1
|
Dong Y, Lin L, Ji Y, Cheng X, Zhang Z. Cabozantinib prevents AGEs-induced degradation of type 2 collagen and aggrecan in human chondrocytes. Aging (Albany NY) 2023; 15:13646-13654. [PMID: 38059882 PMCID: PMC10756107 DOI: 10.18632/aging.205186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/26/2023] [Indexed: 12/08/2023]
Abstract
Osteoarthritis (OA) is a joint degenerative disease commonly observed in the old population, lacks effective therapeutic methods, and markedly impacts the normal lives of patients. Degradation of extracellular matrix (ECM) is reported to participate in OA development, which is a potential target for treating OA. Cabozantinib is an inhibitor of tyrosine kinases and is recently claimed with suppressive properties against inflammation. Herein, the protective function of Cabozantinib on advanced glycation end products (AGEs)-induced damages to chondrocytes was tested. SW1353 chondrocytes were stimulated with 100 μg/ml AGEs with or without 10 and 20 μM Cabozantinib for 24 h. Signally increased reactive oxygen species (ROS) levels, declined reduced glutathione (GSH) levels, and elevated release of inflammatory cytokines were observed in AGEs-stimulated SW1353 chondrocytes, which were markedly reversed by Cabozantinib. Moreover, the notably reduced type II collagen and aggrecan levels, and increased matrix metalloproteinase-13 (MMP-13) and A Disintegrin and Metalloproteinase with Thrombospondin Motifs-5 (ADAMTS-5) levels in AGEs-stimulated SW1353 chondrocytes were largely rescued by Cabozantinib. The downregulated Sry-type high-mobility-group box 9 (SOX-9) observed in AGEs-stimulated SW1353 chondrocytes was abolished by Cabozantinib. Furthermore, the impact of Cabozantinib on type II collagen and aggrecan levels in AGEs-treated SW1353 chondrocytes was abrogated by silencing SOX-9. Collectively, Cabozantinib prevented AGEs-induced degradation of type 2 collagen and aggrecan in human chondrocytes by mediating SOX-9.
Collapse
Affiliation(s)
- Yang Dong
- Second Department of Hand Surgery, Yantaishan Hospital, Yantai 264008, Shangdong Province, China
| | - Lianfang Lin
- Second Department of Hand Surgery, Yantaishan Hospital, Yantai 264008, Shangdong Province, China
| | - Yuan Ji
- Second Department of Hand Surgery, Yantaishan Hospital, Yantai 264008, Shangdong Province, China
| | - Xu Cheng
- Second Department of Hand Surgery, Yantaishan Hospital, Yantai 264008, Shangdong Province, China
| | - Zhiwu Zhang
- Second Department of Hand Surgery, Yantaishan Hospital, Yantai 264008, Shangdong Province, China
| |
Collapse
|
2
|
Dwivedi R, Yadav PK, Pandey R, Mehrotra D. Auricular reconstruction via 3D bioprinting strategies: An update. J Oral Biol Craniofac Res 2022; 12:580-588. [PMID: 35968037 DOI: 10.1016/j.jobcr.2022.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 10/16/2022] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- Ruby Dwivedi
- King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Pradeep Kumar Yadav
- Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Rahul Pandey
- King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Divya Mehrotra
- Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
Lithium chloride-induced primary cilia recovery enhances biosynthetic response of chondrocytes to mechanical stimulation. Biomech Model Mechanobiol 2022; 21:605-614. [DOI: 10.1007/s10237-021-01551-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/18/2021] [Indexed: 11/02/2022]
|
4
|
Subedar OD, Chiu LLY, Waldman SD. Cell Cycle Synchronization of Primary Articular Chondrocytes Enhances Chondrogenesis. Cartilage 2021; 12:526-535. [PMID: 30971093 PMCID: PMC8461165 DOI: 10.1177/1947603519841677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Although tissue engineering is a promising option for articular cartilage repair, it has been challenging to generate functional cartilaginous tissue. While the synthetic response of chondrocytes can be influenced by various means, most approaches treat chondrocytes as a homogeneous population that would respond similarly. However, isolated cells heterogeneously progress through the cell cycle, which can affect macromolecular biosynthesis. As it is possible to synchronize cells within discrete cell cycle phases, the purpose of this study was to investigate the effects of cell cycle synchronization on the chondrogenic potential of primary articular chondrocytes. DESIGN Different methods of cell synchronization (serum starvation, thymidine, nocodazole, aphidicolin, and RO-3306) were tested for their ability to synchronize primary articular chondrocytes during the process of cell isolation. Cells (unsynchronized and synchronized) were then encapsulated in alginate gels, cultured for 4 weeks, and analyzed for their structural and biochemical properties. RESULTS The double-thymidine method yielded the highest level of cell purity, with cells synchronized in S phase. While the cells started to lose synchronization after 24 hours, tissue constructs developed from initially S phase synchronized cells had significantly higher glycosaminoglycan and collagen II amounts than those developed using unsynchronized cells. CONCLUSIONS Initial synchronization led to long-term changes in cartilaginous tissue formation. This effect was postulated to be due to the rapid auto-induction of TGF-βs by actively dividing S phase cells, thereby stimulating chondrogenesis. Cell synchronization methods may also be applied in conjunction with redifferentiation methods to improve the chondrogenic potential of dedifferentiated or diseased chondrocytes.
Collapse
Affiliation(s)
- Omar D. Subedar
- Department of Chemical Engineering, Ryerson University, Toronto, Ontario, Canada,Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Loraine L. Y. Chiu
- Department of Chemical Engineering, Ryerson University, Toronto, Ontario, Canada,Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Stephen D. Waldman
- Department of Chemical Engineering, Ryerson University, Toronto, Ontario, Canada,Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada,Stephen D. Waldman, Department of Chemical Engineering, Faculty of Engineering & Architectural Science, Ryerson University, Kerr Hall South, KHS 241N, Toronto, Ontario, Canada M5B 2K3.
| |
Collapse
|
5
|
Anderson-Baron M, Kunze M, Mulet-Sierra A, Osswald M, Ansari K, Seikaly H, Adesida AB. Nasal Chondrocyte-Derived Soluble Factors Affect Chondrogenesis of Cocultured Mesenchymal Stem Cells. Tissue Eng Part A 2020; 27:37-49. [PMID: 32122264 DOI: 10.1089/ten.tea.2019.0306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To investigate the effect of soluble factors released from human nasal chondrocytes (NCs) on cocultured human bone marrow mesenchymal stem cells (MSCs) and NC tissue-engineered constructs. Cartilage engineered from pure NCs on a three-dimensional (3D) porous collagen scaffold was cultured indirectly in a Transwell system with cartilage engineered from a direct coculture of human bone marrow-derived MSCs and NCs on a 3D porous collagen scaffold. The soluble factors were measured in the conditioned media from the different chambers of the Transwell system. Engineered cartilage from cocultures exposed to the pure NC construct exhibited reduced chondrogenic potential relative to control constructs, shown by reduced extracellular matrix deposition and increased expression of hypertrophic markers. Analysis of the soluble factors within the conditioned media showed an increase in inflammatory cytokines in the coculture chamber exposed to the pure NC construct. Principal component analysis revealed that the majority of the data variance could be explained by proinflammatory factors and hypertrophic chondrogenesis. In conclusion, our data suggest that inflammatory cytokines derived from NCs reduce the chondrogenic potential of coculture engineered cartilage through the induction of hypertrophic chondrogenesis. Impact statement The use of engineered cartilage from cocultured nasal chondrocytes (NCs) and mesenchymal stem cells for nasal cartilage reconstruction may be problematic. Our data suggest that the soluble factors from surrounding native NCs in the cartilage to be fixed can compromise the quality of the engineered cartilage if used in reconstructive surgery.
