1
|
Li H, Chen H, Du C, Liu Y, Wan L, Ai F, Zhou K. Effect of Hydroxyapatite Nanowires on Formation and Bioactivity of Osteoblastic Cell Spheroid. ACS Biomater Sci Eng 2024; 10:7413-7428. [PMID: 39403768 DOI: 10.1021/acsbiomaterials.4c01159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Compared with traditional high-density cell spheroids, which are more prone to core necrosis, nanowires effectively improve the biological activity of core cells in spheroids, emanating more innovations for optimizing the internal cell survival environment and providing differentiation signals. In this study, hydroxyapatite nanowires (HAW), which provide numerous material exchange channels for internal cells by interpenetrating into cell spheroids, were added to osteoblast precursor (MC3T3-E1) cell spheroids. HAW, synthesized using the hydrothermal method, was used as a regulatory material to prepare uniformly sized 3D composite spheroids with good biological activity. Subsequently, material characterization and biocompatibility tests were performed on HAW, and the biological activity and osteogenic differentiation ability of the cell spheroids were tested. Notably, in 2D coculture, HAW displayed a certain attraction to MC3T3-E1 cells and promoted cell aggregation toward it. The content of HAW determined whether composite cell spheroids can form aggregated spherical structures, and incorporation of HAW alleviated core necrosis and enhanced the osteogenic phenotype. In summary, these findings indicate that the prepared HAW-bone cell composite spheroids can potentially be used as building blocks for the construction of large high-density biomimetic tissues and organoids using 3D bioprinting technology.
Collapse
Affiliation(s)
- Hanjing Li
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, People's Republic of China
| | - Hongwei Chen
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, People's Republic of China
| | - Chunyuan Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Yucheng Liu
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, People's Republic of China
| | - Li Wan
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, People's Republic of China
| | - Fanrong Ai
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, People's Republic of China
- Nanchang Municipal Key Laboratory of 3D Bioprinting Technology and Equipment, Nanchang University, Nanchang 330031, People's Republic of China
| | - Kui Zhou
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, People's Republic of China
- Nanchang Municipal Key Laboratory of 3D Bioprinting Technology and Equipment, Nanchang University, Nanchang 330031, People's Republic of China
- State Key Lab of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
2
|
Brochet L, Thomann C, Chocarro-Wrona C, Abawi A, Nolens G, Marquette C, Dufour A. Three-Dimensionally Printed Biphasic Calcium Phosphate Ceramic Substrates as the Sole Inducer of Osteogenic Differentiation in Stromal Vascular Fraction Cells. J Biomed Mater Res B Appl Biomater 2024; 112:e35482. [PMID: 39269164 DOI: 10.1002/jbm.b.35482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/21/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024]
Abstract
The stromal vascular fraction (SVF) is a derivate of fat tissue comprising both adipose-derived mesenchymal stem cells and endothelial cells and serves as a promising cell source for engineering vascularized bone tissues. Its combination with osteoconductive biphasic calcium phosphate (BCP) ceramic may represent a point-of-care agent for bone reconstruction. Here we assessed the proliferation and osteogenic differentiation capacities of SVF on 3D printed BCP implants, in comparison with isolated adipose-derived mesenchymal stem cells (AD-MSCs). AD-MSCs and SVF isolated from human donors were seeded on plastic or 3D printed BCP ceramics with sinusoidal or gyroid macrotopography and cultured in the presence or absence of osteogenic factors. Vascular, hematopoietic and MSC surface markers were assessed by flow cytometry whereas osteogenic activity was investigated through alizarin red staining and alkaline phosphatase activity. Osteogenic factors were necessary to trigger osteogenic activity when cells were cultured on plastic, without significant difference observed between the two cell populations. Interestingly, osteogenic activity was observed on BCP implants in the absence of differentiation factors, without significant difference in level activity between the two cell populations and macrotopography. This study offers supportive data for the use of combined BCP scaffolds with SVF in a perspective of a one-step surgical procedure for bone regeneration.
Collapse
Affiliation(s)
- Louis Brochet
- Maxillo-Facial Surgery, Facial Plastic Surgery, Stomatology and Oral Surgery, Hospices Civils de Lyon, Lyon-Sud Hospital, Lyon, France
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, Villeurbanne, France
- Université Lyon 1, ICBMS, UMR 5246, Villeurbanne, France
| | - Céline Thomann
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, Villeurbanne, France
- Université Lyon 1, ICBMS, UMR 5246, Villeurbanne, France
| | - Carlos Chocarro-Wrona
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, Villeurbanne, France
- Université Lyon 1, ICBMS, UMR 5246, Villeurbanne, France
| | - Ariana Abawi
- Université Lyon 1, ICBMS, UMR 5246, Villeurbanne, France
| | | | - Christophe Marquette
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, Villeurbanne, France
- Université Lyon 1, ICBMS, UMR 5246, Villeurbanne, France
| | - Alexandre Dufour
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, Villeurbanne, France
- Université Lyon 1, ICBMS, UMR 5246, Villeurbanne, France
| |
Collapse
|
3
|
Zhu X, Bai H, Liu H, Wang Z, Wang Y, Zhang J, Liu J, Wang H, Wang J. A variable mineralization time and solution concentration intervene in the microstructure of biomimetic mineralized collagen and potential osteogenic microenvironment. Front Bioeng Biotechnol 2023; 11:1267912. [PMID: 38125304 PMCID: PMC10731298 DOI: 10.3389/fbioe.2023.1267912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
The absence of a conducive bone formation microenvironment between fractured ends poses a significant challenge in repairing large bone defects. A promising solution is to construct a bone formation microenvironment that mimics natural bone tissue. Biomimetic mineralized collagen possesses a chemical composition and microstructure highly similar to the natural bone matrix, making it an ideal biomimetic bone substitute material. The microstructure of biomimetic mineralized collagen is influenced by various factors, and its biomineralization and microstructure, in turn, affect its physicochemical properties and biological activity. We aimed to utilize mineralization time and solution concentration as variables and employed the polymer-induced liquid precursor strategy to fabricate mineralized collagen with diverse microstructures, to shed light on how mineralization parameters impact the material microstructure and physicochemical properties. We also investigated the influence of microstructure and physicochemical properties on cell biocompatibility and the bone-forming microenvironment. Through comprehensive characterization, we examined the physical and chemical properties of I-EMC under various mineralization conditions and assessed the in vitro and in vivo biocompatibility and osteogenic performance. By investigating the relationship between mineralization parameters, material physicochemical properties, and osteogenic performance, we revealed how microstructures influence cellular behaviors like biocompatibility and osteogenic microenvironment. Encouragingly, mineralization solutions with varying concentrations, stabilized by polyacrylic acid, successfully produced intrafibrillar and extrafibrillar mineralized collagen. Compared to non-mineralized collagen, all mineralized samples demonstrated improved bone-forming performance. Notably, samples prepared with a 1× mineralization solution exhibited relatively smooth surfaces with even mineralization. Extending the mineralization time enhanced the degree of mineralization and osteogenic performance. Conversely, samples prepared with a 2× mineralization solution had rough surfaces with large calcium phosphate particles, indicating non-uniform mineralization. Overall, our research advances the potential for commercial production of mineralized collagen protein products, characterized by dual biomimetic properties, and their application in treating various types of bone defects.
Collapse
Affiliation(s)
- Xiujie Zhu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Haotian Bai
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Yao Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Jiaxin Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Jiaqi Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Hui Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
- Orthopaedic Research Institute of Jilin Province, Changchun, China
| |
Collapse
|
4
|
Katebifar S, Arul M, Abdulmalik S, Yu X, Alderete JF, Kumbar SG. NOVEL HIGH-STRENGTH POLYESTER COMPOSITE SCAFFOLDS FOR BONE REGENERATION. POLYM ADVAN TECHNOL 2023; 34:3770-3791. [PMID: 38312483 PMCID: PMC10836609 DOI: 10.1002/pat.6178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/14/2023] [Indexed: 02/06/2024]
Abstract
Repair of critical sized bone defects, particularly in load-bearing areas, is a major clinical problem that requires surgical intervention and implantation of biological or engineered grafts. For load-bearing sites, it is essential to use engineered grafts that have both sufficient mechanical strength and appropriate pore properties to support bone repair and tissue regeneration. Unfortunately, the mechanical properties of such grafts are often compromised due to the creation of pores required to facilitate tissue ingrowth following implantation. To overcome the limitations associated with porous scaffolds and their reduced mechanical strength, we have developed a methodology for creating a solid structure that retains its bulk mechanical properties while also evolving into a porous structure in a biological environment through degradation and erosion. In this study, we utilized polyesters that have been approved by the FDA, including poly (lactic acid) (PLA), poly(glycolic acid) (PGA), their copolymer PLGA (PLGA, with a ratio of 85:15 and 50:50 of PLA:PGA), and poly(caprolactone) (PCL). These polymers and their ceramic composites with tricalcium phosphate (TCP) were compression molded into solid forms, which exhibited mechanical properties with compressive modulus as high as 2745 ± 364 MPa within the range of human trabecular bone and in the lower range of human cortical bone. The use of fast-degrading PLGA (50:50) and PGA as porogens allowed the formation of pores within the solid structures due to their degradation, and the TCP acts as a buffering agent to neutralize their acidic degradation byproducts. These scaffolds facilitated the growth of new blood vessels and tissue ingrowth in a subcutaneous implantation model. In addition, in a rat critical-sized mandibular bone defects these scaffolds supported bone growth with 70% of new bone volume fraction. Furthermore, the extent of bone regeneration was found to be higher for the scaffolds with bone morphogenic proteins (BMP2), indicating their suitability for bone repair and regeneration.
Collapse
Affiliation(s)
- Sara Katebifar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Michael Arul
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Sama Abdulmalik
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Xiaojun Yu
- Department of Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Joseph F. Alderete
- Departments of Orthopedic Surgery, Brooke Army Medical Center, Joint Base San Antonio, Texas
| | - Sangamesh G. Kumbar
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
5
|
Monavari M, Homaeigohar S, Medhekar R, Nawaz Q, Monavari M, Zheng K, Boccaccini AR. A 3D-Printed Wound-Healing Material Composed of Alginate Dialdehyde-Gelatin Incorporating Astaxanthin and Borate Bioactive Glass Microparticles. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37155412 DOI: 10.1021/acsami.2c23252] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this study, a wound dressing composed of an alginate dialdehyde-gelatin (ADA-GEL) hydrogel incorporated by astaxanthin (ASX) and 70B (70:30 B2O3/CaO in mol %) borate bioactive glass (BBG) microparticles was developed through 3D printing. ASX and BBG particles stiffened the composite hydrogel construct and delayed its in vitro degradation compared to the pristine hydrogel construct, mainly due to their cross-linking role, likely arising from hydrogen bonding between the ASX/BBG particles and ADA-GEL chains. Additionally, the composite hydrogel construct could hold and deliver ASX steadily. The composite hydrogel constructs codelivered biologically active ions (Ca and B) and ASX, which should lead to a faster, more effective wound-healing process. As shown through in vitro tests, the ASX-containing composite hydrogel promoted fibroblast (NIH 3T3) cell adhesion, proliferation, and vascular endothelial growth factor expression, as well as keratinocyte (HaCaT) migration, thanks to the antioxidant activity of ASX, the release of cell-supportive Ca2+ and B3+ ions, and the biocompatibility of ADA-GEL. Taken together, the results show that the ADA-GEL/BBG/ASX composite is an attractive biomaterial to develop multipurposed wound-healing constructs through 3D printing.
