1
|
Leite CBG, Ormsby RT, Mekhail J, Charles JF, Görtz S, Merkely G, Lattermann C. Culturing Osteochondral Explants Under Rotary Shaking or After Removing Bone Marrow Elements Increases Explant Cellular Viability. Am J Sports Med 2024; 52:2384-2390. [PMID: 39101736 DOI: 10.1177/03635465241254401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
BACKGROUND Reduced viability in the deepest zones of osteochondral allografts (OCAs) can weaken the subchondral interface, potentially increasing the risk of failure. This reduction may result from nutritional imbalances due to uneven media distribution or interference from bone marrow elements. PURPOSE To investigate whether culturing OCAs using a rotary shaker or removing the bone marrow elements would increase graft cellular viability. STUDY DESIGN Controlled laboratory study. METHODS Bovine osteochondral explants were stored for 28 days at 4°C under 3 different conditions (n = 6 explants per group): static (control group), rotary shaker at 150 rpm (shaker group), and static after removal of bone marrow elements using a Waterpik device (Waterpik group). Chondrocyte viability was assessed using live/dead staining across the entire tissue and in each zone (superficial, middle, deep). Subchondral bone viability was assessed using TUNEL (terminal deoxynucleotidal transferase-mediated biotin-deoxyuridine triphosphate nick-end labeling) staining to detect apoptotic cells. RESULTS Both shaker (64.2%; P = .010) and Waterpik (65.6%; P = .005) conditions showed significantly higher chondrocyte viability compared with control (49.8%). When samples were analyzed by zone, the shaker and Waterpik groups displayed higher cellular viability at the middle zone (shaker = 60.6%, P < .001; Waterpik = 56.1%, P < .001) and deep zone (shaker = 63.1%, P = .018; Waterpik = 61.5%, P = .025) than the control group (25.6% at middle zone; 32.8% at deep zone). Additionally, shaker (56.7%; P = .018) and Waterpik (51.4%; P = .007) groups demonstrated a lower percentage of apoptotic cells in subchondral bone compared with control (88.0%). No significant differences were observed between the shaker and Waterpik groups in any of the analyses. CONCLUSION Both rotary shaking and removal of bone marrow elements during storage of osteochondral explants led to higher chondrocyte viability at the middle and deep zones of the graft compared with the static storage condition. Enhancing nutrition delivery to the graft could improve its quality, potentially improving outcomes of OCA transplantation. CLINICAL RELEVANCE The use of a rotary shaker or the removal of bone marrow elements may significantly improve the culture conditions, increasing graft viability and integrity after OCA storage.
Collapse
Affiliation(s)
- Chilan B G Leite
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Renee T Ormsby
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Julie Mekhail
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Julia F Charles
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Simon Görtz
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gergo Merkely
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian Lattermann
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Tabbaa SM, Guilak F, Sah RL, Bugbee WD. Fresh Osteochondral and Chondral Allograft Preservation and Storage Media: A Systematic Review of the Literature. Am J Sports Med 2022; 50:1702-1716. [PMID: 34310184 DOI: 10.1177/03635465211016832] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Storage procedures and parameters have a significant influence on the health of fresh osteochondral allograft (OCA) cartilage. To date, there is a lack of agreement on the optimal storage conditions for OCAs. PURPOSE To systematically review the literature on (1) experimental designs and reporting of key variables of ex vivo (laboratory) studies, (2) the effects of various storage solutions and conditions on cartilage health ex vivo, and (3) in vivo animal studies and human clinical studies evaluating the effect of fresh OCA storage on osteochondral repair and outcomes. STUDY DESIGN Systematic review; Level of evidence, 