Collapse
Affiliation(s)
- Matthew Anderson-Baron
- Division of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada.,Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, 3-021 Li Ka Shing Centre for Health Research Innovation, Edmonton, Canada
| | - Melanie Kunze
- Division of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada.,Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, 3-021 Li Ka Shing Centre for Health Research Innovation, Edmonton, Canada
| | - Aillette Mulet-Sierra
- Division of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada.,Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, 3-021 Li Ka Shing Centre for Health Research Innovation, Edmonton, Canada
| | - Martin Osswald
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alberta Hospital, Edmonton, Canada.,Institute for Reconstructive Sciences in Medicine (iRSM), Misericordia Community Hospital, Edmonton, Canada
| | - Khalid Ansari
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alberta Hospital, Edmonton, Canada
| | - Hadi Seikaly
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alberta Hospital, Edmonton, Canada
| | - Adetola B Adesida
- Division of Orthopaedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada.,Laboratory of Stem Cell Biology and Orthopaedic Tissue Engineering, 3-021 Li Ka Shing Centre for Health Research Innovation, Edmonton, Canada.,Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Alberta Hospital, Edmonton, Canada
| |
Collapse
|
6
|
Mesenchymal stem cells in the treatment of articular cartilage degeneration: New biological insights for an old-timer cell. Cytotherapy 2019; 21:1179-1197. [DOI: 10.1016/j.jcyt.2019.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 01/15/2023]
|
7
|
Mao Y, Block T, Singh-Varma A, Sheldrake A, Leeth R, Griffey S, Kohn J. Extracellular matrix derived from chondrocytes promotes rapid expansion of human primary chondrocytes in vitro with reduced dedifferentiation. Acta Biomater 2019; 85:75-83. [PMID: 30528605 DOI: 10.1016/j.actbio.2018.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022]
Abstract
A significant expansion of autologous chondrocytes in vitro is required for cell-based cartilage repair. However, the in vitro expansion of chondrocytes under standard culture conditions inevitably leads to the dedifferentiation of chondrocytes and contributes to suboptimal clinical outcomes. To address this challenge, we focused our efforts on developing an improved in vitro expansion protocol, which shortens the expansion time with decreased dedifferentiation. It is known that the tissue microenvironment plays a critical role in regulating the cellular functions of resident cells and provides guidance in tissue-specific regeneration. We hypothesized that chondrocyte extracellular matrix (ECM) mimics a native microenvironment and that it may support chondrocyte expansion in vitro. To test this hypothesis, we prepared decellularized ECMs from allogeneic human articular chondrocytes (HAC) (AC-ECM) and bone marrow stromal cells (BM-ECM) and studied their effects on the in vitro expansion of primary HAC. The differential composition and physical properties of these two ECMs were revealed by mass spectrometry and atomic force microscopy. Compared with standard tissue culture polystyrene (TCP) or BM-ECM, HAC cultured on AC-ECM proliferated faster and maintained the highest ratio of COL2A1/COL1A1. Furthermore, a pellet culture study demonstrated that cells expanded on AC-ECM produced a more cartilage-like ECM than cells expanded on BM-ECM or TCP. This is the first report on modulating chondrocyte expansion and dedifferentiation using cell type-specific ECM and on identifying AC-ECM as a preferred substrate for in vitro expansion of HAC cell-based therapies. STATEMENT OF SIGNIFICANCE: To reduce the dedifferentiation of chondrocytes during in vitro expansion, cell type-specific extracellular matrix (ECM), which mimics a native microenvironment, was prepared from human articular chondrocytes (AC-ECM) or bone marrow stromal cells (BM-ECM). As demonstrated by mass spectrometry and atomic force microscopy, AC-ECM and BM-ECM have differential ECM compositions and physical characteristics. Human articular chondrocytes (HAC) expanded faster and maintained a better chondrocyte phenotype on AC-ECM than on BM-ECM or a standard culture surface. AC-ECM has potential to be developed for expanding HAC for cell-based therapies.
Collapse
|
8
|
Zhu Y, Kong L, Farhadi F, Xia W, Chang J, He Y, Li H. An injectable continuous stratified structurally and functionally biomimetic construct for enhancing osteochondral regeneration. Biomaterials 2019; 192:149-158. [DOI: 10.1016/j.biomaterials.2018.11.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 01/08/2023]
|
9
|
Mao Y, Hoffman T, Wu A, Kohn J. An Innovative Laboratory Procedure to Expand Chondrocytes with Reduced Dedifferentiation. Cartilage 2018; 9:202-211. [PMID: 29271232 PMCID: PMC5871131 DOI: 10.1177/1947603517746724] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective In vitro expansion of chondrocytes is required for cartilage tissue engineering and clinical cell-based cartilage repair practices. However, the dedifferentiation of chondrocytes during in vitro expansion continues to be a challenge. This study focuses on identifying a cell culture surface to support chondrocyte expansion with reduced dedifferentiation. Design A less adhesive culture surface, non-tissue culture treated surface (NTC), was tested for its suitability for culturing chondrocytes. The cell expansion and the expression of chondrocyte markers were monitored for at least 2 passages on NTC in comparison with conventional tissue culture treated polystyrene surface (TCP). The ability of expanded chondrocytes to form cartilage tissues was evaluated using pellet culturing and subcutaneous implantation in nude mice. Results NTC supported bovine chondrocyte proliferation to a clinically relevant expansion requirement within 2 passages. Chondrocyte phenotypes were better maintained when cultured on NTC than on TCP. In vitro pellet culture studies showed that chondrocytes expanded on NTC expressed a higher level of chondrocyte extracellular matrix. Furthermore, the cells expanded on NTC or TCP were implanted subcutaneously as pellets in nude mice for 6 weeks. The recovered pellets showed cartilage-like tissue formation from cells expanded on NTC but not from the cells expanded on TCP. Conclusions This study presents an innovative and easy culturing procedure to expand chondrocytes with reduced dedifferentiation. This procedure has potential to be developed to expand chondrocytes in vitro for basic research, tissue engineering, and possibly for clinical applications.