Collapse
Affiliation(s)
- Mahshid Monavari
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Shahin Homaeigohar
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom
| | - Rucha Medhekar
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
- Institute of Biomaterials and Advanced Materials and Processes Master Programme, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Qaisar Nawaz
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Mehran Monavari
- Section eScience (S.3), Federal Institute for Materials Research and Testing, Unter den Eichen 87, Berlin 12205, Germany
| | - Kai Zheng
- Jiangsu Province Engineering Research Center of Stomatological Translation Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| |
Collapse
|
6
|
Casanova EA, Rodriguez-Palomo A, Stähli L, Arnke K, Gröninger O, Generali M, Neldner Y, Tiziani S, Dominguez AP, Guizar-Sicairos M, Gao Z, Appel C, Nielsen LC, Georgiadis M, Weber FE, Stark W, Pape HC, Cinelli P, Liebi M. SAXS imaging reveals optimized osseointegration properties of bioengineered oriented 3D-PLGA/aCaP scaffolds in a critical size bone defect model. Biomaterials 2023; 294:121989. [PMID: 36628888 DOI: 10.1016/j.biomaterials.2022.121989] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/01/2022] [Accepted: 12/24/2022] [Indexed: 01/03/2023]
Abstract
Healing large bone defects remains challenging in orthopedic surgery and is often associated with poor outcomes and complications. A major issue with bioengineered constructs is achieving a continuous interface between host bone and graft to enhance biological processes and mechanical stability. In this study, we have developed a new bioengineering strategy to produce oriented biocompatible 3D PLGA/aCaP nanocomposites with enhanced osseointegration. Decellularized scaffolds -containing only extracellular matrix- or scaffolds seeded with adipose-derived mesenchymal stromal cells were tested in a mouse model for critical size bone defects. In parallel to micro-CT analysis, SAXS tensor tomography and 2D scanning SAXS were employed to determine the 3D arrangement and nanostructure within the critical-sized bone. Both newly developed scaffold types, seeded with cells or decellularized, showed high osseointegration, higher bone quality, increased alignment of collagen fibers and optimal alignment and size of hydroxyapatite minerals.
Collapse
Affiliation(s)
- Elisa A Casanova
- Department of Trauma Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | | | - Lisa Stähli
- Department of Trauma Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Kevin Arnke
- Department of Trauma Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Olivier Gröninger
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Melanie Generali
- Institute for Regenerative Medicine (IREM), Center for Therapy Development and Good Manufacturing Practice, University of Zurich, Zurich, Switzerland
| | - Yvonne Neldner
- Department of Trauma Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Simon Tiziani
- Department of Trauma Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Ana Perez Dominguez
- Oral Biotechnology and Bioengineering, Department of Cranio-Maxillofacial and Oral Surgery, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | | | - Zirui Gao
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Christian Appel
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Leonard C Nielsen
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Marios Georgiadis
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA
| | - Franz E Weber
- Oral Biotechnology and Bioengineering, Department of Cranio-Maxillofacial and Oral Surgery, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Wendelin Stark
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Hans-Christoph Pape
- Department of Trauma Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Paolo Cinelli
- Department of Trauma Surgery, University of Zurich, University Hospital Zurich, Zurich, Switzerland; Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland.
| | - Marianne Liebi
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden; Centre for X-ray Analytics, Swiss Federal Laboratories for Materials Science and Technology (EMPA), St. Gallen, Switzerland
| |
Collapse
|
7
|
The Localized Ionic Microenvironment in Bone Modelling/Remodelling: A Potential Guide for the Design of Biomaterials for Bone Tissue Engineering. J Funct Biomater 2023; 14:jfb14020056. [PMID: 36826855 PMCID: PMC9959312 DOI: 10.3390/jfb14020056] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
Bone is capable of adjusting size, shape, and quality to maintain its strength, toughness, and stiffness and to meet different needs of the body through continuous remodeling. The balance of bone homeostasis is orchestrated by interactions among different types of cells (mainly osteoblasts and osteoclasts), extracellular matrix, the surrounding biological milieus, and waste products from cell metabolisms. Inorganic ions liberated into the localized microenvironment during bone matrix degradation not only form apatite crystals as components or enter blood circulation to meet other bodily needs but also alter cellular activities as molecular modulators. The osteoinductive potential of inorganic motifs of bone has been gradually understood since the last century. Still, few have considered the naturally generated ionic microenvironment's biological roles in bone remodeling. It is believed that a better understanding of the naturally balanced ionic microenvironment during bone remodeling can facilitate future biomaterial design for bone tissue engineering in terms of the modulatory roles of the ionic environment in the regenerative process.
Collapse
|
8
|
Carter SSD, Atif AR, Diez-Escudero A, Grape M, Ginebra MP, Tenje M, Mestres G. A microfluidic-based approach to investigate the inflammatory response of macrophages to pristine and drug-loaded nanostructured hydroxyapatite. Mater Today Bio 2022; 16:100351. [PMID: 35865408 PMCID: PMC9294551 DOI: 10.1016/j.mtbio.2022.100351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 11/28/2022] Open
Abstract
The in vitro biological characterization of biomaterials is largely based on static cell cultures. However, for highly reactive biomaterials such as calcium-deficient hydroxyapatite (CDHA), this static environment has limitations. Drastic alterations in the ionic composition of the cell culture medium can negatively affect cell behavior, which can lead to misleading results or data that is difficult to interpret. This challenge could be addressed by a microfluidics-based approach (i.e. on-chip), which offers the opportunity to provide a continuous flow of cell culture medium and a potentially more physiologically relevant microenvironment. The aim of this work was to explore microfluidic technology for its potential to characterize CDHA, particularly in the context of inflammation. Two different CDHA substrates (chemically identical, but varying in microstructure) were integrated on-chip and subsequently evaluated. We demonstrated that the on-chip environment can avoid drastic ionic alterations and increase protein sorption, which was reflected in cell studies with RAW 264.7 macrophages. The cells grown on-chip showed a high cell viability and enhanced proliferation compared to cells maintained under static conditions. Whereas no clear differences in the secretion of tumor necrosis factor alpha (TNF-α) were found, variations in cell morphology suggested a more anti-inflammatory environment on-chip. In the second part of this study, the CDHA substrates were loaded with the drug Trolox. We showed that it is possible to characterize drug release on-chip and moreover demonstrated that Trolox affects the TNF-α secretion and morphology of RAW 264.7 cells. Overall, these results highlight the potential of microfluidics to evaluate (bioactive) biomaterials, both in pristine form and when drug-loaded. This is of particular interest for the latter case, as it allows the biological characterization and assessment of drug release to take place under the same dynamic in vitro environment.
Collapse
Affiliation(s)
- Sarah-Sophia D Carter
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22, Uppsala, Sweden
| | - Abdul-Raouf Atif
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22, Uppsala, Sweden
| | - Anna Diez-Escudero
- Ortholab, Department of Surgical Sciences-Orthopaedics, Uppsala University, Uppsala, 751 85, Sweden
| | - Maja Grape
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22, Uppsala, Sweden
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Departament de Ciència i Enginyeria de Materials, Universitat Politècnica de Catalunya (UPC), 08930, Barcelona, Spain.,Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, 08930, Barcelona, Spain.,Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10-12, 08028, Barcelona, Spain
| | - Maria Tenje
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22, Uppsala, Sweden
| | - Gemma Mestres
- Division of Biomedical Engineering, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22, Uppsala, Sweden
| |
Collapse
|
9
|
Zhu Q, Chen T, Xia J, Jiang D, Wang S, Zhang Y. Preparation and characterization of two novel osteoinductive fishbone-derived biphasic calcium phosphate bone graft substitutes. J Biomater Appl 2022; 37:600-613. [PMID: 35775433 DOI: 10.1177/08853282221111969] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many studies have reported on the conversion of natural resources into xenografts with hydroxyapatite (HA) as major component, but the extraction of biphasic calcium phosphate (HA/β-TCP) from animal bones and transformation into bone graft substitutes are rarely reported. In this research, two kinds of fish bones were made into granular porous biphasic calcium phosphate bone graft substitutes with particle sizes between 500 to 1000 μm through a series of preparation procedures (Salmo salar calcined at 900°C named Sa900 and Anoplopoma fimbria calcined at 800°C named An800). The chemical composition was characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The morphology and porous structure of the scaffolds were comparatively analyzed by scanning electron microscopy (SEM) and mercury porosimeter. The specific surface area of materials was measured by the nitrogen adsorption technique based on BET theory. Cytotoxicity and ectopic osteogenesis were also carried out to investigate the biocompatibility and osteoinductive potential of these materials. The results showed that both fishbone-derived scaffolds were composed of HA and β-TCP with different proportions, and numerous interconnected pores with different sizes were observed at the surface of materials. An800 had higher total porosity reaching 74.8% with higher interconnectivity and micropores mostly distributed at 0.27 μm and 0.12 μm, while Sa900 had a higher specific surface area and higher intraparticle porosity with nanopores mostly distributed at 0.07 μm. CCK-8 assays and Live/dead staining demonstrated excellent biocompatibility. Material-induced osteoid formation were observed on the interface of both internal pores and periphery of materials after implantation in muscle pouch of Wistar rats for 8 weeks which indicated some extent of osteoinductive potential of materials. The possible mechanism of material-induced osteogenesis and the effects of chemical composition, surface topography, and spatial structure on osteogenesis were also discussed in this paper.
Collapse
Affiliation(s)
- Qingfeng Zhu
- Department of Stomatology, 12520Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Tong Chen
- Department of Stomatology, 12520Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jinfeng Xia
- 58306Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai, China
| | - Danyu Jiang
- 58306Shanghai Institute of Ceramics Chinese Academy of Sciences, Shanghai, China
| | - Shaohai Wang
- Department of Stomatology, 12476Dongfang Hospital, Tongji University, Shanghai 200092, China
| | - Yuntong Zhang
- Department of Orthopeadics, 12476Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
10
|
Zhang R, Lin M, Wang C, Li Y, Li Y, Zou Q. Bioinspired fabrication of EDC-crosslinked gelatin/nanohydroxyapatite injectable microspheres for bone repair. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2082423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Rui Zhang
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, China
| | - Mingyue Lin
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, China
| | - Chenxin Wang
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, China
| | - Yufan Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, China
| | - Qin Zou
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
A multiparametric advection-diffusion reduced-order model for molecular transport in scaffolds for osteoinduction. Biomech Model Mechanobiol 2022; 21:1099-1115. [PMID: 35511308 PMCID: PMC9283186 DOI: 10.1007/s10237-022-01577-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/22/2022] [Indexed: 11/25/2022]
Abstract
Scaffolds are microporous biocompatible structures that serve as material support for cells to proliferate, differentiate and form functional tissue. In particular, in the field of bone regeneration, insertion of scaffolds in a proper physiological environment is known to favour bone formation by releasing calcium ions, among others, triggering differentiation of mesenchymal cells into osteoblasts. Computational simulation of molecular distributions through scaffolds is a potential tool to study the scaffolds’ performance or optimal designs, to analyse their impact on cell differentiation, and also to move towards reduction in animal experimentation. Unfortunately, the required numerical models are often highly complex and computationally too costly to develop parametric studies. In this context, we propose a computational parametric reduced-order model to obtain the distribution of calcium ions in the interstitial fluid flowing through scaffolds, depending on several physical parameters. We use the well-known Proper Orthogonal Decomposition (POD) with two different variations: local POD and POD with quadratic approximations. Computations are performed using two realistic geometries based on a foamed and a 3D-printed scaffolds. The location of regions with high concentration of calcium in the numerical simulations is in fair agreement with regions of bone formation shown in experimental observations reported in the literature. Besides, reduced-order solutions accurately approximate the reference finite element solutions, with a significant decrease in the number of degrees of freedom, thus avoiding computationally expensive simulations, especially when performing a parametric analysis. The proposed reduced-order model is a competitive tool to assist the design of scaffolds in osteoinduction research.
