in the SCI lesions showed no significant differences between the IL, IP, and IC groups. The mean Basso, Beattie and Bresnahan locomotor scales at 6 weeks post-transplantation in the IL, IP, IC, and control groups were 7.9 ± 1.1, 7.9 ± 2.1, 8.7 ± 2.1, and 2.9 ± 1.0, respectively. The functional improvement was most excellent in the IC group. The scaffold based MSC transplantation for acute SCI presented the better cell engraftment and neuroprotective effect compared to the intralesional injection transplantation.
Collapse
Affiliation(s)
- Yoon Chung Kim
- Department of Orthopaedic Surgery, The Catholic University of Korea, St. Vincent's Hospital, Suwon, Korea
| | - Young Hoon Kim
- Department of Orthopaedic Surgery, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Korea
| | - Jang Woon Kim
- Department of Orthopaedic Surgery, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Korea
| | - Kee Yong Ha
- Department of Orthopaedic Surgery, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Korea.
| |
Collapse
|