5. METHODS A systematic review was performed using the PubMed, Embase, and Cochrane databases. The inclusion criteria were laboratory studies (ex vivo) reporting cartilage health outcomes after prolonged storage (>3 days) of fresh osteochondral or chondral tissue explants and animal studies (in vivo) reporting outcomes of fresh OCA. The inclusion criteria for clinical studies were studies (>5 patients) that analyzed the relationship of storage time or chondrocyte viability at time of implantation to patient outcomes. Frozen, cryopreserved, decellularized, synthetic, or tissue-engineered grafts were excluded. RESULTS A total of 55 peer-reviewed articles met the inclusion criteria. Ex vivo studies reported a spectrum of tissue sources and storage solutions and conditions, although the majority of studies lacked complete reporting of key variables, including storage solution formula and environmental conditions. The effect of various conditions (eg, temperature) and storage solutions on cartilage health were inconsistent. Although 60% of animal models suggest that storage time may influence outcomes and 80% indicate inferior outcomes with frozen OCA as compared with fresh OCA, 75% of clinical studies report no correlation between storage time and outcomes. CONCLUSION Given the variability in experimental designs and lack of reporting across studies, it is still not possible to determine optimal storage conditions, although animal studies suggest that storage time and chondrocyte viability influence osteochondral repair outcomes. A list of recommendations was developed to encourage reporting of key variables, such as media formulation, environmental factors, and methodologies used. High-quality clinical data are needed to investigate the effects of storage and graft health on outcomes.
Collapse
Affiliation(s)
- Suzanne M Tabbaa
- University of California, San Francisco, San Francisco, California, USA
| | | | | | | |
Collapse
|
3
|
Denbeigh JM, Hevesi M, Paggi CA, Resch ZT, Bagheri L, Mara K, Arani A, Zhang C, Larson AN, Saris DB, Krych AJ, van Wijnen AJ. Modernizing Storage Conditions for Fresh Osteochondral Allografts by Optimizing Viability at Physiologic Temperatures and Conditions. Cartilage 2021; 13:280S-292S. [PMID: 31777278 PMCID: PMC8808875 DOI: 10.1177/1947603519888798] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Objective. Osteochondral allograft (OCA) transplantation has demonstrated good long-term outcomes in treatment of cartilage defects. Viability, a key factor in clinical success, decreases with peri-implantation storage at 4°C during pathogen testing, matching logistics, and transportation. Modern, physiologic storage conditions may improve viability and enhance outcomes. Design. Osteochondral specimens from total knee arthroplasty patients (6 males, 5 females, age 56.4 ± 2.2 years) were stored in media and incubated at normoxia (21% O2) at 22°C or 37°C, and hypoxia (2% O2) at 37°C. Histology, live-dead staining, and quantitative polymerase chain reaction (qPCR) was performed 24 hours after harvest and following 7 days of incubation. Tissue architecture, cell viability, and gene expression were analyzed. Results. No significant viability or gene expression deterioration of cartilage was observed 1-week postincubation at 37°C, with or without hypoxia. Baseline viable cell density (VCD) was 94.0% ± 2.7% at day 1. At day 7, VCD was 95.1% (37°C) with normoxic storage and 92.2% (37°C) with hypoxic storage (P ≥ 0.27). Day 7 VCD (22°C) incubation was significantly lower than both the baseline and 37°C storage values (65.6%; P < 0.01). COL1A1, COL1A2, and ACAN qPCR expression was unchanged from baseline (P < 0.05) for all storage conditions at day 7, while CD163 expression, indicative of inflammatory macrophages and monocytes, was significantly lower in the 37°C groups (P < 0.01). Conclusion. Physiologic storage at 37°C demonstrates improved chondrocyte viability and metabolism, and maintained collagen expression compared with storage at 22°C. These novel findings guide development of a method to optimize short-term fresh OCA storage, which may lead to improved clinical results.