Collapse
|
12
|
Daneshmandi L, Holt BD, Arnold AM, Laurencin CT, Sydlik SA. Ultra-low binder content 3D printed calcium phosphate graphene scaffolds as resorbable, osteoinductive matrices that support bone formation in vivo. Sci Rep 2022; 12:6960. [PMID: 35484292 PMCID: PMC9050648 DOI: 10.1038/s41598-022-10603-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/02/2022] [Indexed: 12/18/2022] Open
Abstract
Bone regenerative engineering could replace autografts; however, no synthetic material fulfills all design criteria. Nanocarbons incorporated into three-dimensional printed (3DP) matrices can improve properties, but incorporation is constrained to low wt%. Further, unmodified nanocarbons have limited osteogenic potential. Functionalization to calcium phosphate graphene (CaPG) imparts osteoinductivity and osteoconductivity, but loading into matrices remained limited. This work presents ultra-high content (90%), 3DP-CaPG matrices. 3DP-CaPG matrices are highly porous (95%), moderately stiff (3 MPa), and mechanically robust. In vitro, they are cytocompatible and induce osteogenic differentiation of human mesenchymal stem cells (hMSCs), indicated by alkaline phosphatase, mineralization, and COL1α1 expression. In vivo, bone regeneration was studied using a transgenic fluorescent-reporter mouse non-union calvarial defect model. 3DP-CaPG stimulates cellular ingrowth, retains donor cells, and induces osteogenic differentiation. Histology shows TRAP staining around struts, suggesting potential osteoclast activity. Apparent resorption of 3DP-CaPG was observed and presented no toxicity. 3DP-CaPG represents an advancement towards a synthetic bone regeneration matrix.
Collapse
Affiliation(s)
- Leila Daneshmandi
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, 06030, USA
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA
| | - Brian D Holt
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Anne M Arnold
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, 06030, USA.
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA.
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA.
- Department of Material Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA.
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA.
| | - Stefanie A Sydlik
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
13
|
Zimmermann CE, Mackens-Kiani L, Acil Y, Terheyden H. Characterization of porcine mesenchymal stromal cells and their proliferative and osteogenic potential in long-term culture. J Stem Cells Regen Med 2022; 17:49-55. [PMID: 35250201 DOI: 10.46582/jsrm.1702008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022]
Abstract
Background: Porcine mesenchymal stromal cells (pMSCs) are considered a valuable research model for bone tissue engineering, which requires adequate amounts of viable cells with sufficient potential for osteogenic differentiation. For isolation and expansion of these cells through long-term culture, appropriate culture conditions are needed. Objective: To study the effect of extended in vitro cultivation on pMSC proliferation and differentiation potential using different osteogenic and adipogenic induction media. Methods: pMSCs were isolated from the bone marrow of adult Göttingen minipigs, cultured, expanded to passage 20 (~160 days) and characterized by their expression of cell surface markers (wCD44, CD45, CD90, SWC9, fibronectin), alkaline phosphatase (ALP), and osteocalcin and their potential for osteogenic and adipogenic differentiation using different induction media. Results: pMSCs retained their capacity for proliferation and osteogenic differentiation, and the number of CD90-positive cells increased significantly over more than 60 population doublings. CD90 expression in uninduced cells correlated strongly with ALP expression following osteogenic induction. Medium enriched with calcium yielded a stronger osteogenic response. Conclusion: The selection of CD90-positive MSCs and adequate levels of calcium seem to enhance the osteogenic phenotype for bone tissue engineering.
Collapse
Affiliation(s)
- Corinna E Zimmermann
- Department of Craniomaxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105 Kiel, Germany.,University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | | | - Yahya Acil
- Department of Craniomaxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105 Kiel, Germany
| | - Hendrik Terheyden
- Department of Craniomaxillofacial Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3, 24105 Kiel, Germany
| |
Collapse
|
14
|
Brady RT, O’Brien FJ, Hoey DA. The Impact of the Extracellular Matrix Environment on Sost Expression by the MLO-Y4 Osteocyte Cell Line. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9010035. [PMID: 35049744 PMCID: PMC8772728 DOI: 10.3390/bioengineering9010035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/27/2022]
Abstract
Bone is a dynamic organ that can adapt its structure to meet the demands of its biochemical and biophysical environment. Osteocytes form a sensory network throughout the tissue and orchestrate tissue adaptation via the release of soluble factors such as a sclerostin. Osteocyte physiology has traditionally been challenging to investigate due to the uniquely mineralized extracellular matrix (ECM) of bone leading to the development of osteocyte cell lines. Importantly, the most widely researched and utilized osteocyte cell line: the MLO-Y4, is limited by its inability to express sclerostin (Sost gene) in typical in-vitro culture. We theorised that culture in an environment closer to the in vivo osteocyte environment could impact on Sost expression. Therefore, this study investigated the role of composition and dimensionality in directing Sost expression in MLO-Y4 cells using collagen-based ECM analogues. A significant outcome of this study is that MLO-Y4 cells, when cultured on a hydroxyapatite (HA)-containing two-dimensional (2D) film analogue, expressed Sost. Moreover, three-dimensional (3D) culture within HA-containing collagen scaffolds significantly enhanced Sost expression, demonstrating the impact of ECM composition and dimensionality on MLO-Y4 behaviour. Importantly, in this bone mimetic ECM environment, Sost expression was found to be comparable to physiological levels. Lastly, MLO-Y4 cells cultured in these novel conditions responded accordingly to fluid flow stimulation with a decrease in expression. This study therefore presents a novel culture system for the MLO-Y4 osteocyte cell line, ensuring the expression of an important osteocyte specific gene, Sost, overcoming a major limitation of this model.
Collapse
Affiliation(s)
- Robert T. Brady
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (R.T.B.); (F.J.O.)
- Trinity Centre for Biomedical Engineering, School of Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland, D02 PN40 Dublin, Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (R.T.B.); (F.J.O.)
- Trinity Centre for Biomedical Engineering, School of Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland, D02 PN40 Dublin, Ireland
| | - David A. Hoey
- Trinity Centre for Biomedical Engineering, School of Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland, D02 PN40 Dublin, Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Correspondence:
| |
Collapse
|
15
|
Kaibara T, Wang L, Tsuda M, Nonoyama T, Kurokawa T, Iwasaki N, Gong JP, Tanaka S, Yasuda K. Hydroxyapatite-hybridized double-network hydrogel surface enhances differentiation of bone marrow-derived mesenchymal stem cells to osteogenic cells. J Biomed Mater Res A 2021; 110:747-760. [PMID: 34713570 DOI: 10.1002/jbm.a.37324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/22/2021] [Accepted: 10/15/2021] [Indexed: 01/31/2023]
Abstract
Recently, we have developed a hydroxyapatite (HAp)-hybridized double-network (DN) hydrogel (HAp/DN gel), which can robustly bond to the bone tissue in the living body. The purpose of this study is to clarify whether the HAp/DN gel surface can differentiate the bone marrow-derived mesenchymal stem cells (MSCs) to osteogenic cells. We used the MSCs which were harvested from the rabbit bone marrow and cultured on the polystyrene (PS) dish using the autogenous serum-supplemented medium. First, we confirmed the properties of MSCs by evaluating colony forming unit capacity, expression of MSC markers using flow cytometry, and multidifferential capacity. Secondly, polymerase chain reaction analysis demonstrated that the HAp/DN gel surface significantly enhanced mRNA expression of the eight osteogenic markers (TGF-β1, BMP-2, Runx2, Col-1, ALP, OPN, BSP, and OCN) in the cultured MSCs at 7 days than the PS surfaces (p < 0.0001), while the DN gel and HAp surfaces provided no or only a slight effect on the expression of these markers except for Runx2. Additionally, the alkaline phosphatase activity was significantly higher in the cells cultured on the HAp/DN gel surface than in the other three material surfaces (p < 0.0001). Thirdly, when the HAp/DN gel plug was implanted into the rabbit bone marrow, MSC marker-positive cells were recruited in the tissue generated around the plug at 3 days, and Runx2 and OCN were highly expressed in these cells. In conclusion, this study demonstrated that the HAp/DN gel surface can differentiate the MSCs into osteogenic cells.
Collapse
Affiliation(s)
- Takuma Kaibara
- Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Lei Wang
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Takayuki Nonoyama
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,Laboratory of Soft & Wet Matter, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Takayuki Kurokawa
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,Laboratory of Soft & Wet Matter, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Jian Ping Gong
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.,Laboratory of Soft & Wet Matter, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Kazunori Yasuda
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan.,Sports Medicine and Arthroscopy Center, Yagi Orthopaedic Hospital, Sapporo, Japan
| |
Collapse
|
16
|
Valiño-Cultelli V, Varela-López Ó, González-Cantalapiedra A. Does PRGF Work? A Prospective Clinical Study in Dogs with A Novel Polylactic Acid Scaffold Injected with PRGF Using the Modified Maquet Technique. Animals (Basel) 2021; 11:ani11082404. [PMID: 34438861 PMCID: PMC8388684 DOI: 10.3390/ani11082404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary PRGF is a concentration of autologous platelets in a small volume of plasma, which is performed in a specific way and is an accessible resource in veterinary medicine. The PRGF has multiple demonstrated properties as antimicrobial, analgesic and anti-inflammatory but their osteoinductivity potential is controversial. We decided to use PRGF in combination with a PLA bioresorbable scaffold (a specific type of implant with osteoconduction properties) performed by 3D printing, and personalized for each patient, to determinate if the PRGF can produce osteoinduction and as a result, a faster bone healing and a faster patient recovery. Furthermore, in this study PLA scaffolds are proposed as an alternative for metallic implants to avoid the problems that those can cause. The MMT was the technique selected for solving the RCrCL as it is a variant of TTA that follows the same principle for the correction of the patellar tendon angle to neutralize distractive forces; however, this technique needs a lower amount of metallic implants for the scaffold fixation. Abstract Tibial tuberosity advancement is a surgical technique to restore the dynamical stability in the knee by advancing the insertion of the patellar ligament, for which it is necessary to advance the tibial crest, being maintained in the desired position usually by a cage and metallic implants. The purpose of this study was to replace the cage with a polylactic acid biodegradable scaffold designed for each patient by 3D printing, inserting platelet-rich in growth factors (PRGF) to demonstrate its osteoinductive properties. To this end, we used the modified Maquet technique to reduce the amount of metal to a minimum. Fifty-three dogs finished the study. The control and PRGF groups did not present any statistically significant differences in terms of ossification degree (p > 0.001) but they demonstrated satisfactory ossification compared to previous publications, although in the PRGF group three of the scaffolds suffered complete reabsorption. The PRGF and control groups did not show any statistically significant differences in terms of lameness degree (p > 0.001). However, the PRGF group showed at the first control some analgesic and anti-inflammatory properties but they were not enough for reducing the functional recovery time in a significant way. The PRGF group did not show any complications or negative results associated with their use.
Collapse
|
17
|
Boller LA, Shiels SM, Florian DC, Peck SH, Schoenecker JG, Duvall C, Wenke JC, Guelcher SA. Effects of nanocrystalline hydroxyapatite concentration and skeletal site on bone and cartilage formation in rats. Acta Biomater 2021; 130:485-496. [PMID: 34129957 DOI: 10.1016/j.actbio.2021.05.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/29/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Most fractures heal by a combination of endochondral and intramembranous ossification dependent upon strain and vascularity at the fracture site. Many biomaterials-based bone regeneration strategies rely on the use of calcium phosphates such as nano-crystalline hydroxyapatite (nHA) to create bone-like scaffolds. In this study, nHA was dispersed in reactive polymers to form composite scaffolds that were evaluated both in vitro and in vivo. Matrix assays, immunofluorescent staining, and Western blots demonstrated that nHA influenced mineralization and subsequent osteogenesis in a dose-dependent manner in vitro. Furthermore, nHA dispersed in polymeric composites promoted osteogenesis by a similar mechanism as particulated nHA. Scaffolds were implanted into a 2-mm defect in the femoral diaphysis or metaphysis of Sprague-Dawley rats to evaluate new bone formation at 4 and 8 weeks. Two formulations were tested: a poly(thioketal urethane) scaffold without nHA (PTKUR) and a PTKUR scaffold augmented with 22 wt% nHA (22nHA). The scaffolds supported new bone formation in both anatomic sites. In the metaphysis, augmentation of scaffolds with nHA promoted an intramembranous healing response. Within the diaphysis, nHA inhibited endochondral ossification. Immunohistochemistry was performed on cryo-sections of the bone/scaffold interface in which CD146, CD31, Endomucin, CD68, and Myeloperoxidase were evaluated. No significant differences in the infiltrating cell populations were observed. These findings suggest that nHA dispersed in polymeric composites induces osteogenic differentiation of adherent endogenous cells, which has skeletal site-specific effects on fracture healing. STATEMENT OF SIGNIFICANCE: Understanding the mechanism by which synthetic scaffolds promote new bone formation in preclinical models is crucial for bone regeneration applications in the clinic where complex fracture cases are seen. In this study, we found that dispersion of nHA in polymeric scaffolds promoted in vitro osteogenesis in a dose-dependent manner through activation of the PiT1 receptor and subsequent downstream Erk1/2 signaling. While augmentation of polymeric scaffolds with nHA enhanced intramembranous ossification in metaphyseal defects, it inhibited endochondral ossification in diaphyseal defects. Thus, our findings provide new insights into designing synthetic bone grafts that complement the skeletal site-specific fracture healing response.