Collapse
Affiliation(s)
- Yong Mao
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ, USA
| | - Tyler Hoffman
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ, USA
| | - Amy Wu
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ, USA
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers University, Piscataway, NJ, USA,Joachim Kohn, New Jersey Center for Biomaterials, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
10
|
Lee WD, Gawri R, Pilliar RM, Stanford WL, Kandel RA. Sol gel-derived hydroxyapatite films over porous calcium polyphosphate substrates for improved tissue engineering of osteochondral-like constructs. Acta Biomater 2017; 62:352-361. [PMID: 28818689 DOI: 10.1016/j.actbio.2017.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/10/2017] [Accepted: 08/12/2017] [Indexed: 12/26/2022]
Abstract
Integration of in vitro-formed cartilage on a suitable substrate to form tissue-engineered implants for osteochondral defect repair is a considerable challenge. In healthy cartilage, a zone of calcified cartilage (ZCC) acts as an intermediary for mechanical force transfer from soft to hard tissue, as well as an effective interlocking structure to better resist interfacial shear forces. We have developed biphasic constructs that consist of scaffold-free cartilage tissue grown in vitro on, and interdigitated with, porous calcium polyphosphate (CPP) substrates. However, as CPP degrades, it releases inorganic polyphosphates (polyP) that can inhibit local mineralization, thereby preventing the formation of a ZCC at the interface. Thus, we hypothesize that coating CPP substrate with a layer of hydroxyapatite (HA) might prevent or limit this polyP release. To investigate this we tested both inorganic or organic sol-gel processing methods, asa barrier coating on CPP substrate to inhibit polyP release. Both types of coating supported the formation of ZCC in direct contact with the substrate, however the ZCC appeared more continuous in the tissue formed on the organic HA sol gel coated CPP. Tissues formed on coated substrates accumulated comparable quantities of extracellular matrix and mineral, but tissues formed on organic sol-gel (OSG)-coated substrates accumulated less polyP than tissues formed on inorganic sol-gel (ISG)-coated substrates. Constructs formed with OSG-coated CPP substrates had greater interfacial shear strength than those formed with ISG-coated and non-coated substrates. These results suggest that the OSG coating method can modify the location and distribution of ZCC and can be used to improve the mechanical integrity of tissue-engineered constructs formed on porous CPP substrates. STATEMENT OF SIGNIFICANCE Articular cartilage interfaces with bone through a zone of calcified cartilage. This study describes a method to generate an "osteochondral-like" implant that mimics this organization using isolated deep zone cartilage cells and a sol-gel hydroxyapatite coated bone substitute material composed of calcium polyphosphate (CPP). Developing a layer of calcified cartilage at the interface should contribute to enhancing the success of this "osteochondral-like" construct following implantation to repair cartilage defects.
Collapse
Affiliation(s)
- Whitaik David Lee
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada
| | - Rahul Gawri
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Ave., Toronto, Ontario M5G 1X5, Canada
| | - Robert M Pilliar
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada; Faculty of Dentistry, University of Toronto, 124 Edward St., Toronto, Ontario M5G 1G6, Canada
| | - William L Stanford
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada; Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, 501 Smyth Road, Box 511., Ottawa, Ontario K1H 8L6, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, 501 Smyth Road, Box 511., Ottawa, Ontario K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 501 Smyth Road, Box 511., Ottawa, Ontario K1H 8L6, Canada
| | - Rita A Kandel
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Ave., Toronto, Ontario M5G 1X5, Canada.
| |
Collapse
|
11
|
Bos E, Doerga P, Breugem C, van Zuijlen P. The burned ear; possibilities and challenges in framework reconstruction and coverage. Burns 2016; 42:1387-1395. [DOI: 10.1016/j.burns.2016.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 01/20/2016] [Accepted: 02/09/2016] [Indexed: 10/21/2022]
|
12
|
Theodoropoulos JS, DeCroos AJN, Petrera M, Park S, Kandel RA. Mechanical stimulation enhances integration in an in vitro model of cartilage repair. Knee Surg Sports Traumatol Arthrosc 2016; 24:2055-64. [PMID: 25173505 DOI: 10.1007/s00167-014-3250-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 08/15/2014] [Indexed: 12/18/2022]
Abstract
PURPOSE (1) To characterize the effects of mechanical stimulation on the integration of a tissue-engineered construct in terms of histology, biochemistry and biomechanical properties; (2) to identify whether cells of the implant or host tissue were critical to implant integration; and (3) to study cells believed to be involved in lateral integration of tissue-engineered cartilage to host cartilage. We hypothesized that mechanical stimulation would enhance the integration of the repair implant with host cartilage in an in vitro integration model. METHODS Articular cartilage was harvested from 6- to 9-month-old bovine metacarpal-phalangeal joints. Constructs composed of tissue-engineered cartilage implanted into host cartilage were placed in spinner bioreactors and maintained on a magnetic stir plate at either 0 (static control) or 90 (experimental) rotations per minute (RPM). The constructs from both the static and spinner bioreactors were harvested after either 2 or 4 weeks of culture and evaluated histologically, biochemically, biomechanically and for gene expression. RESULTS The extent and strength of integration between tissue-engineered cartilage and native cartilage improved significantly with both time and mechanical stimulation. Integration did not occur if the implant was not viable. The presence of stimulation led to a significant increase in collagen content in the integration zone between host and implant at 2 weeks. The gene profile of cells in the integration zone differs from host cartilage demonstrating an increase in the expression of membrane type 1 matrix metalloproteinase (MT1-MMP), aggrecan and type II collagen. CONCLUSIONS This study shows that the integration of in vitro tissue-engineered implants with host tissue improves with mechanical stimulation. The findings of this study suggests that consideration should be given to implementing early loading (mechanical stimulation) into future in vivo studies investigating the long-term viability and integration of tissue-engineered cartilage for the treatment of cartilage injuries. This could simply be done through the use of continuous passive motion (CPM) in the post-operative period or through a more complex and structured rehabilitation program with a gradual increase in forces across the joint over time.
Collapse
Affiliation(s)
- John S Theodoropoulos
- University of Toronto Orthopaedic Sports Medicine Program, Mount Sinai Hospital and Women's College Hospital, Room 476C, 600 University Ave, Toronto, ON, M5G 1X5, Canada.
| | - Amritha J N DeCroos
- Bioengineering of Skeletal Tissues Team, Division of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Ave, Toronto, ON, M5G 1X5, Canada
| | - Massimo Petrera
- University of Toronto Orthopaedic Sports Medicine Program, Mount Sinai Hospital and Women's College Hospital, Room 476C, 600 University Ave, Toronto, ON, M5G 1X5, Canada
| | - Sam Park
- University of Toronto Orthopaedic Sports Medicine Program, Mount Sinai Hospital and Women's College Hospital, Room 476C, 600 University Ave, Toronto, ON, M5G 1X5, Canada
| | - Rita A Kandel
- Bioengineering of Skeletal Tissues Team, Division of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Ave, Toronto, ON, M5G 1X5, Canada
| |
Collapse
|
13
|
Self-patterning of adipose-derived mesenchymal stem cells and chondrocytes cocultured on hyaluronan-grafted chitosan surface. Biointerphases 2016; 11:011011. [PMID: 26916660 DOI: 10.1116/1.4942754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The articular cartilage, once injured, has a limited capacity for intrinsic repair. Preparation of functionally biocartilage substitutes in vitro for cartilage repair is an attractive concept with the recent advances in tissue engineering. In this study, adipose-derived adult stem cells (ADAS) and chondrocytes (Ch) were cocultured in different population ratios on the surface of hyaluronan-grafted chitosan (CS-HA) membranes. The two types of cells could self-assemble into cospheroids with different morphologies. In particular, when ADAS and Ch were cocultured at an initial ratio of 7:3 on CS-HA surface, the expression of chondrogenic markers was upregulated, leading to preferred chondrogenesis of the cospheroids. Therefore, using the ADAS/Ch 7:3 cospheroids derived on CS-HA surface instead of using only a single type of cells may be favorable for future therapeutic applications.