Collapse
Affiliation(s)
| | - Mario Hevesi
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA
| | - Carlo A. Paggi
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA
| | - Zachary T. Resch
- Center for Regenerative Medicine, Mayo
Clinic, Rochester, MN, USA
| | - Leila Bagheri
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA
| | - Kristin Mara
- Department of Biomedical Statistics and
Informatics, Mayo Clinic, Rochester, MN, USA
| | - Arvin Arani
- Department of Radiology, Mayo Clinic,
Rochester, MN, USA
| | - Chenghao Zhang
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA
| | - A. Noelle Larson
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA
| | - Daniel B.F. Saris
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA,Department of Orthopedics, University
Medical Center Utrecht, Utrecht, Netherlands,Reconstructive Medicine, University of
Twente, Enschede, Netherlands
| | - Aaron J. Krych
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA,Sports Medicine Center, Mayo Clinic,
Rochester, MN, USA
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA,Andre J. van Wijnen PhD, Department of
Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
4
|
Meloni GR, Farran A, Mohanraj B, Guehring H, Cocca R, Rabut E, Mauck RL, Dodge GR. Recombinant human FGF18 preserves depth-dependent mechanical inhomogeneity in articular cartilage. Eur Cell Mater 2019; 38:23-34. [PMID: 31393594 PMCID: PMC7273689 DOI: 10.22203/ecm.v038a03] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Articular cartilage is a specialised tissue that has a relatively homogenous endogenous cell population but a diverse extracellular matrix (ECM), with depth-dependent mechanical properties. Repair of this tissue remains an elusive clinical goal, with biological interventions preferred to arthroplasty in younger patients. Osteochondral transplantation (OCT) has emerged for the treatment of cartilage defects and osteoarthritis. Fresh allografts stored at 4 °C have been utilised, though matrix and cell viability loss remains an issue. To address this, several studies have developed media formulations to maintain cartilage explants in vitro. One promising factor for these applications is sprifermin, a human-recombinant fibroblast growth factor-18, which stimulates chondrocyte proliferation and matrix synthesis and is in clinical trials for the treatment of osteoarthritis. The study hypothesis was that addition of sprifermin during storage would maintain the unique depth-dependent mechanical profile of articular cartilage explants, a feature not often evaluated. Explants were maintained for up to 6 weeks with or without a weekly 24 h exposure to sprifermin (100 ng/mL) and the compressive modulus was assessed. Results showed that sprifermin-treated samples maintained their depth-dependent mechanical profile through 3 weeks, whereas untreated samples lost their mechanical integrity over 1 week of culture. Sprifermin also affected ECM balance by maintaining the levels of extracellular collagen and suppressing matrix metalloproteinase production. These findings support the use of sprifermin as a medium additive for OCT allografts during in vitro storage and present a potential mechanism where sprifermin may impact a functional characteristic of articular cartilage in repair strategies.
Collapse
Affiliation(s)
- Gregory R. Meloni
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Alexandra Farran
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bhavana Mohanraj
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Ryan Cocca
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emilie Rabut
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert L. Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA,Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George R. Dodge
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA,Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Maglio M, Tschon M, Sicuro L, Lolli R, Fini M. Osteochondral tissue cultures: Between limits and sparks, the next step for advanced in vitro models. J Cell Physiol 2018; 234:5420-5435. [DOI: 10.1002/jcp.27457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/29/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Melania Maglio
- Laboratory of Preclinical and Surgical Studies, Rizzoli RIT Department IRCCS Rizzoli Orthopaedic Institute Bologna Italy
| | - Matilde Tschon
- Laboratory of Preclinical and Surgical Studies, Rizzoli RIT Department IRCCS Rizzoli Orthopaedic Institute Bologna Italy
| | - Laura Sicuro
- Laboratory of Preclinical and Surgical Studies, Rizzoli RIT Department IRCCS Rizzoli Orthopaedic Institute Bologna Italy
| | - Roberta Lolli
- Laboratory of Preclinical and Surgical Studies, Rizzoli RIT Department IRCCS Rizzoli Orthopaedic Institute Bologna Italy
| | - Milena Fini
- Laboratory of Biomechanics and Technology Innovation IRCCS IRCCS Rizzoli Orthopaedic Institute Bologna Italy
| |
Collapse