Collapse
|
18
|
Zhang X, Liu W, Liu J, Hu Y, Dai H. Poly-ε-caprolactone/Whitlockite Electrospun Bionic Membrane with an Osteogenic-Angiogenic Coupling Effect for Periosteal Regeneration. ACS Biomater Sci Eng 2021; 7:3321-3331. [PMID: 34148343 DOI: 10.1021/acsbiomaterials.1c00426] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The periosteum is rich in vascular networks, osteoprogenitor cells, and stem cells and plays an important role in bone defect repair. However, existing artificial periosteum materials still have difficulty in meeting clinical requirements, such as good mechanical properties and bionic structure construction, osteogenic differentiation, and vascularization capabilities. Here, a poly-ε-caprolactone (PCL)/whitlockite (WH, 5, 10, 15 wt %) artificial periosteum with different doping amounts was prepared by electrospinning technology. According to the results of in vitro mineralization experiments, the rapid ion release from WH promotes the deposition of mineralized hydroxyapatite. Inductively coupled plasma-optical emission spectroscopy, in vitro angiogenesis, and cell migration experiments showed that the bionic periosteum of the 15% WH group had the best release rate of Mg2+ and the best ability to promote the human umbilical vein endothelial cell angiogenesis and migration. In addition, this group promoted collagen formation and calcium deposition. Finally, the subcutaneous implantation model was used to verify the biocompatibility and angiogenesis ability of the proposed membrane in vivo. Overall, this biomimetic PCL/WH nanofiber membrane combines the positive osteogenic differentiation ability and angiogenic ability of calcium phosphate materials and thus has good application prospects in the field of periosteal repair in the future.
Collapse
Affiliation(s)
- Xiangke Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Wenbin Liu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China.,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan 410008, China
| | - Jiawei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China.,Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan 410008, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, P. R. China.,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
| |
Collapse
|
19
|
Atif AR, Pujari-Palmer M, Tenje M, Mestres G. A microfluidics-based method for culturing osteoblasts on biomimetic hydroxyapatite. Acta Biomater 2021; 127:327-337. [PMID: 33785452 DOI: 10.1016/j.actbio.2021.03.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022]
Abstract
The reliability of conventional cell culture studies to evaluate biomaterials is often questioned, as in vitro outcomes may contradict results obtained through in vivo assays. Microfluidics technology has the potential to reproduce complex physiological conditions by allowing for fine control of microscale features such as cell confinement and flow rate. Having a continuous flow during cell culture is especially advantageous for bioactive biomaterials such as calcium-deficient hydroxyapatite (HA), which may otherwise alter medium composition and jeopardize cell viability, potentially producing false negative results in vitro. In this work, HA was integrated into a microfluidics-based platform (HA-on-chip) and the effect of varied flow rates (2, 8 and 14 µl/min, corresponding to 0.002, 0.008 and 0.014 dyn/cm2, respectively) was evaluated. A HA sample placed in a well plate (HA-static) was included as a control. While substantial calcium depletion and phosphate release occurred in static conditions, the concentration of ions in HA-on-chip samples remained similar to those of fresh medium, particularly at higher flow rates. Pre-osteoblast-like cells (MC3T3-E1) exhibited a significantly higher degree of proliferation on HA-on-chip (8 μl/min flow rate) as compared to HA-static. However, cell differentiation, analysed by alkaline phosphatase (ALP) activity, showed low values in both conditions. This study indicates that cells respond differently when cultured on HA under flow compared to static conditions, which indicates the need for more physiologically relevant methods to increase the predictive value of in vitro studies used to evaluate biomaterials. STATEMENT OF SIGNIFICANCE: There is a lack of correlation between the results obtained when testing some biomaterials under cell culture as opposed to animal models. To address this issue, a cell culture method with slightly enhanced physiological relevance was developed by incorporating a biomaterial, known to regenerate bone, inside of a microfluidic platform that enabled a continuous supply of cell culture medium. Since the utilized biomaterial interacts with surrounding ions, the perfusion of medium allowed for shielding of these changes similarly as would happen in the body. The experimental outcomes observed in the dynamic platform were different than those obtained with standard static cell culture systems, proving the key role of the platform in the assessment of biomaterials.
Collapse
Affiliation(s)
- Abdul Raouf Atif
- Division of Microsystems Technology, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22 Uppsala, Sweden
| | - Michael Pujari-Palmer
- Division of Applied Materials Science, Department of Materials Science and Engineering, Uppsala University, 751 22 Uppsala, Sweden
| | - Maria Tenje
- Division of Microsystems Technology, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22 Uppsala, Sweden
| | - Gemma Mestres
- Division of Microsystems Technology, Department of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, 751 22 Uppsala, Sweden.
| |
Collapse
|
20
|
Maazouz Y, Chizzola G, Döbelin N, Bohner M. Cell-free, quantitative mineralization measurements as a proxy to identify osteoinductive bone graft substitutes. Biomaterials 2021; 275:120912. [PMID: 34098150 DOI: 10.1016/j.biomaterials.2021.120912] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022]
Abstract
Some synthetic bone graft substitutes (BGS) can trigger ectopic bone formation, which is the hallmark of osteoinduction and the most important prerequisite for the repair of large bone defects. Unfortunately, measuring or predicting BGS osteoinductive potential based on in vitro experiments is currently impossible. A recent study claimed that synthetic BGS can induce bone formation ectopically if they create a local homeostatic imbalance during their in vivo mineralization. This raised the hope that a simple cell free in vitro mineralization experiment would correlate with osteoinduction. The aim of the present study was therefore to assess the ability of a quantitative in vitro mineralization test to predict and rank the osteoinductive potential of BGS. Eight calcium phosphate BGS already tested ectopically in 9 different in vivo studies were used for that purpose. The experiment was able to identify materials that are reliably osteoinductive from those that are not, but was inaccurate in ranking the osteoinductive materials between each other. Chemical contaminants (Ca2+, Mg2+, H+, OH-, PO43-) present in some of the BGS affected the in vitro mineralization experiment results, but not in a direction that could explain the different rankings. In conclusion, this study suggests that an in vitro experiment can be used as a fast and reliable screening tool to identify osteoinductive BGS and underline the need to study ionic contaminants on calcium phosphate BGS.
Collapse
Affiliation(s)
- Yassine Maazouz
- RMS Foundation, Bischmattstrasse 12, 2544, Bettlach, Switzerland
| | - Giacomo Chizzola
- RMS Foundation, Bischmattstrasse 12, 2544, Bettlach, Switzerland
| | - Nicola Döbelin
- RMS Foundation, Bischmattstrasse 12, 2544, Bettlach, Switzerland
| | - Marc Bohner
- RMS Foundation, Bischmattstrasse 12, 2544, Bettlach, Switzerland.
| |
Collapse
|
21
|
Valiño-Cultelli V, Varela-López Ó, González-Cantalapiedra A. Preliminary Clinical and Radiographic Evaluation of a Novel Resorbable Implant of Polylactic Acid (PLA) for Tibial Tuberosity Advancement (TTA) by Modified Maquet Technique (MMT). Animals (Basel) 2021; 11:ani11051271. [PMID: 33925099 PMCID: PMC8145287 DOI: 10.3390/ani11051271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Our objectives were to determine whether PLA implants can be used in TTA with successful results; secondly, to observe whether they provide a faster bone healing; finally, to determine whether weight or age influences bone healing scores. PLA cages were created with a 3D printer. TTA by MMT with PLA implants was performed in 24 patients. Follow-ups were carried out pre-surgical, at 1, 2, and 5 months and consisted of a radiographic study and a lameness assessment. A comparison was performed in terms of weight and age. Patients data, time between follow-up examinations, healing score, and lameness score were compared between patients using commercial software for statistically significant differences p < 0.05. Eighteen dogs finished the study. The ossification degrees presented statistically significant differences between each other. PLA implants maintained the advancement in 100% of cases. Comparing weight and age did not present any statistically significant differences between groups. Lameness presented statistically significant differences between follow-up examinations. Complications were observed in 20.8%. PLA implants for TTA provide good functional results, presenting an acceptable rate of complications. They provide a faster bone healing of the osteotomy gap, which was not affected by age or body weight, and have a clinical recovery time similar to metallic implants.
Collapse
|
22
|
Sutthavas P, Habibovic P, van Rijt SH. The shape-effect of calcium phosphate nanoparticle based films on their osteogenic properties. Biomater Sci 2021; 9:1754-1766. [PMID: 33433541 DOI: 10.1039/d0bm01494j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium phosphates (CaPs) in the form of hydroxyapatite (HA) have been extensively studied in the context of bone regeneration due to their chemical similarity to natural bone mineral. While HA is known to promote osteogenic differentiation, the structural properties of the ceramic have been shown to affect the extent of this effect; several studies have suggested that nanostructured HA can improve the bioactivity. However, the role shape plays in the osteogenic potential is more elusive. Here we studied the effect of HA nanoparticle shape on the ability to induce osteogenesis in human mesenchymal stromal cells (hMSCs) by developing nanoparticle films using needle-, rice- and spherical-shaped HA. We showed that the HA films made from all three shapes of nanoparticles induced increased levels of osteogenic markers (i.e. runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2), alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN) on protein and gene level in comparison to hMSCs cultured on cover glass slides. Furthermore, their expression levels and profiles differed significantly as a function of nanoparticle shape. We also showed that nanoparticle films were more efficient in inducing osteogenic gene expression in hMSCs compared to adding nanoparticles to hMSCs in culture media. Finally, we demonstrated that hMSC morphology upon adhesion to the HA nanoparticle films is dependent on nanoparticle shape, with hMSCs exhibiting a more spread morphology on needle-shaped nanoparticle films compared to hMSCs seeded on rice- and spherical-shaped nanoparticle films. Our data suggests that HA nanoparticle films are efficient in inducing hMSC osteogenesis in basic cell culture conditions and that nanoparticle shape plays a vital role in cell adhesion and morphology and extent of induction of osteogenic differentiation.
Collapse
Affiliation(s)
- Pichaporn Sutthavas
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Sabine H van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
23
|
Anil A, Sadasivan A, Koshi E. Physicochemical Characterization of Five Different Bone Graft Substitutes Used in Periodontal Regeneration: An In Vitro Study. J Int Soc Prev Community Dent 2020; 10:634-642. [PMID: 33282774 PMCID: PMC7685282 DOI: 10.4103/jispcd.jispcd_263_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 01/12/2023] Open
Abstract
Background: Periodontal regeneration involves using a variety of bone graft substitutes (BGS) of varying origin and manufacturing processes. These include a wide range of biomaterials that are mainly of two types: the xenografts and alloplasts. The efficacy of these BGS depends upon the physical characteristics such as particle size, porous nature, surface morphology, as well as the chemical characteristics like composition, crystallinity and resorption properties. Aims: The present study is a descriptive study that focuses on describing the physicochemical characteristics of five selected commercially available BGS that are frequently used in periodontal regeneration procedures. The BGS studied here included two xenografts (colocast and osseograft) and three alloplasts (B-OstIN, biograft HABG active and biograft HT). Materials and Methods: The physical properties of the BGS, including particle size, morphology, and surface topography, were analyzed using SEM. The mineral phases and crystallinity of the BGS were analyzed using XRD. Results: The results showed that the xenografts (colocast and osseograft) had minimal mineral composition and crystalline structure. The physical properties such as surface roughness and porosity were less compared to alloplastic materials. The alloplasts (B-OstIN, biograft HABG and biograft HT) that had different chemical compositions showed varying physical and crystalline properties. Biograft HT showed a superior porous scaffold architecture among all BGS studied. Conclusion: It is important for a clinician to have a thorough understanding about the physicochemical characteristics of BGS they use in periodontal regeneration. The xenografts evaluated here had minimal physical and crystalline properties. Among the alloplasts studied, biograft HT showed superior physicochemical properties, while the presence of bioactive glass in biograft HABG enhanced regeneration.