Collapse
|
14
|
Nazempour A, Van Wie BJ. Chondrocytes, Mesenchymal Stem Cells, and Their Combination in Articular Cartilage Regenerative Medicine. Ann Biomed Eng 2016; 44:1325-54. [PMID: 26987846 DOI: 10.1007/s10439-016-1575-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/17/2016] [Indexed: 01/05/2023]
Abstract
Articular cartilage (AC) is a highly organized connective tissue lining, covering the ends of bones within articulating joints. Its highly ordered structure is essential for stable motion and provides a frictionless surface easing load transfer. AC is vulnerable to lesions and, because it is aneural and avascular, it has limited self-repair potential which often leads to osteoarthritis. To date, no fully successful treatment for osteoarthritis has been reported. Thus, the development of innovative therapeutic approaches is desperately needed. Autologous chondrocyte implantation, the only cell-based surgical intervention approved in the United States for treating cartilage defects, has limitations because of de-differentiation of articular chondrocytes (AChs) upon in vitro expansion. De-differentiation can be abated if initial populations of AChs are co-cultured with mesenchymal stem cells (MSCs), which not only undergo chondrogenesis themselves but also support chondrocyte vitality. In this review we summarize studies utilizing AChs, non-AChs, and MSCs and compare associated outcomes. Moreover, a comprehensive set of recent human studies using chondrocytes to direct MSC differentiation, MSCs to support chondrocyte re-differentiation and proliferation in co-culture environments, and exploratory animal intra- and inter-species studies are systematically reviewed and discussed in an innovative manner allowing side-by-side comparisons of protocols and outcomes. Finally, a comprehensive set of recommendations are made for future studies.
Collapse
Affiliation(s)
- A Nazempour
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164-6515, USA
| | - B J Van Wie
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164-6515, USA.
| |
Collapse
|
15
|
Pomerantseva I, Bichara DA, Tseng A, Cronce MJ, Cervantes TM, Kimura AM, Neville CM, Roscioli N, Vacanti JP, Randolph MA, Sundback CA. Ear-Shaped Stable Auricular Cartilage Engineered from Extensively Expanded Chondrocytes in an Immunocompetent Experimental Animal Model. Tissue Eng Part A 2015; 22:197-207. [PMID: 26529401 DOI: 10.1089/ten.tea.2015.0173] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Advancement of engineered ear in clinical practice is limited by several challenges. The complex, largely unsupported, three-dimensional auricular neocartilage structure is difficult to maintain. Neocartilage formation is challenging in an immunocompetent host due to active inflammatory and immunological responses. The large number of autologous chondrogenic cells required for engineering an adult human-sized ear presents an additional challenge because primary chondrocytes rapidly dedifferentiate during in vitro culture. The objective of this study was to engineer a stable, human ear-shaped cartilage in an immunocompetent animal model using expanded chondrocytes. The impact of basic fibroblast growth factor (bFGF) supplementation on achieving clinically relevant expansion of primary sheep chondrocytes by in vitro culture was determined. Chondrocytes expanded in standard medium were either combined with cryopreserved, primary passage 0 chondrocytes at the time of scaffold seeding or used alone as control. Disk and human ear-shaped scaffolds were made from porous collagen; ear scaffolds had an embedded, supporting titanium wire framework. Autologous chondrocyte-seeded scaffolds were implanted subcutaneously in sheep after 2 weeks of in vitro incubation. The quality of the resulting neocartilage and its stability and retention of the original ear size and shape were evaluated at 6, 12, and 20 weeks postimplantation. Neocartilage produced from chondrocytes that were expanded in the presence of bFGF was superior, and its quality improved with increased implantation time. In addition to characteristic morphological cartilage features, its glycosaminoglycan content was high and marked elastin fiber formation was present. The overall shape of engineered ears was preserved at 20 weeks postimplantation, and the dimensional changes did not exceed 10%. The wire frame within the engineered ear was able to withstand mechanical forces during wound healing and neocartilage maturation and prevented shrinkage and distortion. This is the first demonstration of a stable, ear-shaped elastic cartilage engineered from auricular chondrocytes that underwent clinical-scale expansion in an immunocompetent animal over an extended period of time.
Collapse
Affiliation(s)
- Irina Pomerantseva
- 1 Department of Surgery, Massachusetts General Hospital , Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts
| | - David A Bichara
- 2 Harvard Medical School , Boston, Massachusetts.,3 Plastic Surgery Research Laboratory, Massachusetts General Hospital , Boston, Massachusetts
| | - Alan Tseng
- 1 Department of Surgery, Massachusetts General Hospital , Boston, Massachusetts
| | - Michael J Cronce
- 1 Department of Surgery, Massachusetts General Hospital , Boston, Massachusetts
| | - Thomas M Cervantes
- 1 Department of Surgery, Massachusetts General Hospital , Boston, Massachusetts
| | - Anya M Kimura
- 1 Department of Surgery, Massachusetts General Hospital , Boston, Massachusetts
| | - Craig M Neville
- 1 Department of Surgery, Massachusetts General Hospital , Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts
| | | | - Joseph P Vacanti
- 1 Department of Surgery, Massachusetts General Hospital , Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts
| | - Mark A Randolph
- 2 Harvard Medical School , Boston, Massachusetts.,3 Plastic Surgery Research Laboratory, Massachusetts General Hospital , Boston, Massachusetts
| | - Cathryn A Sundback
- 1 Department of Surgery, Massachusetts General Hospital , Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
16
|
Lee WD, Hurtig MB, Pilliar RM, Stanford WL, Kandel RA. Engineering of hyaline cartilage with a calcified zone using bone marrow stromal cells. Osteoarthritis Cartilage 2015; 23:1307-15. [PMID: 25891750 DOI: 10.1016/j.joca.2015.04.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/19/2015] [Accepted: 04/08/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE In healthy joints, a zone of calcified cartilage (ZCC) provides the mechanical integration between articular cartilage and subchondral bone. Recapitulation of this architectural feature should serve to resist the constant shear force from the movement of the joint and prevent the delamination of tissue-engineered cartilage. Previous approaches to create the ZCC at the cartilage-substrate interface have relied on strategic use of exogenous scaffolds and adhesives, which are susceptible to failure by degradation and wear. In contrast, we report a successful scaffold-free engineering of ZCC to integrate tissue-engineered cartilage and a porous biodegradable bone substitute, using sheep bone marrow stromal cells (BMSCs) as the cell source for both cartilaginous zones. DESIGN BMSCs were predifferentiated to chondrocytes, harvested and then grown on a porous calcium polyphosphate substrate in the presence of triiodothyronine (T3). T3 was withdrawn, and additional predifferentiated chondrocytes were placed on top of the construct and grown for 21 days. RESULTS This protocol yielded two distinct zones: hyaline cartilage that accumulated proteoglycans and collagen type II, and calcified cartilage adjacent to the substrate that additionally accumulated mineral and collagen type X. Constructs with the calcified interface had comparable compressive strength to native sheep osteochondral tissue and higher interfacial shear strength compared to control without a calcified zone. CONCLUSION This protocol improves on the existing scaffold-free approaches to cartilage tissue engineering by incorporating a calcified zone. Since this protocol employs no xenogeneic material, it will be appropriate for use in preclinical large-animal studies.