|
6
|
Schmidt KJ, Tírico LE, McCauley JC, Bugbee WD. Fresh Osteochondral Allograft Transplantation: Is Graft Storage Time Associated With Clinical Outcomes and Graft Survivorship? Am J Sports Med 2017; 45:2260-2266. [PMID: 28530850 DOI: 10.1177/0363546517704846] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Regulatory concerns and the popularity of fresh osteochondral allograft (OCA) transplantation have led to a need for prolonged viable storage of osteochondral grafts. Tissue culture media allow a longer storage time but lead to chondrocyte death within the tissue. The long-term clinical consequence of prolonged storage is unknown. HYPOTHESIS Patients transplanted with OCAs with a shorter storage time would have lower failure rates and better clinical outcomes than those transplanted with OCAs with prolonged storage. STUDY DESIGN Cohort study; Level of evidence, 3. METHODS A matched-pair study was performed of 75 patients who received early release grafts (mean storage, 6.3 days [range, 1-14 days]) between 1997 and 2002, matched 1:1 by age, diagnosis, and graft size, with 75 patients who received late release grafts (mean storage time, 20.0 days [range, 16-28 days]) from 2002 to 2008. The mean age was 33.5 years, and the median graft size was 6.3 cm2. All patients had a minimum 2-year follow-up. Evaluations included pain, satisfaction, function, failures, and reoperations. Outcome measures included the modified Merle d'Aubigné-Postel (18-point) scale, International Knee Documentation Committee (IKDC) form, and Knee Society function (KS-F) scale. Clinical failure was defined as revision OCA transplantation or conversion to arthroplasty. RESULTS Among patients with grafts remaining in situ, the mean follow-up was 11.9 years (range, 2.0-16.8 years) and 7.8 years (range, 2.3-11.1 years) for the early and late release groups, respectively. OCA failure occurred in 25.3% (19/75) of patients in the early release group and 12.0% (9/75) of patients in the late release group ( P = .036). The median time to failure was 3.5 years (range, 1.7-13.8 years) and 2.7 years (range, 0.3-11.1 years) for the early and late release groups, respectively. The 5-year survivorship of OCAs was 85% for the early release group and 90% for the late release group ( P = .321). No differences in postoperative pain and function were noted between the groups. Ninety-one percent of the early release group and 93% of the late release group reported satisfaction with OCA results. CONCLUSION The transplantation of OCA tissue with prolonged storage is safe and effective for large osteochondral lesions of the knee and has similar clinical outcomes and satisfaction to the transplantation of early release grafts.
Collapse
Affiliation(s)
| | - Luís E Tírico
- Shiley Center for Orthopaedic Research and Education, Scripps Clinic, La Jolla, California, USA
| | - Julie C McCauley
- Shiley Center for Orthopaedic Research and Education, Scripps Clinic, La Jolla, California, USA
| | - William D Bugbee
- Division of Orthopaedic Surgery, Scripps Clinic, La Jolla, California, USA
| |
Collapse
|
7
|
Bugbee WD, Pallante-Kichura AL, Görtz S, Amiel D, Sah R. Osteochondral allograft transplantation in cartilage repair: Graft storage paradigm, translational models, and clinical applications. J Orthop Res 2016; 34:31-8. [PMID: 26234194 PMCID: PMC4732516 DOI: 10.1002/jor.22998] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/23/2015] [Indexed: 02/04/2023]
Abstract
The treatment of articular cartilage injury and disease has become an increasingly relevant part of orthopaedic care. Articular cartilage transplantation, in the form of osteochondral allografting, is one of the most established techniques for restoration of articular cartilage. Our research efforts over the last two decades have supported the transformation of this procedure from experimental "niche" status to a cornerstone of orthopaedic practice. In this Kappa Delta paper, we describe our translational and clinical science contributions to this transformation: (1) to enhance the ability of tissue banks to process and deliver viable tissue to surgeons and patients, (2) to improve the biological understanding of in vivo cartilage and bone remodeling following osteochondral allograft (OCA) transplantation in an animal model system, (3) to define effective surgical techniques and pitfalls, and (4) to identify and clarify clinical indications and outcomes. The combination of coordinated basic and clinical studies is part of our continuing comprehensive academic OCA transplant program. Taken together, the results have led to the current standards for OCA processing and storage prior to implantation and also novel observations and mechanisms of the biological and clinical behavior of OCA transplants in vivo. Thus, OCA transplantation is now a successful and increasingly available treatment for patients with disabling osteoarticular cartilage pathology.