Collapse
Affiliation(s)
- Aiswarya Anil
- Resident, Department of Periodontics, Sree Mookambika Institute of Dental Sciences, Kulasekharam, Tamil Nadu, India
| | - Arun Sadasivan
- Professor, Department of Periodontics, Sree Mookambika Institute of Dental Sciences, Kulasekharam, Tamil Nadu, India
| | - Elizabeth Koshi
- Professor & Head, Department of Periodontics, Sree Mookambika Institute of Dental Sciences, Kulasekharam, Tamil Nadu, India
| |
Collapse
|
24
|
Embedding cells within nanoscale, rapidly mineralizing hydrogels: A new paradigm to engineer cell-laden bone-like tissue. J Struct Biol 2020; 212:107636. [PMID: 33039511 DOI: 10.1016/j.jsb.2020.107636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 11/20/2022]
Abstract
Bone mineralization is a highly specific and dynamic nanoscale process that has been studied extensively from a structural, chemical, and biological standpoint. Bone tissue, therefore, may be defined by the interplay of its intricately mineralized matrix and the cells that regulate its biological function. However, the far majority of engineered bone model systems and bone replacement materials have been unable to replicate this key characteristic of bone tissue; that is, the ability of cells to be gradually and rapidly embedded in a three-dimensional (3D) heavily calcified matrix material. Here we review the characteristics that define the bone matrix from a nanostructural perspective. We then revisit the benefits and challenges of existing model systems and engineered bone replacement materials, and discuss recent efforts to replicate the biological, cellular, mechanical, and materials characteristics of bone tissue on the nano- to microscale. We pay particular attention to a recently proposed method developed by our group, which seeks to replicate key aspects of the entrapment of bone cells within a mineralized matrix with precisions down to the level of individual nano-crystallites, inclusive of the bone vasculature, and osteogenic differentiation process. In summary, this paper discusses existing and emerging evidence pointing towards future developments bridging the gap between the fields of biomineralization, structural biology, stem cells, and tissue engineering, which we believe will hold the key to engineer truly functional bone-like tissue in the laboratory.
Collapse
|
25
|
Tavares MT, Oliveira MB, Gaspar VM, Mano JF, S. Farinha JP, Baleizão C. Efficient Single‐Dose Induction of Osteogenic Differentiation of Stem Cells Using Multi‐Bioactive Hybrid Nanocarriers. ACTA ACUST UNITED AC 2020; 4:e2000123. [DOI: 10.1002/adbi.202000123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/10/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Márcia T. Tavares
- Department of ChemistryCICECO – Aveiro Institute of Materials University of AveiroCampus Universitário de Santiago Aveiro 3810‐193 Portugal
- Centro de Química Estrutural and Department of Chemical EngineeringInstituto Superior Técnico Universidade de Lisboa Lisboa 1049‐001 Portugal
| | - Mariana B. Oliveira
- Department of ChemistryCICECO – Aveiro Institute of Materials University of AveiroCampus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Vítor M. Gaspar
- Department of ChemistryCICECO – Aveiro Institute of Materials University of AveiroCampus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - João F. Mano
- Department of ChemistryCICECO – Aveiro Institute of Materials University of AveiroCampus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - José Paulo S. Farinha
- Centro de Química Estrutural and Department of Chemical EngineeringInstituto Superior Técnico Universidade de Lisboa Lisboa 1049‐001 Portugal
| | - Carlos Baleizão
- Centro de Química Estrutural and Department of Chemical EngineeringInstituto Superior Técnico Universidade de Lisboa Lisboa 1049‐001 Portugal
| |
Collapse
|
26
|
Directing Stem Cell Commitment by Amorphous Calcium Phosphate Nanoparticles Incorporated in PLGA: Relevance of the Free Calcium Ion Concentration. Int J Mol Sci 2020; 21:ijms21072627. [PMID: 32283864 PMCID: PMC7177725 DOI: 10.3390/ijms21072627] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022] Open
Abstract
The microenvironment of mesenchymal stem cells (MSCs) is responsible for the modulation in MSC commitment. Nanocomposites with an inorganic and an organic component have been investigated, and osteogenesis of MSCs has been attributed to inorganic phases such as calcium phosphate under several conditions. Here, electrospun meshes and two-dimensional films of poly(lactic-co-glycolic acid) (PLGA) or nanocomposites of PLGA and amorphous calcium phosphate nanoparticles (PLGA/aCaP) seeded with human adipose-derived stem cells (ASCs) were analyzed for the expression of selected marker genes. In a two-week in vitro experiment, osteogenic commitment was not found to be favored on PLGA/aCaP compared to pure PLGA. Analysis of the medium revealed a significant reduction of the Ca2+ concentration when incubated with PLGA/aCaP, caused by chemical precipitation of hydroxyapatite (HAp) on aCaP seeds of PLGA/aCaP. Upon offering a constant Ca2+ concentration, however, the previously observed anti-osteogenic effect was reversed: alkaline phosphatase, an early osteogenic marker gene, was upregulated on PLGA/aCaP compared to pristine PLGA. Hence, in addition to the cell–material interaction, the material–medium interaction was also important for the stem cell commitment here, affecting the cell–medium interaction. Complex in vitro models should therefore consider all factors, as coupled impacts might emerge.
Collapse
|
27
|
Establishment of Collagen: Hydroxyapatite/BMP-2 Mimetic Peptide Composites. MATERIALS 2020; 13:ma13051203. [PMID: 32155998 PMCID: PMC7085073 DOI: 10.3390/ma13051203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 12/27/2022]
Abstract
Extensive efforts were undertaken to develop suitable biomaterials for tissue engineering (TE) applications. To facilitate clinical approval processes and ensure the success of TE applications, bioinspired concepts are currently focused on. Working on bone tissue engineering, we describe in the present study a method for biofunctionalization of collagen/hydroxyapatite composites with BMP-2 mimetic peptides. This approach is expected to be fundamentally transferable to other tissue engineering fields. A modified BMP-2 mimetic peptide containing a negatively charged poly-glutamic acid residue (E7 BMP-2 peptide) was used to bind positively charged hydroxyapatite (HA) particles by electrostatic attraction. Binding efficiency was biochemically detected to be on average 85% compared to 30% of BMP-2 peptide without E7 residue. By quartz crystal microbalance (QCM) analysis, we could demonstrate the time-dependent dissociation of the BMP-2 mimetic peptides and the stable binding of the E7 BMP-2 peptides on HA-coated quartz crystals. As shown by immunofluorescence staining, alkaline phosphatase expression is similar to that detected in jaw periosteal cells (JPCs) stimulated with the whole BMP-2 protein. Mineralization potential of JPCs in the presence of BMP-2 mimetic peptides was also shown to be at least similar or significantly higher when low peptide concentrations were used, as compared to JPCs cultured in the presence of recombinant BMP-2 controls. In the following, collagen/hydroxyapatite composite materials were prepared. By proliferation analysis, we detected a decrease in cell viability with increasing HA ratios. Therefore, we chose a collagen/hydroxyapatite ratio of 1:2, similar to the natural composition of bone. The following inclusion of E7 BMP-2 peptides within the composite material resulted in significantly elevated long-term JPC proliferation under osteogenic conditions. We conclude that our advanced approach for fast and cost-effective scaffold preparation and biofunctionalization is suitable for improved and prolonged JPC proliferation. Further studies should prove the functionality of composite scaffolds in vivo.
Collapse
|
28
|
Daneshmandi L, Laurencin CT. Regenerative engineered vascularized bone mediated by calcium peroxide. J Biomed Mater Res A 2020; 108:1045-1057. [PMID: 31925886 DOI: 10.1002/jbm.a.36879] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 12/20/2022]
Abstract
One of the main challenges hindering the clinical translation of bone tissue engineering scaffolds is the lack of establishment of functional vasculature. Insufficient vascularization and poor oxygen supply limit cell survival within the constructs resulting in poor osseointegration with the host tissue and eventually leading to inadequate bone regeneration. Inspired by cues from developmental biology, we regenerative engineered a composite matrix by incorporating calcium peroxide (CaO2 ) into poly(lactide-co-glycolide) (PLGA) microsphere-based matrices and sought to assess whether the delivery of the byproducts of CaO2 decomposition, namely O2 , Ca2+ , and H2 O2 could enhance the regeneration of vascularized bone tissue. The composite microspheres were successfully fabricated via the oil-in-water emulsion method. The presence and encapsulation of CaO2 was confirmed using scanning electron microscopy, energy dispersive x-ray spectroscopy, thermogravimetric analysis, and X-ray powder diffraction. The microspheres were further heat sintered into three-dimensional porous scaffolds and characterized for their degradation and release of byproducts. The in vitro cytocompatibility of the matrices and their ability to support osteogenic differentiation was confirmed using human adipose-derived stem cells. Lastly, an in vivo study was performed in a mouse critical-sized calvarial defect model to evaluate the capacity of these matrices in supporting vascularized bone regeneration. Results demonstrated that the presence of CaO2 increased cellularization and biological activity throughout the matrices. There was greater migration of host cells to the interior of the matrices and greater survival and persistence of donor cells after 8 weeks, which in synergy with the composite matrices led to enhanced vascularized bone regeneration.
Collapse
Affiliation(s)
- Leila Daneshmandi
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, Connecticut.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut.,Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut.,Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, Connecticut.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut.,Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut.,Institute of Materials Science, University of Connecticut, Storrs, Connecticut.,Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut.,Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
29
|
Wang J, Qu Y, Chen C, Sun J, Pan H, Shao C, Tang R, Gu X. Fabrication of collagen membranes with different intrafibrillar mineralization degree as a potential use for GBR. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109959. [DOI: 10.1016/j.msec.2019.109959] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/02/2019] [Accepted: 07/05/2019] [Indexed: 11/30/2022]
|
30
|
França CM, Thrivikraman G, Athirasala A, Tahayeri A, Gower LB, Bertassoni LE. The influence of osteopontin-guided collagen intrafibrillar mineralization on pericyte differentiation and vascularization of engineered bone scaffolds. J Biomed Mater Res B Appl Biomater 2019; 107:1522-1532. [PMID: 30267638 PMCID: PMC6440878 DOI: 10.1002/jbm.b.34244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/25/2018] [Accepted: 08/25/2018] [Indexed: 12/17/2022]
Abstract
Biomimetically mineralized collagen scaffolds are promising for bone regeneration, but vascularization of these materials remains to be addressed. Here, we engineered mineralized scaffolds using an osteopontin-guided polymer-induced liquid-precursor mineralization method to recapitulate bone's mineralized nanostructure. SEM images of mineralized samples confirmed the presence of collagen with intrafibrillar mineral, also EDS spectra and FTIR showed high peaks of calcium and phosphate, with a similar mineral/matrix ratio to native bone. Mineralization increased collagen compressive modulus up to 15-fold. To evaluate vasculature formation and pericyte-like differentiation, HUVECs and hMSCs were seeded in a 4:1 ratio in the scaffolds for 7 days. Moreover, we used RT-PCR to investigate the gene expression of pericyte markers ACTA2, desmin, CD13, NG2, and PDGFRβ. Confocal images showed that both nonmineralized and mineralized scaffolds enabled endothelial capillary network formation. However, vessels in the nonmineralized samples had longer vessel length, a larger number of junctions, and a higher presence of αSMA+ mural cells. RT-PCR analysis confirmed the downregulation of pericytic markers in mineralized samples. In conclusion, although both scaffolds enabled endothelial capillary network formation, mineralized scaffolds presented less pericyte-supported vessels. These observations suggest that specific scaffold characteristics may be required for efficient scaffold vascularization in future bone tissue engineering strategies. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1522-1532, 2019.