Collapse
Affiliation(s)
- W D Lee
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada
| | - M B Hurtig
- Ontario Veterinary College, University of Guelph, 50 McGilvray Street, Guelph, Ontario N1G 2W1, Canada
| | - R M Pilliar
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada; Faculty of Dentistry, University of Toronto, 124 Edward St., Toronto, Ontario M5G 1G6, Canada
| | - W L Stanford
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada; Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, 501 Smyth Road, Box 511, Ottawa, Ontario K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 501 Smyth Road, Box 511, Ottawa, Ontario K1H 8L6, Canada.
| | - R A Kandel
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada; Department of Pathology and Laboratory Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, 600 University Ave., Toronto, Ontario M5G 1X5, Canada.
| |
Collapse
|
17
|
Taylor DW, Ahmed N, Parreno J, Lunstrum GP, Gross AE, Diamandis EP, Kandel RA. Collagen Type XII and Versican Are Present in the Early Stages of Cartilage Tissue Formation by Both Redifferentating Passaged and Primary Chondrocytes. Tissue Eng Part A 2015; 21:683-93. [DOI: 10.1089/ten.tea.2014.0103] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Drew W. Taylor
- BioEngineering of Skeletal Tissues Team, CIHR, Ottawa, Ontario, Canada
- Department of Pathology and Laboratory Medicine and Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Nazish Ahmed
- BioEngineering of Skeletal Tissues Team, CIHR, Ottawa, Ontario, Canada
- Department of Pathology and Laboratory Medicine and Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Justin Parreno
- Department of Pathology and Laboratory Medicine and Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | - Allan E. Gross
- Department of Pathology and Laboratory Medicine and Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Eleftherios P. Diamandis
- Department of Pathology and Laboratory Medicine and Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Rita A. Kandel
- BioEngineering of Skeletal Tissues Team, CIHR, Ottawa, Ontario, Canada
- Department of Pathology and Laboratory Medicine and Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Tseng A, Pomerantseva I, Cronce MJ, Kimura AM, Neville CM, Randolph MA, Vacanti JP, Sundback CA. Extensively Expanded Auricular Chondrocytes Form Neocartilage In Vivo. Cartilage 2014; 5:241-51. [PMID: 26069703 PMCID: PMC4335768 DOI: 10.1177/1947603514546740] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE Our goal was to engineer cartilage in vivo using auricular chondrocytes that underwent clinically relevant expansion and using methodologies that could be easily translated into health care practice. DESIGN Sheep and human chondrocytes were isolated from auricular cartilage biopsies and expanded in vitro. To reverse dedifferentiation, expanded cells were either mixed with cryopreserved P0 chondrocytes at the time of seeding onto porous collagen scaffolds or proliferated with basic fibroblast growth factor (bFGF). After 2-week in vitro incubation, seeded scaffolds were implanted subcutaneously in nude mice for 6 weeks. The neocartilage quality was evaluated histologically; DNA and glycosaminoglycans were quantified. Cell proliferation rates and collagen gene expression profiles were assessed. RESULTS Clinically sufficient over 500-fold chondrocyte expansion was achieved at passage 3 (P3); cell dedifferentiation was confirmed by the simultaneous COL1A1/3A1 gene upregulation and COL2A1 downregulation. The chondrogenic phenotype of sheep but not human P3 cells was rescued by addition of cryopreserved P0 chondrocytes. With bFGF supplementation, chondrocytes achieved clinically sufficient expansion at P2; COL2A1 expression was not rescued but COL1A1/3A1genes were downregulated. Although bFGF failed to rescue COL2A1 expression during chondrocyte expansion in vitro, elastic neocartilage with obvious collagen II expression was observed on porous collagen scaffolds after implantation in mice for 6 weeks. CONCLUSIONS Both animal and human auricular chondrocytes expanded with low-concentration bFGF supplementation formed high-quality elastic neocartilage on porous collagen scaffolds in vivo.
Collapse
Affiliation(s)
- Alan Tseng
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Center for Regenerative Medicine, Boston, MA, USA
| | - Irina Pomerantseva
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Center for Regenerative Medicine, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Michael J. Cronce
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Center for Regenerative Medicine, Boston, MA, USA
| | - Anya M. Kimura
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Center for Regenerative Medicine, Boston, MA, USA
| | - Craig M. Neville
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Center for Regenerative Medicine, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Mark A. Randolph
- Harvard Medical School, Boston, MA, USA,Plastic Surgery Research Laboratory, Massachusetts General Hospital, Boston, MA, USA
| | - Joseph P. Vacanti
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Center for Regenerative Medicine, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Cathryn A. Sundback
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA,Center for Regenerative Medicine, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Im GI. Coculture in Musculoskeletal Tissue Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:545-54. [DOI: 10.1089/ten.teb.2013.0731] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Gun-Il Im
- Department of Orthopaedics, Dongguk University Ilsan Hospital, Goyang, Korea
| |
Collapse
|
20
|
Somoza RA, Welter JF, Correa D, Caplan AI. Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:596-608. [PMID: 24749845 DOI: 10.1089/ten.teb.2013.0771] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Articular cartilage repair and regeneration provides a substantial challenge in Regenerative Medicine because of the high degree of morphological and mechanical complexity intrinsic to hyaline cartilage due, in part, to its extracellular matrix. Cartilage remains one of the most difficult tissues to heal; even state-of-the-art regenerative medicine technology cannot yet provide authentic cartilage resurfacing. Mesenchymal stem cells (MSCs) were once believed to be the panacea for cartilage repair and regeneration, but despite years of research, they have not fulfilled these expectations. It has been observed that MSCs have an intrinsic differentiation program reminiscent of endochondral bone formation, which they follow after exposure to specific reagents as a part of current differentiation protocols. Efforts have been made to avoid the resulting hypertrophic fate of MSCs; however, so far, none of these has recreated a fully functional articular hyaline cartilage without chondrocytes exhibiting a hypertrophic phenotype. We reviewed the current literature in an attempt to understand why MSCs have failed to regenerate articular cartilage. The challenges that must be overcome before MSC-based tissue engineering can become a front-line technology for successful articular cartilage regeneration are highlighted.