Collapse
Affiliation(s)
- William D. Bugbee
- Division of Orthopaedic Surgery, Scripps Clinic, La Jolla, CA,Department of Orthopaedic Surgery, University of California-San Diego, San Diego, CA
| | | | - Simon Görtz
- Department of Orthopaedic Surgery, University of California-San Diego, San Diego, CA
| | - David Amiel
- Department of Orthopaedic Surgery, University of California-San Diego, San Diego, CA
| | - Robert Sah
- Department of Orthopaedic Surgery, University of California-San Diego, San Diego, CA,Department of Bioengineering, University of California-San Diego, La Jolla, CA
| |
Collapse
|
8
|
Manzano S, Manzano R, Doblaré M, Doweidar MH. Altered swelling and ion fluxes in articular cartilage as a biomarker in osteoarthritis and joint immobilization: a computational analysis. J R Soc Interface 2015; 12:20141090. [PMID: 25392400 DOI: 10.1098/rsif.2014.1090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In healthy cartilage, mechano-electrochemical phenomena act together to maintain tissue homeostasis. Osteoarthritis (OA) and degenerative diseases disrupt this biological equilibrium by causing structural deterioration and subsequent dysfunction of the tissue. Swelling and ion flux alteration as well as abnormal ion distribution are proposed as primary indicators of tissue degradation. In this paper, we present an extension of a previous three-dimensional computational model of the cartilage behaviour developed by the authors to simulate the contribution of the main tissue components in its behaviour. The model considers the mechano-electrochemical events as concurrent phenomena in a three-dimensional environment. This model has been extended here to include the effect of repulsion of negative charges attached to proteoglycans. Moreover, we have studied the fluctuation of these charges owning to proteoglycan variations in healthy and pathological articular cartilage. In this sense, standard patterns of healthy and degraded tissue behaviour can be obtained which could be a helpful diagnostic tool. By introducing measured properties of unhealthy cartilage into the computational model, the severity of tissue degeneration can be predicted avoiding complex tissue extraction and subsequent in vitro analysis. In this work, the model has been applied to monitor and analyse cartilage behaviour at different stages of OA and in both short (four, six and eight weeks) and long-term (11 weeks) fully immobilized joints. Simulation results showed marked differences in the corresponding swelling phenomena, in outgoing cation fluxes and in cation distributions. Furthermore, long-term immobilized patients display similar swelling as well as fluxes and distribution of cations to patients in the early stages of OA, thus, preventive treatments are highly recommended to avoid tissue deterioration.