Collapse
Affiliation(s)
- Cristiane M. França
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
- Nove de Julho University, São Paulo, SP, Brazil
| | - Greeshma Thrivikraman
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Avathamsa Athirasala
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Anthony Tahayeri
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Laurie B. Gower
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
| | - Luiz E. Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
- Center for Regenerative Medicine, School of Medicine, Oregon Health and Science University, Portland, OR, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
31
|
Phosphate graphene as an intrinsically osteoinductive scaffold for stem cell-driven bone regeneration. Proc Natl Acad Sci U S A 2019; 116:4855-4860. [PMID: 30796184 DOI: 10.1073/pnas.1815434116] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Synthetic, resorbable scaffolds for bone regeneration have potential to transform the clinical standard of care. Here, we demonstrate that functional graphenic materials (FGMs) could serve as an osteoinductive scaffold: recruiting native cells to the site of injury and promoting differentiation into bone cells. By invoking a Lewis acid-catalyzed Arbuzov reaction, we are able to functionalize graphene oxide (GO) to produce phosphate graphenes (PGs) with unprecedented control of functional group density, mechanical properties, and counterion identity. In aqueous environments, PGs release inducerons, including Ca2+ and PO4 3- Calcium phosphate graphene (CaPG) intrinsically induces osteogenesis in vitro and in the presence of bone marrow stromal cells (BMSCs), can induce ectopic bone formation in vivo. Additionally, an FGM can be made by noncovalently loading GO with the growth factor recombinant human bone morphogenetic protein 2 (rhBMP-2), producing a scaffold that induces ectopic bone formation with or without BMSCs. The FGMs reported here are intrinsically inductive scaffolds with significant potential to revolutionize the regeneration of bone.
Collapse
|
32
|
Baumgartner W, Otto L, Hess SC, Stark WJ, Märsmann S, Bürgisser GM, Calcagni M, Cinelli P, Buschmann J. Cartilage/bone interface fabricated under perfusion: Spatially organized commitment of adipose‐derived stem cells without medium supplementation. J Biomed Mater Res B Appl Biomater 2018; 107:1833-1843. [DOI: 10.1002/jbm.b.34276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/27/2018] [Accepted: 10/17/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Walter Baumgartner
- Division of Plastic and Hand SurgeryUniversity Hospital Zürich ZKF, Zürich Switzerland
| | - Lukas Otto
- Division of Plastic and Hand SurgeryUniversity Hospital Zürich ZKF, Zürich Switzerland
| | - Samuel C. Hess
- Institute for Chemical‐ and BioengineeringDepartment of Chemistry and Applied Biosciences ETH Zürich, Zürich Switzerland
| | - Wendelin J. Stark
- Institute for Chemical‐ and BioengineeringDepartment of Chemistry and Applied Biosciences ETH Zürich, Zürich Switzerland
| | - Sonja Märsmann
- Division of Plastic and Hand SurgeryUniversity Hospital Zürich ZKF, Zürich Switzerland
- Division of Trauma SurgeryUniversity Hospital Zürich ZKF, Zürich Switzerland
| | | | - Maurizio Calcagni
- Division of Plastic and Hand SurgeryUniversity Hospital Zürich ZKF, Zürich Switzerland
| | - Paolo Cinelli
- Division of Trauma SurgeryUniversity Hospital Zürich ZKF, Zürich Switzerland
| | - Johanna Buschmann
- Division of Plastic and Hand SurgeryUniversity Hospital Zürich ZKF, Zürich Switzerland
| |
Collapse
|
33
|
Ali Akbari Ghavimi S, Allen BN, Stromsdorfer JL, Kramer JS, Li X, Ulery BD. Calcium and phosphate ions as simple signaling molecules with versatile osteoinductivity. ACTA ACUST UNITED AC 2018; 13:055005. [PMID: 29794341 DOI: 10.1088/1748-605x/aac7a5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Due to the continually increasing clinical need to heal large bone defects, synthetic bone graft substitutes have become ever more necessary with calcium phosphates (CaP) widely used due to their similarity to the mineral component of bone. In this research, different concentrations of calcium ions (Ca2+), phosphate ions (Pi), or their combination were provided to mesenchymal stem cells (MSCs) to evaluate their influence on proliferation and differentiation. The results suggest that 1-16 mM Ca2+ and 1-8 mM Pi is osteoinductive, but not cytotoxic. Furthermore, three distinct calcium phosphates (i.e. monobasic, dibasic, and hydroxyapatite) with different dissolution rates were investigated for their Ca2+ and Pi release. These biomaterials were then adjusted to release ion concentrations within the established therapeutics window for which MSC bioactivity was assessed. These findings suggest that CaP-based biomaterials can be leveraged to achieve Ca2+ and Pi dose-dependent osteoinduction for bone regenerative engineering applications.
Collapse
Affiliation(s)
- Soheila Ali Akbari Ghavimi
- Department of Chemical Engineering, University of Missouri, Columbia, MO 65211, United States of America
| | | | | | | | | | | |
Collapse
|
34
|
Kapat K, Rameshbabu AP, Maity PP, Mandal A, Bankoti K, Dutta J, Das DK, Dey G, Mandal M, Dhara S. Osteochondral Defects Healing Using Extracellular Matrix Mimetic Phosphate/Sulfate Decorated GAGs-Agarose Gel and Quantitative Micro-CT Evaluation. ACS Biomater Sci Eng 2018; 5:149-164. [DOI: 10.1021/acsbiomaterials.8b00253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | - Priti Prasanna Maity
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur 711103, India
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Tang Z, Li X, Tan Y, Fan H, Zhang X. The material and biological characteristics of osteoinductive calcium phosphate ceramics. Regen Biomater 2018; 5:43-59. [PMID: 29423267 PMCID: PMC5798025 DOI: 10.1093/rb/rbx024] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/16/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022] Open
Abstract
The discovery of osteoinductivity of calcium phosphate (Ca-P) ceramics has set an enduring paradigm of conferring biological regenerative activity to materials with carefully designed structural characteristics. The unique phase composition and porous structural features of osteoinductive Ca-P ceramics allow it to interact with signaling molecules and extracellular matrices in the host system, creating a local environment conducive to new bone formation. Mounting evidence now indicate that the osteoinductive activity of Ca-P ceramics is linked to their physicochemical and three-dimensional structural properties. Inspired by this conceptual breakthrough, many laboratories have shown that other materials can be also enticed to join the rank of tissue-inducing biomaterials, and besides the bones, other tissues such as cartilage, nerves and blood vessels were also regenerated with the assistance of biomaterials. Here, we give a brief historical recount about the discovery of the osteoinductivity of Ca-P ceramics, summarize the underlying material factors and biological characteristics, and discuss the mechanism of osteoinduction concerning protein adsorption, and the interaction with different types of cells, and the involvement of the vascular and immune systems.
Collapse
Affiliation(s)
- Zhurong Tang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Yanfei Tan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P.R. China
| |
Collapse
|
36
|
Kannan MB, Walter R, Yamamoto A, Khakbaz H, Blawert C. Electrochemical surface engineering of magnesium metal by plasma electrolytic oxidation and calcium phosphate deposition: biocompatibility and in vitro degradation studies. RSC Adv 2018; 8:29189-29200. [PMID: 35548009 PMCID: PMC9084472 DOI: 10.1039/c8ra05278f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/10/2018] [Indexed: 11/21/2022] Open
Abstract
In this study, the surface of magnesium metal was electrochemically engineered for enhanced biocompatibility and controlled degradation in body fluid. Firstly, a plasma electrolytic oxidation (PEO) coating was formed on magnesium, followed by electrochemical deposition of calcium phosphate (CaP) using an unconventional electrolyte. Cytocompatibility tests using L929 cells revealed that the PEO-CaP coating significantly improved the biocompatibility of magnesium. In vitro electrochemical degradation experiments in simulated body fluid (SBF) showed that the PEO-CaP coating improved the degradation resistance of magnesium significantly. The corrosion current density (icorr) of the PEO-CaP coated magnesium was ∼99% and ∼97% lower than that of bare magnesium and the PEO-only coated magnesium, respectively. Similarly, electrochemical impedance spectroscopy (EIS) results showed that the polarisation resistance (RP) of the PEO-CaP coated magnesium was one-order of magnitude higher as compared to the PEO-only coated magnesium and two-orders of magnitude higher than the bare magnesium, after 72 h immersion in SBF. Scanning electron microscopy (SEM) analysis revealed no localized degradation in the PEO-CaP coated magnesium. The study demonstrated that the PEO-CaP coating is a promising combination for enhancing the biocompatibility and reducing the degradation of magnesium for potential biodegradable implant applications. The PEO-CaP coating produced on magnesium metal using an unconventional electrolyte enhanced the degradation resistance and provided excellent cytocompatibility.![]()
Collapse
Affiliation(s)
- M. Bobby Kannan
- Biomaterials and Engineering Materials (BEM) Laboratory
- College of Science and Engineering
- James Cook University
- Townsville
- Australia
| | - R. Walter
- Biomaterials and Engineering Materials (BEM) Laboratory
- College of Science and Engineering
- James Cook University
- Townsville
- Australia
| | - A. Yamamoto
- Research Center for Functional Materials
- National Institute for Materials Science (NIMS)
- Tsukuba
- Japan
| | - H. Khakbaz
- Biomaterials and Engineering Materials (BEM) Laboratory
- College of Science and Engineering
- James Cook University
- Townsville
- Australia
| | - C. Blawert
- Institute of Materials Research
- Helmholtz-Zentrum Geesthacht, Zentrum für Material-und Küstenforschung GmbH
- Geesthacht D 21502
- Germany
| |
Collapse
|
37
|
Chai YC, Bolander J, Papantoniou I, Patterson J, Vleugels J, Schrooten J, Luyten FP. Harnessing the Osteogenicity of In Vitro Stem Cell-Derived Mineralized Extracellular Matrix as 3D Biotemplate to Guide Bone Regeneration. Tissue Eng Part A 2017; 23:874-890. [DOI: 10.1089/ten.tea.2016.0432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Yoke Chin Chai
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Johanna Bolander
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Ioannis Papantoniou
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Jennifer Patterson
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
| | - Jef Vleugels
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
| | - Jan Schrooten
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
| | - Frank P. Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Majidinia M, Sadeghpour A, Yousefi B. The roles of signaling pathways in bone repair and regeneration. J Cell Physiol 2017; 233:2937-2948. [DOI: 10.1002/jcp.26042] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Maryam Majidinia
- Solid Tumor Research Center; Urmia University of Medical Sciences; Urmia Iran
| | - Alireza Sadeghpour
- Department of Orthopedic Surgery, School of Medicine and Shohada Educational Hospital; Tabriz University of Medical Sciences; Tabriz Iran
- Drug Applied Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Bahman Yousefi
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Molecular Targeting Therapy Research Group; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
- Stem cell and Regenerative Medicine Institute; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
39
|
Galván-Chacón VP, Habibovic P. Deconvoluting the Bioactivity of Calcium Phosphate-Based Bone Graft Substitutes: Strategies to Understand the Role of Individual Material Properties. Adv Healthc Mater 2017; 6. [PMID: 28544743 DOI: 10.1002/adhm.201601478] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/24/2017] [Indexed: 02/06/2023]
Abstract
Calcium phosphate (CaP)-based ceramics are the most widely applied synthetic biomaterials for repair and regeneration of damaged and diseased bone. CaP bioactivity is regulated by a set of largely intertwined physico-chemical and structural properties, such as the surface microstructure, surface energy, porosity, chemical composition, crystallinity and stiffness. Unravelling the role of each individual property in the interaction between the biomaterial and the biological system is a prerequisite for evolving from a trial-and-error approach to a design-driven approach in the development of new functional biomaterials. This progress report critically reviews various strategies developed to decouple the roles of the individual material properties in the biological performance of CaP ceramics. It furthermore emphasizes on the importance of a comprehensive and adequate material characterization that is needed to enhance our knowledge of the property-function relationship of biomaterials used in bone regeneration, and in regenerative medicine in general.