Collapse
Affiliation(s)
- Rodrigo A Somoza
- Department of Biology, Skeletal Research Center, Case Western Reserve University , Cleveland, Ohio
| | | | | | | |
Collapse
|
21
|
Alves da Silva ML, Costa-Pinto AR, Martins A, Correlo VM, Sol P, Bhattacharya M, Faria S, Reis RL, Neves NM. Conditioned medium as a strategy for human stem cells chondrogenic differentiation. J Tissue Eng Regen Med 2013; 9:714-23. [PMID: 24155167 DOI: 10.1002/term.1812] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/24/2013] [Indexed: 02/04/2023]
Abstract
Paracrine signalling from chondrocytes has been reported to increase the synthesis and expression of cartilage extracellular matrix (ECM) by stem cells. The use of conditioned medium obtained from chondrocytes for stimulating stem cells chondrogenic differentiation may be a very interesting alternative for moving into the clinical application of these cells, as chondrocytes could be partially replaced by stem cells for this type of application. In the present study we aimed to achieve chondrogenic differentiation of two different sources of stem cells using conditioned medium, without adding growth factors. We tested both human bone marrow-derived mesenchymal stem cells (hBSMCs) and human Wharton's jelly-derived stem cells (hWJSCs). Conditioned medium obtained from a culture of human articular chondrocytes was used to feed the cells during the experiment. Cultures were performed in previously produced three-dimensional (3D) scaffolds, composed of a blend of 50:50 chitosan:poly(butylene succinate). Both types of stem cells were able to undergo chondrogenic differentiation without the addition of growth factors. Cultures using hWJSCs showed significantly higher GAGs accumulation and expression of cartilage-related genes (aggrecan, Sox9 and collagen type II) when compared to hBMSCs cultures. Conditioned medium obtained from articular chondrocytes induced the chondrogenic differentiation of MSCs and ECM formation. Obtained results showed that this new strategy is very interesting and should be further explored for clinical applications.
Collapse
Affiliation(s)
- M L Alves da Silva
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's, PT Government Associated Laboratory, Braga, Guimarães, Portugal
| | - A R Costa-Pinto
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's, PT Government Associated Laboratory, Braga, Guimarães, Portugal
| | - A Martins
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's, PT Government Associated Laboratory, Braga, Guimarães, Portugal
| | - V M Correlo
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's, PT Government Associated Laboratory, Braga, Guimarães, Portugal
| | - P Sol
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's, PT Government Associated Laboratory, Braga, Guimarães, Portugal
| | - M Bhattacharya
- Department of Biosystems Engineering, University of Minnesota, Minneapolis, MN, USA
| | - S Faria
- CMAT, Mathematical Research Centre, Department of Mathematics and Applications, University of Minho, Guimarães, Portugal
| | - R L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's, PT Government Associated Laboratory, Braga, Guimarães, Portugal
| | - Nuno M Neves
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's, PT Government Associated Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
22
|
He X, Fu W, Zheng J. Cell sources for trachea tissue engineering: past, present and future. Regen Med 2013; 7:851-63. [PMID: 23164084 DOI: 10.2217/rme.12.96] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Trachea tissue engineering has been one of the most promising approaches to providing a potential clinical application for the treatment of long-segment tracheal stenosis. The sources of the cells are particularly important as the primary factor for tissue engineering. The use of appropriate cells seeded onto scaffolds holds huge promise as a means of engineering the trachea. Furthermore, appropriate cells would accelerate the regeneration of the tissue even without scaffolds. Besides autologous mature cells, various stem cells, including bone marrow-derived mesenchymal stem cells, adipose tissue-derived stem cells, umbilical cord blood-derived mesenchymal stem cells, amniotic fluid stem cells, embryonic stem cells and induced pluripotent stem cells, have received extensive attention in the field of trachea tissue engineering. Therefore, this article reviews the progress on different cell sources for engineering tracheal cartilage and epithelium, which can lead to a better selection and strategy for engineering the trachea.
Collapse
Affiliation(s)
- Xiaomin He
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong Fang Road, Shanghai 200127, China
| | | | | |
Collapse
|
23
|
Hendriks JAA, Moroni L, Riesle J, de Wijn JR, van Blitterswijk CA. The effect of scaffold-cell entrapment capacity and physico-chemical properties on cartilage regeneration. Biomaterials 2013; 34:4259-65. [PMID: 23489921 DOI: 10.1016/j.biomaterials.2013.02.060] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/20/2013] [Indexed: 11/16/2022]
Abstract
An important tenet in designing scaffolds for regenerative medicine consists in mimicking the dynamic mechanical properties of the tissues to be replaced to facilitate patient rehabilitation and restore daily activities. In addition, it is important to determine the contribution of the forming tissue to the mechanical properties of the scaffold during culture to optimize the pore network architecture. Depending on the biomaterial and scaffold fabrication technology, matching the scaffolds mechanical properties to articular cartilage can compromise the porosity, which hampers tissue formation. Here, we show that scaffolds with controlled and interconnected pore volume and matching articular cartilage dynamic mechanical properties, are indeed effective to support tissue regeneration by co-cultured primary and expanded chondrocyte (1:4). Cells were cultured on scaffolds in vitro for 4 weeks. A higher amount of cartilage specific matrix (ECM) was formed on mechanically matching (M) scaffolds after 28 days. A less protein adhesive composition supported chondrocytes rounded morphology, which contributed to cartilaginous differentiation. Interestingly, the dynamic stiffness of matching constructs remained approximately at the same value after culture, suggesting a comparable kinetics of tissue formation and scaffold degradation. Cartilage regeneration in matching scaffolds was confirmed subcutaneously in vivo. These results imply that mechanically matching scaffolds with appropriate physico-chemical properties support chondrocyte differentiation.