Collapse
Affiliation(s)
- Sara Manzano
- Group of Structural Mechanics and Materials Modelling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Spain Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Raquel Manzano
- LAGENBIO-I3A, Veterinary School, University of Zaragoza, Spain
| | - Manuel Doblaré
- Group of Structural Mechanics and Materials Modelling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Spain Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Mohamed Hamdy Doweidar
- Group of Structural Mechanics and Materials Modelling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Spain Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| |
Collapse
|
9
|
Pallante AL, Görtz S, Chen AC, Healey RM, Chase DC, Ball ST, Amiel D, Sah RL, Bugbee WD. Treatment of articular cartilage defects in the goat with frozen versus fresh osteochondral allografts: effects on cartilage stiffness, zonal composition, and structure at six months. J Bone Joint Surg Am 2012; 94:1984-95. [PMID: 23138239 PMCID: PMC3489067 DOI: 10.2106/jbjs.k.00439] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Understanding the effectiveness of frozen as compared with fresh osteochondral allografts at six months after surgery and the resultant consequences of traditional freezing may facilitate in vivo maintenance of cartilage integrity. Our hypothesis was that the state of the allograft at implantation affects its performance after six months in vivo. METHODS The effect of frozen as compared with fresh storage on in vivo allograft performance was determined for osteochondral allografts that were transplanted into seven recipient goats and analyzed at six months. Allograft performance was assessed by examining osteochondral structure (cartilage thickness, fill, surface location, surface degeneration, and bone-cartilage interface location), zonal cartilage composition (cellularity, matrix content), and cartilage biomechanical function (stiffness). Relationships between cartilage stiffness or cartilage composition and surface degeneration were assessed with use of linear regression. RESULTS Fresh allografts maintained cartilage load-bearing function, while also maintaining zonal organization of cartilage cellularity and matrix content, compared with frozen allografts. Overall, allograft performance was similar between fresh allografts and nonoperative controls. However, cartilage stiffness was approximately 80% lower (95% confidence interval [CI], 73% to 87%) in the frozen allografts than in the nonoperative controls or fresh allografts. Concomitantly, in frozen allografts, matrix content and cellularity were approximately 55% (95% CI, 22% to 92%) and approximately 96% (95% CI, 94% to 99%) lower, respectively, than those in the nonoperative controls and fresh allografts. Cartilage stiffness correlated positively with cartilage cellularity and matrix content, and negatively with surface degeneration. CONCLUSIONS Maintenance of cartilage load-bearing function in allografts is associated with zonal maintenance of cartilage cellularity and matrix content. In this animal model, frozen allografts displayed signs of failure at six months, with cartilage softening, loss of cells and matrix, and/or graft subsidence, supporting the importance of maintaining cell viability during allograft storage and suggesting that outcomes at six months may be indicative of long-term (dys)function. CLINICAL RELEVANCE Fresh versus frozen allografts represent the "best versus worst" conditions with respect to chondrocyte viability, but "difficult versus simple" with respect to acquisition and distribution. The outcomes described from these two conditions expand the current understanding of in vivo cartilage remodeling and describe structural properties (initial graft subsidence), which may have implications for impending graft failure.
Collapse
Affiliation(s)
- Andrea L. Pallante
- Department of Bioengineering, University of California at San Diego, 9500 Gilman Drive, MC 0412, La Jolla, CA 92093-0412
| | - Simon Görtz
- Department of Orthopaedic Surgery, University of California at San Diego, 200 West Arbor Drive, MC 8894, San Diego, CA 92103-8894
| | - Albert C. Chen
- Department of Bioengineering, University of California at San Diego, 9500 Gilman Drive, MC 0412, La Jolla, CA 92093-0412
| | - Robert M. Healey
- Department of Orthopaedic Surgery, University of California at San Diego, 9500 Gilman Drive, MC 0863, La Jolla, CA 92093-0863
| | - Derek C. Chase
- Department of Orthopaedic Surgery, University of California at San Diego, 200 West Arbor Drive, MC 8894, San Diego, CA 92103-8894