Collapse
Affiliation(s)
| | - Pamela Habibovic
- MERLN Institute; Maastricht University; P.O. Box 616 6200 MD Maastricht The Netherlands
| |
Collapse
|
40
|
Patel R, Patel M, Kwak J, Iyer AK, Karpoormath R, Desai S, Rarh V. Polymeric microspheres: a delivery system for osteogenic differentiation. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Rajkumar Patel
- School of Electrical and Computer Engineering; The University of Seoul; Seoul 02504 Korea
| | - Madhumita Patel
- Department of Chemistry and Nano Science; Ewha Womans University; Seodaemun-gu Seoul 120-750 South Korea
| | - Jeonghun Kwak
- School of Electrical and Computer Engineering; The University of Seoul; Seoul 02504 Korea
| | - Arun K. Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-Bind) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health, Sciences; Wayne State University; 259 Mack Ave Detroit MI 48201 USA
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences; University of Kwa Zulu Natal; Durban 4000 Africa
| | - Shrojal Desai
- Global Infusion Systems R&D at Hospira; Chicago, IL USA
| | - Vimal Rarh
- Department of Chemistry, S.G.T.B. Khalsa College; University of Delhi; Delhi 110007 India
| |
Collapse
|
41
|
Rodrigues AI, Reis RL, van Blitterswijk CA, Leonor IB, Habibović P. Calcium phosphates and silicon: exploring methods of incorporation. Biomater Res 2017; 21:6. [PMID: 28435697 PMCID: PMC5395800 DOI: 10.1186/s40824-017-0092-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/11/2017] [Indexed: 01/30/2023] Open
Abstract
Background Bioinorganics have been explored as additives to ceramic bone graft substitutes with the aim to improve their performance in repair and regeneration of large bone defects. Silicon (Si), an essential trace element involved in the processes related to bone formation and remodeling, was shown not only to enhance osteoblasts proliferation but also to stimulate the differentiation of mesenchymal stem cells (MSCs) and preosteoblasts into the osteogenic lineage. In this study, the added value of Si to calcium phosphate (CaP) coatings was evaluated. Methods Tissue culture plastic well plates were coated with a thin CaP layer to which traces amounts of Si were added, either by adsorption or by incorporation through coprecipitation. The physicochemical and structural properties of the coatings were characterized and the dissolution behavior was evaluated. The adsorption/incorporation of Si was successfully achieved and incorporated ions were released from the CaP coatings. Human MSCs were cultured on the coatings to examine the effects of Si on cell proliferation and osteogenic differentiation. For the statistical analysis, a one-way ANOVA with Bonferroni post-hoc test was performed. Results The results showed that human MSCs (hMSCs) responded to the presence of Si in the CaP coatings, in a dose-dependent manner. An increase in the expression of markers of osteogenic differentiation by human MSCs was observed as a result of the increase in Si concentration. Conclusions The incorporation/adsorption of Si into CaP coatings was successfully achieved and hMSCs responded with an increase in osteogenic genes expression with the increase of Si concentration. Furthermore, hMSCs cultured on CaP-I coatings expressed higher levels of ALP and OP, indicating that this may be the preferred method of incorporation of bioinorganics into CaPs.
Collapse
Affiliation(s)
- Ana I Rodrigues
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Department of Tissue Regeneration, MIRA Institute, University of Twente, Enschede, The Netherlands.,Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Clemens A van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute, University of Twente, Enschede, The Netherlands.,Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Isabel B Leonor
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pamela Habibović
- Department of Tissue Regeneration, MIRA Institute, University of Twente, Enschede, The Netherlands.,Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
42
|
Groen N, Yuan H, Hebels DGAJ, Koçer G, Mbuyi F, LaPointe V, Truckenmüller R, van Blitterswijk CA, Habibović P, de Boer J. Linking the Transcriptional Landscape of Bone Induction to Biomaterial Design Parameters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1603259. [PMID: 27991696 DOI: 10.1002/adma.201603259] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/07/2016] [Indexed: 06/06/2023]
Abstract
New engineering possibilities allow biomaterials to serve as active orchestrators of the molecular and cellular events of tissue regeneration. Here, the molecular control of tissue regeneration for calcium phosphate (CaP)-based materials is established by defining the parameters critical for tissue induction and those are linked to the molecular circuitry controlling cell physiology. The material properties (microporosity, ion composition, protein adsorption) of a set of synthesized osteoinductive and noninductive CaP ceramics are parameterized and these properties are correlated to a transcriptomics profile of osteogenic cells grown on the materials in vitro. Using these data, a genetic network controlling biomaterial-induced bone formation is built. By isolating the complex material properties into single-parameter test conditions, it is verified that a subset of these genes is indeed controlled by surface topography and ions released from the ceramics, respectively. The gene network points to a decisive role for extracellular matrix deposition in osteoinduction by genes such as tenascin C and hyaluronic acid synthase 2, which are controlled by calcium and phosphate ions as well as surface topography. This work provides insight into the biomaterial composition and material engineering aspects of bone void filling and can be used as a strategy to explore the interface between biomaterials and tissue regeneration.
Collapse
Affiliation(s)
- Nathalie Groen
- Department of Tissue Regeneration, University of Twente, Drienerlolaan 5, 7522, NB, Enschede, The Netherlands
| | - Huipin Yuan
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229, ER, Maastricht, The Netherlands
- Xpand Biotechnology B.V, Professor Bronkhorstlaan 10, 3723, MB, Bilthoven, The Netherlands
| | - Dennie G A J Hebels
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229, ER, Maastricht, The Netherlands
| | - Gülistan Koçer
- Department of Tissue Regeneration, University of Twente, Drienerlolaan 5, 7522, NB, Enschede, The Netherlands
| | - Faustin Mbuyi
- Department of Tissue Regeneration, University of Twente, Drienerlolaan 5, 7522, NB, Enschede, The Netherlands
| | - Vanessa LaPointe
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229, ER, Maastricht, The Netherlands
| | - Roman Truckenmüller
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229, ER, Maastricht, The Netherlands
| | - Clemens A van Blitterswijk
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229, ER, Maastricht, The Netherlands
| | - Pamela Habibović
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229, ER, Maastricht, The Netherlands
| | - Jan de Boer
- Department of Tissue Regeneration, University of Twente, Drienerlolaan 5, 7522, NB, Enschede, The Netherlands
- MERLN Institute for Technology-inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229, ER, Maastricht, The Netherlands
| |
Collapse
|
43
|
Tang Z, Tan Y, Ni Y, Wang J, Zhu X, Fan Y, Chen X, Yang X, Zhang X. Comparison of ectopic bone formation process induced by four calcium phosphate ceramics in mice. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:1000-1010. [DOI: 10.1016/j.msec.2016.06.097] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/15/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022]
|
44
|
Cunniffe GM, Curtin CM, Thompson EM, Dickson GR, O'Brien FJ. Content-Dependent Osteogenic Response of Nanohydroxyapatite: An in Vitro and in Vivo Assessment within Collagen-Based Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2016; 8:23477-23488. [PMID: 27537605 DOI: 10.1021/acsami.6b06596] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The use of collagen-based scaffolds in orthopedic applications has been limited due to poor mechanical properties, but this may be overcome by the introduction of a stiffer supporting phase. Thus, we developed a synthesis technique to produce nonaggregating, stable nanohydroxyapatite (nHA) particles, permitting the fabrication of biomimetic-inspired scaffolds through the combination of nanosized HA with collagen, as found in native bone. This study evaluates the mechanical and biological impact of incorporating increasing concentrations of these nanoparticles into porous collagen scaffolds (1:1 and 5:1 weight ratios of nHA/collagen). Mechanical assessment demonstrated that increasing nHA incorporation correlated with increasing Young's moduli, which could be further amplified using cross-linking treatments. Typically, the porosity of a scaffold is sacrificed to produce a stiffer material; however, through the use of nanosized particles the inclusion of up to 5:1 nHA/collagen content still preserved the high 99% porosity of the composite scaffold, allowing for maximum cell infiltration. Moreover, increasing nHA presence induced significant bioactive responses, achieving superior cellular attachment and enhanced osteogenesis, promoting earlier expression of bone markers and cell-mediated mineralization versus nHA-free collagen controls. Interestingly, these content-dependent results observed in vitro did not directly translate in vivo. Instead, similar levels of bone formation were achieved within critical-sized rat calvarial defects, independent of nHA content, following acellular implantation. The addition of nHA, both 1:1 and 5:1, induced significantly higher levels of mineralization and de novo bone ingrowth versus collagen controls as demonstrated by microcomputed tomography, histological, and histomorphometric analyses. Ultimately, these results demonstrate the immense osteoinductivity of nonaggregated nanoparticles of HA incorporated into collagen-composite scaffolds and emphasize the importance of in vivo-based evaluation of therapies intended for clinical use.
Collapse
Affiliation(s)
- Gráinne M Cunniffe
- Trinity Centre for Bioengineering, Trinity College Dublin , Dublin 2, Ireland
- Advanced Materials and BioEngineering Research Centre, Royal College of Surgeons in Ireland & Trinity College Dublin , Dublin 2, Ireland
| | - Caroline M Curtin
- Trinity Centre for Bioengineering, Trinity College Dublin , Dublin 2, Ireland
- Advanced Materials and BioEngineering Research Centre, Royal College of Surgeons in Ireland & Trinity College Dublin , Dublin 2, Ireland
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland , 123 St. Stephens Green, Dublin 2, Ireland
| | - Emmet M Thompson
- Trinity Centre for Bioengineering, Trinity College Dublin , Dublin 2, Ireland
- Advanced Materials and BioEngineering Research Centre, Royal College of Surgeons in Ireland & Trinity College Dublin , Dublin 2, Ireland
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland , 123 St. Stephens Green, Dublin 2, Ireland
| | - Glenn R Dickson
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland , 123 St. Stephens Green, Dublin 2, Ireland
| | - Fergal J O'Brien
- Trinity Centre for Bioengineering, Trinity College Dublin , Dublin 2, Ireland
- Advanced Materials and BioEngineering Research Centre, Royal College of Surgeons in Ireland & Trinity College Dublin , Dublin 2, Ireland
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland , 123 St. Stephens Green, Dublin 2, Ireland
| |
Collapse
|
45
|
Laiuppa JA, Santillán GE. Effect of Combined Action of Extracellular ATP and Elevated Calcium on Osteogenic Differentiation of Primary Cultures From Rat Calvaria. J Cell Biochem 2016; 117:2658-68. [PMID: 27038365 DOI: 10.1002/jcb.25565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/31/2016] [Indexed: 11/06/2022]
Abstract
The in vitro osteogenic differentiation has been intensively studied. However, it is not yet clear precisely how osteogenesis can be optimized. Changes in extracellular Ca(2+) concentration ([Ca(2+) ]e ), as well as modulation of purinergic receptors play an important role in the regulation of osteoblasts differentiation and bone formation. In this study, we investigated the effects of a combined treatment of ATPγ-S and high [Ca(2+) ]e (5.35 mM) on osteogenic differentiation and function of primary cell cultures from rat calvaria. Our results indicate that ATPγ-S stimulates cell transition from the G0 to S phase of cell cycle, involving the PI3K signaling pathway. Treatment with 10 or 100 µM ATPγ-S and [Ca(2+) ]e (ATP-[Ca(2+) ]e ) for 48 h increases cell number significantly above the control. ATPγ-S treatment in osteogenic medium containing [Ca(2+) ]e stimulates the gene expression of BMP-4, BMP-5, and OPN at 16, 48, and 72 h, respectively, above control. In same conditions, treatment for 6 days with 10 µM UTP or 100 µM UDP significantly increased the ALP activity respect to control. Cells grown in osteogenic medium showed a statistically significant increase in calcium deposits at 15 and 18 days, for 10 µM ATPγ-S treatment, and at 18 and 22 days, for [Ca(2+) ]e treatment, respect to control but ATP-[Ca(2+) ]e treatment shown a significant greater mineralization at 15 days respect to ATPγ-S, and at 18 days respect to both agonists. In conclusion, we demonstrated that an osteogenic medium containing 10 µM ATPγ-S and 5.35 mM [Ca(2+) ]e enhance osteogenesis and mineralization by rat primary calvarial cells cultures. J. Cell. Biochem. 117: 2658-2668, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Juan A Laiuppa
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, CONICET, San Juan 670, (B8000ICN) Bahía Blanca, Argentina
| | - Graciela E Santillán
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, CONICET, San Juan 670, (B8000ICN) Bahía Blanca, Argentina.