Collapse
Affiliation(s)
- J A A Hendriks
- Institute for BioMedical Technology (MIRA), University of Twente, Enschede, The Netherlands.
| | | | | | | | | |
Collapse
|
24
|
Leijten JC, Georgi N, Wu L, van Blitterswijk CA, Karperien M. Cell Sources for Articular Cartilage Repair Strategies: Shifting from Monocultures to Cocultures. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:31-40. [DOI: 10.1089/ten.teb.2012.0273] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jeroen C.H. Leijten
- Faculty of Science and Technology, Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Nicole Georgi
- Faculty of Science and Technology, Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Ling Wu
- Faculty of Science and Technology, Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Clemens A. van Blitterswijk
- Faculty of Science and Technology, Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Marcel Karperien
- Faculty of Science and Technology, Department of Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
25
|
Dai J, Wang J, Lu J, Zou D, Sun H, Dong Y, Yu H, Zhang L, Yang T, Zhang X, Wang X, Shen G. The effect of co-culturing costal chondrocytes and dental pulp stem cells combined with exogenous FGF9 protein on chondrogenesis and ossification in engineered cartilage. Biomaterials 2012; 33:7699-711. [PMID: 22841919 DOI: 10.1016/j.biomaterials.2012.07.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 07/08/2012] [Indexed: 01/09/2023]
Abstract
Dental pulp stem cells (DPSCs), which arise from cranial neural crest cells, are multipotent, making them a candidate for use in tissue engineering that may be especially useful for craniofacial tissues. Costal chondrocytes (CCs) can be easily obtained and demonstrate higher initial cell yields and expansion than articular chondrocytes. CCs have been found to retain chondrogenic capacity that can effectively repair articular defects. In this study, human CCs were co-cultured with human DPSCs, and the results showed that the CCs were able to supply a chondro-inductive niche that promoted the DPSCs to undergo chondrogenic differentiation and to enhance the formation of cartilage. Although CCs alone could not prevent the mineralization of chondro-differentiated DPSCs, CCs combined with exogenous FGF9 were able to simultaneously promote the chondrogenesis of DPSCs and partially inhibit their mineralization. Furthermore, FGF9 may activate this inhibition by binding to FGFR3 and enhancing the phosphorylation of ERK1/2 in DPSCs. Our results strongly suggest that the co-culture of CCs and DPSCs combined with exogenous FGF9 can simultaneously enhance chondrogenesis and partially inhibit ossification in engineered cartilage.
Collapse
Affiliation(s)
- Jiewen Dai
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Enhanced chondrogenesis in co-cultures with articular chondrocytes and mesenchymal stem cells. Biomaterials 2012; 33:6362-9. [PMID: 22695067 DOI: 10.1016/j.biomaterials.2012.05.042] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/20/2012] [Indexed: 12/25/2022]
Abstract
In this work, articular chondrocytes (ACs) and mesenchymal stem cells (MSCs) with 1:1 and 1:3 cell ratios were co-cultured in order to evaluate if a majority of primary ACs can be replaced with MSCs without detrimental effects on in vitro chondrogenesis. We further used a xenogeneic culture model to study if such co-cultures can result in redifferentiation of passaged ACs. Cells were cultured in porous scaffolds for four weeks and their cellularity, cartilage-like matrix formation and chondrogenic gene expression levels (collagen I and II, aggrecan) were measured. Constructs with primary bovine ACs had ~1.6 and 5.5 times higher final DNA and glycosaminoglycan contents, respectively, in comparison to those with culture expanded chondrocytes or MSCs harvested from the same animals. Equally robust chondrogenesis was also observed in co-cultures, even when up to 75% of primary ACs were initially replaced with MSCs. Furthermore, species-specific RT-PCR analysis indicated a gradual loss of MSCs in bovine-rabbit co-cultures. Finally, co-cultures using primary and culture expanded ACs resulted in similar outcomes. We conclude that the most promising cell source for cartilage engineering was the co-cultures, as the trophic effect of MSCs may highly increase the chondrogenic potential of ACs thus diminishing the problems with primary chondrocyte harvest and expansion.
Collapse
|
27
|
Taylor DW, Ahmed N, Hayes AJ, Ferguson P, Gross AE, Caterson B, Kandel RA. Hyaline cartilage tissue is formed through the co-culture of passaged human chondrocytes and primary bovine chondrocytes. J Histochem Cytochem 2012; 60:576-87. [PMID: 22610463 DOI: 10.1369/0022155412449018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To circumvent the problem of a sufficient number of cells for cartilage engineering, the authors previously developed a two-stage culture system to redifferentiate monolayer culture-expanded dedifferentiated human articular chondrocytes by co-culture with primary bovine chondrocytes (bP0). The aim of this study was to analyze the composition of the cartilage tissue formed in stage 1 and compare it with bP0 grown alone to determine the optimal length of the co-culture stage of the system. Biochemical data show that extracellular matrix accumulation was evident after 2 weeks of co-culture, which was 1 week behind the bP0 control culture. By 3 to 4 weeks, the amounts of accumulated proteoglycans and collagens were comparable. Expression of chondrogenic genes, Sox 9, aggrecan, and collagen type II, was also at similar levels by week 3 of culture. Immunohistochemical staining of both co-culture and control tissues showed accumulation of type II collagen, aggrecan, biglycan, decorin, and chondroitin sulfate in appropriate zonal distributions. These data indicate that co-cultured cells form cartilaginous tissue that starts to resemble that formed by bP0 after 3 weeks, suggesting that the optimal time to terminate the co-culture stage, isolate the now redifferentiated cells, and start stage 2 is just after 3 weeks.
Collapse
Affiliation(s)
- Drew W Taylor
- CIHR-BioEngineering of Skeletal Tissues Team, Mount Sinai Hospital, Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
28
|
St-Pierre JP, Wang Q, Li SQ, Pilliar RM, Kandel RA. Inorganic polyphosphate stimulates cartilage tissue formation. Tissue Eng Part A 2012; 18:1282-92. [PMID: 22429075 DOI: 10.1089/ten.tea.2011.0356] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Clinical utilization of tissue-engineered cartilage constructs has been limited by their inferior mechanical properties compared to native articular cartilage. A number of strategies have been investigated to increase the accumulation of major extracellular matrix components within in vitro-formed cartilage, including the administration of growth factors and mechanical stimulation. In this study, the anabolic effect of inorganic polyphosphates, a linear polymer of orthophosphate residues linked by phosphoanhydride bonds, was demonstrated in both chondrocyte cultures and native articular cartilage cultured ex vivo. Compared to untreated controls, polyphosphate treatment of three-dimensional primary chondrocyte cultures induced increased glycosaminoglycan and collagen accumulation in a concentration- and chain length-dependent manner. This effect was transient, because chondrocytes express exopolyphosphatases that hydrolyze polyphosphate. The anabolic effect of polyphosphates was accompanied by a lower rate of DNA increase within the chondrocyte cultures treated with inorganic polyphosphate. Inorganic polyphosphate enhances cartilage matrix accumulation and is a promising approach to improve the quality of tissue-engineered cartilage constructs.