| | - Scott T. Ball
- Department of Orthopaedic Surgery, University of California at San Diego, 200 West Arbor Drive, MC 8894, San Diego, CA 92103-8894
| | - David Amiel
- Department of Orthopaedic Surgery, University of California at San Diego, 9500 Gilman Drive, MC 0863, La Jolla, CA 92093-0863
| | - Robert L. Sah
- Department of Bioengineering, University of California at San Diego, 9500 Gilman Drive, MC 0412, La Jolla, CA 92093-0412
| | - William D. Bugbee
- Division of Orthopaedic Surgery, Scripps Clinic, 10666 North Torrey Pines Road, MS 116, La Jolla, CA 92037. E-mail address:
| |
Collapse
|
10
|
Pallante AL, Chen AC, Ball ST, Amiel D, Masuda K, Sah RL, Bugbee WD. The in vivo performance of osteochondral allografts in the goat is diminished with extended storage and decreased cartilage cellularity. Am J Sports Med 2012; 40:1814-23. [PMID: 22707746 PMCID: PMC4041579 DOI: 10.1177/0363546512449321] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Currently, osteochondral allografts (OCA) are typically used after 4°C storage for prolonged durations (15-43 days), which compromises chondrocyte viability, especially at the articular surface. The long-term in vivo performance of these fresh-stored allografts, in association with variable cellularity, is unknown. PURPOSE To determine the effect of 4°C storage duration (14, 28 days) versus the best (fresh) and worst (frozen) conditions of chondrocyte viability on structure, composition, and function of cartilage in the goat and the association of retrieved chondrocyte cellularity with those tissue properties. STUDY DESIGN Controlled laboratory study. METHODS The effect of allograft storage on in vivo repair outcomes was determined for OCA transplanted into 15 recipient goats and analyzed at 12 months. Repair outcomes were assessed by examining cartilage structure (gross, histopathology), composition (cellularity by depth, matrix fixed charge), and biomechanical function (stiffness). Relationships between cellularity and structural scores, matrix fixed charge, and stiffness were assessed by linear regression. RESULTS Repair outcomes in 4°C-stored OCA were similar after 14 and 28 days of storage, and both were inferior to fresh OCA and were accompanied by diminished cellularity at the surface, matrix fixed charge, and histopathological structure. Overall, cellularity by depth and matrix fixed charge in cartilage of fresh OCA were similar to nonoperated controls. However, cellularity at the articular surface and matrix fixed charge in 4°C-stored OCA were lower than fresh, by ~55% (95% confidence interval [CI], 32%-76%) and ~20% (CI, 9%-30%), respectively. In frozen OCA, cellularity and matrix fixed charge were lower than 4°C-stored OCA, by ~93% (CI, 88%-99%) and ~22% (CI, 10%-35%), respectively. Cellularity correlated negatively with cartilage health indices, including structural scores, and positively with matrix fixed charge and stiffness. CONCLUSION Reduced cellularity at the articular surface, resulting from 4°C storage, was associated with variable long-term outcomes versus consistently good repair by fresh allografts. Cellularity at the articular surface was an important index of biological performance. CLINICAL RELEVANCE Normal chondrocyte density in vivo, especially in the superficial region of cartilage, is important for maintaining long-term cartilage function and matrix content. In human cartilage, containing cells at ~3 to 5 times lower density than goat, repair outcomes may be related to absolute minimum number of cells rather than density.
Collapse
Affiliation(s)
- Andrea L. Pallante
- Department of Bioengineering, University of California-San Diego, La Jolla, CA
| | - Albert C. Chen
- Department of Bioengineering, University of California-San Diego, La Jolla, CA
| | - Scott T. Ball
- Department of Orthopaedic Surgery, University of California-San Diego, San Diego, CA
| | - David Amiel
- Department of Orthopaedic Surgery, University of California-San Diego, San Diego, CA
| | - Koichi Masuda
- Department of Orthopaedic Surgery, University of California-San Diego, San Diego, CA
| | - Robert L. Sah
- Department of Bioengineering, University of California-San Diego, La Jolla, CA
,Department of Orthopaedic Surgery, University of California-San Diego, San Diego, CA
,Institute of Engineering in Medicine, University of California-San Diego, La Jolla, CA
| | - William D. Bugbee
- Department of Orthopaedic Surgery, University of California-San Diego, San Diego, CA
,Division of Orthopaedic Surgery, Scripps Clinic, La Jolla, CA
| |
Collapse
|