| |
Collapse
|
46
|
Viti F, Landini M, Mezzelani A, Petecchia L, Milanesi L, Scaglione S. Osteogenic Differentiation of MSC through Calcium Signaling Activation: Transcriptomics and Functional Analysis. PLoS One 2016; 11:e0148173. [PMID: 26828589 PMCID: PMC4734718 DOI: 10.1371/journal.pone.0148173] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 01/13/2016] [Indexed: 12/17/2022] Open
Abstract
The culture of progenitor mesenchymal stem cells (MSC) onto osteoconductive materials to induce a proper osteogenic differentiation and mineralized matrix regeneration represents a promising and widely diffused experimental approach for tissue-engineering (TE) applications in orthopaedics. Among modern biomaterials, calcium phosphates represent the best bone substitutes, due to their chemical features emulating the mineral phase of bone tissue. Although many studies on stem cells differentiation mechanisms have been performed involving calcium-based scaffolds, results often focus on highlighting production of in vitro bone matrix markers and in vivo tissue ingrowth, while information related to the biomolecular mechanisms involved in the early cellular calcium-mediated differentiation is not well elucidated yet. Genetic programs for osteogenesis have been just partially deciphered, and the description of the different molecules and pathways operative in these differentiations is far from complete, as well as the activity of calcium in this process. The present work aims to shed light on the involvement of extracellular calcium in MSC differentiation: a better understanding of the early stage osteogenic differentiation program of MSC seeded on calcium-based biomaterials is required in order to develop optimal strategies to promote osteogenesis through the use of new generation osteoconductive scaffolds. A wide spectrum of analysis has been performed on time-dependent series: gene expression profiles are obtained from samples (MSC seeded on calcium-based scaffolds), together with related microRNAs expression and in vivo functional validation. On this basis, and relying on literature knowledge, hypotheses are made on the biomolecular players activated by the biomaterial calcium-phosphate component. Interestingly, a key role of miR-138 was highlighted, whose inhibition markedly increases osteogenic differentiation in vitro and enhance ectopic bone formation in vivo. Moreover, there is evidence that Ca-P substrate triggers osteogenic differentiation through genes (SMAD and RAS family) that are typically regulated during dexamethasone (DEX) induced differentiation.
Collapse
Affiliation(s)
- Federica Viti
- Institute of Biophysics, National Research Council, Genoa, Italy
- Institute of Biomedical Technologies, National Research Council, Segrate (Mi), Italy
| | - Martina Landini
- Institute of Biomedical Technologies, National Research Council, Segrate (Mi), Italy
| | - Alessandra Mezzelani
- Institute of Biomedical Technologies, National Research Council, Segrate (Mi), Italy
| | | | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council, Segrate (Mi), Italy
| | - Silvia Scaglione
- Institute of Electronics, Computer and Telecommunication Engineering, National Research Council, Genoa, Italy
- Advanced Biotechnology Center (CBA), Genoa, Italy
- * E-mail:
| |
Collapse
|
47
|
Bolander J, Chai YC, Geris L, Schrooten J, Lambrechts D, Roberts SJ, Luyten FP. Early BMP, Wnt and Ca(2+)/PKC pathway activation predicts the bone forming capacity of periosteal cells in combination with calcium phosphates. Biomaterials 2016; 86:106-18. [PMID: 26901484 DOI: 10.1016/j.biomaterials.2016.01.059] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 02/08/2023]
Abstract
The development of osteoinductive calcium phosphate- (CaP) based biomaterials has, and continues to be, a major focus in the field of bone tissue engineering. However, limited insight into the spatiotemporal activation of signalling pathways has hampered the optimisation of in vivo bone formation and subsequent clinical translation. To gain further knowledge regarding the early molecular events governing bone tissue formation, we combined human periosteum derived progenitor cells with three types of clinically used CaP-scaffolds, to obtain constructs with a distinct range of bone forming capacity in vivo. Protein phosphorylation together with gene expression for key ligands and target genes were investigated 24 hours after cell seeding in vitro, and 3 and 12 days post ectopic implantation in nude mice. A computational modelling approach was used to deduce critical factors for bone formation 8 weeks post implantation. The combined Ca(2+)-mediated activation of BMP-, Wnt- and PKC signalling pathways 3 days post implantation were able to discriminate the bone forming from the non-bone forming constructs. Subsequently, a mathematical model able to predict in vivo bone formation with 96% accuracy was developed. This study illustrates the importance of defining and understanding CaP-activated signalling pathways that are required and sufficient for in vivo bone formation. Furthermore, we demonstrate the reliability of mathematical modelling as a tool to analyse and deduce key factors within an empirical data set and highlight its relevance to the translation of regenerative medicine strategies.
Collapse
Affiliation(s)
- Johanna Bolander
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, Bus 813, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Bus 813, 3000 Leuven, Belgium
| | - Yoke Chin Chai
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, Bus 813, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Bus 813, 3000 Leuven, Belgium
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Bus 813, 3000 Leuven, Belgium; Biomechanics Research Unit, University of Liege, Chemin des Chevreuils 1, BAT 52/3, 4000 Liege 1, Belgium; Biomechanics Section, KU Leuven, Celestijnenlaan 300C, Bus 2419, 3001 Leuven, Belgium
| | - Jan Schrooten
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Bus 813, 3000 Leuven, Belgium; Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Bus 2450, 3001 Heverlee, Belgium
| | - Dennis Lambrechts
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, Bus 813, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Bus 813, 3000 Leuven, Belgium
| | - Scott J Roberts
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, Bus 813, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Bus 813, 3000 Leuven, Belgium; Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, The Royal National Orthopaedic Hospital, Stanmore, Middlesex, HA7 4LP, United Kingdom
| | - Frank P Luyten
- Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, O&N 1, Herestraat 49, Bus 813, 3000 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, Bus 813, 3000 Leuven, Belgium.
| |
Collapse
|
48
|
García-Gareta E, Coathup MJ, Blunn GW. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone 2015; 81:112-121. [PMID: 26163110 DOI: 10.1016/j.bone.2015.07.007] [Citation(s) in RCA: 365] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 01/01/2023]
Abstract
Regeneration of bone defects caused by trauma, infection, tumours or inherent genetic disorders is a clinical challenge that usually necessitates bone grafting materials. Autologous bone or autograft is still considered the clinical "gold standard" and the most effective method for bone regeneration. However, limited bone supply and donor site morbidity are the most important disadvantages of autografting. Improved biomaterials are needed to match the performance of autograft as this is still superior to that of synthetic bone grafts. Osteoinductive materials would be the perfect candidates for achieving this task. The aim of this article is to review the different groups of bone substitutes in terms of their most recently reported osteoinductive properties. The different factors influencing osteoinductivity by biomaterials as well as the mechanisms behind this phenomenon are also presented, showing that it is very limited compared to osteoinductivity shown by bone morphogenetic proteins (BMPs). Therefore, a new term to describe osteoinductivity by biomaterials is proposed. Different strategies for adding osteoinductivity (BMPs, stem cells) to bone substitutes are also discussed. The overall objective of this paper is to gather the current knowledge on osteoinductivity of bone grafting materials for the effective development of new graft substitutes that enhance bone regeneration.
Collapse
Affiliation(s)
- Elena García-Gareta
- RAFT Institute of Plastic Surgery, Mount Vernon Hospital, Northwood HA6 2RN, UK.
| | - Melanie J Coathup
- John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| | - Gordon W Blunn
- John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, University College London, Royal National Orthopaedic Hospital, Stanmore HA7 4LP, UK
| |
Collapse
|
49
|
Rao V, Shih YRV, Kang H, Kabra H, Varghese S. Adenosine Signaling Mediates Osteogenic Differentiation of Human Embryonic Stem Cells on Mineralized Matrices. Front Bioeng Biotechnol 2015; 3:185. [PMID: 26618155 PMCID: PMC4639610 DOI: 10.3389/fbioe.2015.00185] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/28/2015] [Indexed: 12/20/2022] Open
Abstract
Human embryonic stem cells (hESCs) are attractive cell sources for tissue engineering and regenerative medicine due to their self-renewal and differentiation ability. Design of biomaterials with an intrinsic ability that promotes hESC differentiation to the targeted cell type boasts significant advantages for tissue regeneration. We have previously developed biomineralized calcium phosphate (CaP) matrices that inherently direct osteogenic differentiation of hESCs without the need of osteogenic-inducing chemicals or growth factors. Here, we show that CaP matrix-driven osteogenic differentiation of hESCs occurs through A2b adenosine receptor (A2bR). The inhibition of the receptor with an A2bR-specific antagonist attenuated mineralized matrix-mediated osteogenic differentiation of hESCs. In addition, when cultured on matrices in an environment deficient of CaP minerals, exogenous adenosine promoted osteogenic differentiation of hESCs, but was attenuated by the inhibition of A2bR. Such synthetic matrices that intrinsically support osteogenic commitment of hESCs are not only beneficial for bone tissue engineering but can also be used as a platform to study the effect of the physical and chemical cues to the extracellular milieu on stem cell commitment. Insights into the cell signaling during matrix-induced differentiation of stem cells will also help define the key processes and enable discovery of new targets that promote differentiation of pluripotent stem cells for bone tissue engineering.
Collapse
Affiliation(s)
- Vikram Rao
- Department of Bioengineering, University of California San Diego , La Jolla, CA , USA
| | - Yu-Ru V Shih
- Department of Bioengineering, University of California San Diego , La Jolla, CA , USA
| | - Heemin Kang
- Materials Science and Engineering Program, University of California San Diego , La Jolla, CA , USA
| | - Harsha Kabra
- Department of Bioengineering, University of California San Diego , La Jolla, CA , USA
| | - Shyni Varghese
- Department of Bioengineering, University of California San Diego , La Jolla, CA , USA
| |
Collapse
|
50
|
Villa MM, Wang L, Huang J, Rowe DW, Wei M. Improving the permeability of lyophilized collagen-hydroxyapatite scaffolds for cell-based bone regeneration with a gelatin porogen. J Biomed Mater Res B Appl Biomater 2015; 104:1580-1590. [PMID: 26305733 DOI: 10.1002/jbm.b.33387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/14/2014] [Accepted: 01/09/2015] [Indexed: 11/08/2022]
Abstract
Bone tissue engineering using biomaterial scaffolds and culture-expanded osteoprogenitor cells has been demonstrated in several studies; however, it is not yet a clinical reality. One challenge is the optimal design of scaffolds for cell delivery and the identification of scaffold parameters that can delineate success and failure in vivo. Motivated by a previous experiment in which a batch of lyophilized collagen-hydroxyapatite (HA) scaffolds displayed modest bone formation in vivo, despite having large pores and high porosity, we began to investigate the effect of scaffold permeability on bone formation. Herein, we fabricated scaffolds with a permeability of 2.17 ± 1.63 × 10-9 m4 /(N s) and fourfold higher using a sacrificial gelatin porogen. Scaffolds were seeded with mouse bone marrow stromal cells carrying a fluorescent reporter for osteoblast differentiation and implanted into critical-size calvarial defects in immunodeficient mice. The porogen scaffold group containing a 1:1 ratio of solids to beads was significantly more radiopaque than the scaffold group without the bead porogen 3 weeks after implantation. Quantitative histomorphometry uncovered the same trend between the 1:1 group and scaffolds without porogen found in the radiographic data; however, this was not statistically significant here. Taken together, the X-ray and histology suggest that the 1:1 ratio of porogen to scaffold solids, resulting in a fourfold increase in permeability, may enhance bone formation when compared to scaffolds without porogen. Scaffold permeability can be a useful quality control measure before implantation and this practice should improve the consistency and efficacy of cell-based bone tissue engineering. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1580-1590, 2016.
Collapse
Affiliation(s)
- Max M Villa
- Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut, 06269
| | - Liping Wang
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut, 06030
| | - Jianping Huang
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut, 06030
| | - David W Rowe
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut, 06030
| | - Mei Wei
- Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut, 06269.
| |
Collapse
|