Collapse
Affiliation(s)
- Jean-Philippe St-Pierre
- CIHR BioEngineering of Skeletal Tissues Team, Mount Sinai Hospital and University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
29
|
St-Pierre JP, Gan L, Wang J, Pilliar RM, Grynpas MD, Kandel RA. The incorporation of a zone of calcified cartilage improves the interfacial shear strength between in vitro-formed cartilage and the underlying substrate. Acta Biomater 2012; 8:1603-15. [PMID: 22222151 DOI: 10.1016/j.actbio.2011.12.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/13/2011] [Accepted: 12/14/2011] [Indexed: 01/16/2023]
Abstract
A major challenge for cartilage tissue engineering remains the proper integration of constructs with surrounding tissues in the joint. Biphasic osteochondral constructs that can be anchored in a joint through bone ingrowth partially address this requirement. In this study, a methodology was devised to generate a cell-mediated zone of calcified cartilage (ZCC) between the in vitro-formed cartilage and a porous calcium polyphosphate (CPP) bone substitute in an attempt to improve the mechanical integrity of that interface. To do so, a calcium phosphate (CaP) film was deposited on CPP by a sol-gel process to prevent the accumulation of polyphosphates and associated inhibition of mineralization as the substrate degrades. Cartilage formed in vitro on the top surface of CaP-coated CPP by deep-zone chondrocytes was histologically and biochemically comparable to that formed on uncoated CPP. Furthermore, the mineral in the ZCC was similar in crystal structure, morphology and length to that formed on uncoated CPP and native articular cartilage. The generation of a ZCC at the cartilage-CPP interface led to a 3.3-fold increase in the interfacial shear strength of biphasic constructs. Improved interfacial strength of these constructs may be critical to their clinical success for the repair of large cartilage defects.
Collapse
|
30
|
Acharya C, Adesida A, Zajac P, Mumme M, Riesle J, Martin I, Barbero A. Enhanced chondrocyte proliferation and mesenchymal stromal cells chondrogenesis in coculture pellets mediate improved cartilage formation. J Cell Physiol 2011; 227:88-97. [PMID: 22025108 DOI: 10.1002/jcp.22706] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this study, we aimed at investigating the interactions between primary chondrocytes and mesenchymal stem/stromal cells (MSC) accounting for improved chondrogenesis in coculture systems. Expanded MSC from human bone marrow (BM-MSC) or adipose tissue (AT-MSC) were cultured in pellets alone (monoculture) or with primary human chondrocytes from articular (AC) or nasal (NC) cartilage (coculture). In order to determine the reached cell number and phenotype, selected pellets were generated by combining: (i) human BM-MSC with bovine AC, (ii) BM-MSC from HLA-A2+ with AC from HLA-A2- donors, or (iii) human green fluorescent protein transduced BM-MSC with AC. Human BM-MSC and AC were also cultured separately in transwells. Resulting tissues and/or isolated cells were assessed immunohistologically, biochemically, cytofluorimetrically, and by RT-PCR. Coculture of NC or AC (25%) with BM-MSC or AT-MSC (75%) in pellets resulted in up to 1.6-fold higher glycosaminoglycan content than what would be expected based on the relative percentages of the different cell types. This effect was not observed in the transwell model. BM-MSC decreased in number (about fivefold) over time and, if cocultured with chondrocytes, increased type II collagen and decreased type X collagen expression. Instead, AC increased in number (4.2-fold) if cocultured with BM-MSC and maintained a differentiated phenotype. Chondro-induction in MSC-chondrocyte coculture is a robust process mediated by two concomitant effects: MSC-induced chondrocyte proliferation and chondrocyte-enhanced MSC chondrogenesis. The identified interactions between progenitor and mature cell populations may lead to the efficient use of freshly harvested chondrocytes for ex vivo cartilage engineering or in situ cartilage repair.
Collapse
|
31
|
Tan AR, Dong EY, Andry JP, Bulinski JC, Ateshian GA, Hung CT. Coculture of engineered cartilage with primary chondrocytes induces expedited growth. Clin Orthop Relat Res 2011; 469:2735-43. [PMID: 21267800 PMCID: PMC3171525 DOI: 10.1007/s11999-011-1772-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Soluble factors released from chondrocytes can both enhance and induce chondrocyte-like behavior in cocultured dedifferentiated cells. The ability to similarly prime and modulate biosynthetic activity of differentiated cells encapsulated in a three-dimensional environment is unknown. QUESTIONS/PURPOSES To understand the effect of coculture on engineered cartilage, we posed three hypotheses: (1) coculturing with a monolayer of chondrocytes ("chondrocyte feeder layer") expedites and increases engineered tissue growth; (2) expedited growth arises from paracrine effects; and (3) these effects are dependent on the specific morphology and expression of the two-dimensional feeder cells. METHODS In three separate studies, chondrocyte-laden hydrogels were cocultured with chondrocyte feeder layers. Mechanical properties and biochemical content were quantified to evaluate tissue properties. Histology and immunohistochemistry stains were observed to visualize each constituent's distribution and organization. RESULTS Coculture with a chondrocyte feeder layer led to stiffer tissue constructs (Young's modulus and dynamic modulus) with greater amounts of glycosaminoglycan and collagen. This was dependent on paracrine signaling between the two populations of cells and was directly modulated by the rounded morphology and expression of the feeder cell monolayer. CONCLUSIONS These findings suggest a potential need to prime and modulate tissues before implantation and present novel strategies for enhancing medium formulations using soluble factors released by feeder cells. CLINICAL RELEVANCE Determining the soluble factors present in the coculture system can enhance a chondrogenic medium formulation for improved growth of cartilage substitutes. The feeder layer strategy described here may also be used to prime donor cartilage allografts before implantation to increase their success in vivo.
Collapse
Affiliation(s)
- Andrea R. Tan
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027 USA
| | - Elizabeth Y. Dong
- Department of Biological Sciences, Columbia University, New York, NY USA
| | - James P. Andry
- Department of Orthopaedic Surgery, St Luke’s-Roosevelt Hospital Center, New York, NY USA
| | - J. Chloë Bulinski
- Department of Biological Sciences, Columbia University, New York, NY USA
| | - Gerard A. Ateshian
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027 USA
| | - Clark T. Hung
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027 USA
| |
Collapse
|
32
|
Lee WD, Hurtig MB, Kandel RA, Stanford WL. Membrane Culture of Bone Marrow Stromal Cells Yields Better Tissue Than Pellet Culture for Engineering Cartilage-Bone Substitute Biphasic Constructs in a Two-Step Process. Tissue Eng Part C Methods 2011; 17:939-48. [DOI: 10.1089/ten.tec.2011.0147] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Whitaik David Lee
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Mark B. Hurtig
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Rita A. Kandel
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - William L. Stanford
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
33
|
Surrao DC, Khan AA, McGregor AJ, Amsden BG, Waldman SD. Can Microcarrier-Expanded Chondrocytes Synthesize Cartilaginous TissueIn Vitro? Tissue Eng Part A 2011; 17:1959-67. [DOI: 10.1089/ten.tea.2010.0434] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Denver C. Surrao
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
- Human Mobility Research Centre, Kingston General Hospital, Kingston, Ontario, Canada
| | - Aasma A. Khan
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
- Human Mobility Research Centre, Kingston General Hospital, Kingston, Ontario, Canada
| | - Aaron J. McGregor
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
- Human Mobility Research Centre, Kingston General Hospital, Kingston, Ontario, Canada
| | - Brian G. Amsden
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
- Human Mobility Research Centre, Kingston General Hospital, Kingston, Ontario, Canada
| | - Stephen D. Waldman
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
- Human Mobility Research Centre, Kingston General Hospital, Kingston, Ontario, Canada
- Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|