1
|
Wagenbrenner M, Heinz T, Anderson PM, Stratos I, Arnholdt J, Mayer-Wagner S, Horas K, Docheva D, Holzapfel BM, Rudert M, Weißenberger M. Does Combined Treatment with Tranexamic Acid and Vancomycin Affect Human Chondrocytes In Vitro? Pharmaceuticals (Basel) 2024; 17:1576. [PMID: 39770418 PMCID: PMC11677089 DOI: 10.3390/ph17121576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The aim of our study was to examine the combined effects of tranexamic acid (TXA) and vancomycin powder (VP) on chondrocytes in vitro. Despite the use of TXA and VP being linked to a reduced risk of extensive postoperative blood loss and periprosthetic joint infections (PJIs) in TKA, the possible cytotoxic side effects on periarticular cell types remain unclear. Methods: Human chondrocytes were harvested from hyaline cartilage and expanded in monolayer culture before being simultaneously exposed to different concentrations of TXA and VP for varying exposure times. Cell viability and proliferation were assessed using an ATP assay and an Annexin 5 assay, respectively, while changes in the relative expression of chondrogenic marker genes were examined using semiquantitative RT-PCR. Results: The simultaneous exposure of chondrocytes to TXA and VP for more than 48 h led to a reduction in both cell viability and proliferation rates. When exposing chondrocytes to the lowest examined concentrations of both TXA (10 mg/mL) and VP (3 mg/mL), the observed effects were delayed until 96 h. However, our study found no dependencies of the observed effects on the concentrations tested. Further, we found no effects on the expression of chondrogenic marker genes. Conclusions: Consequently, limiting the exposure time of chondrocytes to TXA and VP in an in vitro setting to 24 h may be considered safe and could help to further improve the understanding of the safe use of substances in vivo. However, further in vitro research is required to develop a comprehensive understanding of the effects of both VP and TXA on important periarticular cell types in TKA, including chondrocytes, osteocytes, and tenocytes.
Collapse
Affiliation(s)
- Mike Wagenbrenner
- Department of Orthopaedic Surgery and Musculoskeletal Tissue Regeneration, University of Wuerzburg, Koenig-Ludwig-Haus, Brettreichstr. 11, 97074 Wuerzburg, Germany; (M.W.); (T.H.); (P.M.A.); , (K.H.); (D.D.); (M.R.)
| | - Tizian Heinz
- Department of Orthopaedic Surgery and Musculoskeletal Tissue Regeneration, University of Wuerzburg, Koenig-Ludwig-Haus, Brettreichstr. 11, 97074 Wuerzburg, Germany; (M.W.); (T.H.); (P.M.A.); , (K.H.); (D.D.); (M.R.)
| | - Philip M. Anderson
- Department of Orthopaedic Surgery and Musculoskeletal Tissue Regeneration, University of Wuerzburg, Koenig-Ludwig-Haus, Brettreichstr. 11, 97074 Wuerzburg, Germany; (M.W.); (T.H.); (P.M.A.); , (K.H.); (D.D.); (M.R.)
| | - Ioannis Stratos
- Department of Orthopaedic Surgery and Musculoskeletal Tissue Regeneration, University of Wuerzburg, Koenig-Ludwig-Haus, Brettreichstr. 11, 97074 Wuerzburg, Germany; (M.W.); (T.H.); (P.M.A.); , (K.H.); (D.D.); (M.R.)
| | - Joerg Arnholdt
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, 81377 Munich, Germany; (J.A.); (S.M.-W.); (B.M.H.)
| | - Susanne Mayer-Wagner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, 81377 Munich, Germany; (J.A.); (S.M.-W.); (B.M.H.)
| | - Konstantin Horas
- Department of Orthopaedic Surgery and Musculoskeletal Tissue Regeneration, University of Wuerzburg, Koenig-Ludwig-Haus, Brettreichstr. 11, 97074 Wuerzburg, Germany; (M.W.); (T.H.); (P.M.A.); , (K.H.); (D.D.); (M.R.)
| | - Denitsa Docheva
- Department of Orthopaedic Surgery and Musculoskeletal Tissue Regeneration, University of Wuerzburg, Koenig-Ludwig-Haus, Brettreichstr. 11, 97074 Wuerzburg, Germany; (M.W.); (T.H.); (P.M.A.); , (K.H.); (D.D.); (M.R.)
| | - Boris M. Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, 81377 Munich, Germany; (J.A.); (S.M.-W.); (B.M.H.)
| | - Maximilian Rudert
- Department of Orthopaedic Surgery and Musculoskeletal Tissue Regeneration, University of Wuerzburg, Koenig-Ludwig-Haus, Brettreichstr. 11, 97074 Wuerzburg, Germany; (M.W.); (T.H.); (P.M.A.); , (K.H.); (D.D.); (M.R.)
| | - Manuel Weißenberger
- Department of Orthopaedic Surgery and Musculoskeletal Tissue Regeneration, University of Wuerzburg, Koenig-Ludwig-Haus, Brettreichstr. 11, 97074 Wuerzburg, Germany; (M.W.); (T.H.); (P.M.A.); , (K.H.); (D.D.); (M.R.)
| |
Collapse
|
2
|
Leite CBG, Smith R, Lavoie-Gagne OZ, Görtz S, Lattermann C. Biologic Impact of Anterior Cruciate Ligament Injury and Reconstruction. Clin Sports Med 2024; 43:501-512. [PMID: 38811124 DOI: 10.1016/j.csm.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Surgical intervention after anterior cruciate ligament (ACL) tears is typically required because of the limited healing capacity of the ACL. However, mechanical factors and the inflammatory response triggered by the injury and surgery can impact patient outcomes. This review explores key aspects of ACL injury and reconstruction biology, including the inflammatory response, limited spontaneous healing, secondary inflammation after reconstruction, and graft healing processes. Understanding these biologic mechanisms is crucial for developing new treatment strategies and enhancing patient well-being. By shedding light on these aspects, clinicians and researchers can work toward improving quality of life for individuals affected by ACL tears.
Collapse
Affiliation(s)
- Chilan B G Leite
- Department of Orthopaedic Surgery, Center for Cartilage Repair and Sports Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Richard Smith
- Department of Orthopaedic Surgery, Center for Cartilage Repair and Sports Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Ophelie Z Lavoie-Gagne
- Department of Orthopaedic Surgery, Center for Cartilage Repair and Sports Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Simon Görtz
- Department of Orthopaedic Surgery, Center for Cartilage Repair and Sports Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Christian Lattermann
- Department of Orthopaedic Surgery, Center for Cartilage Repair and Sports Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Sharma V, Sakhalkar U, Nadkarni P, Mishal R, Parandhaman D, Vichare K, Francis A, Khanna M, Kukreja M, Sharma A. Cytoprotective Effect of Growth Factors Derived From Platelets on Corticosteroid-Treated Primary Anterior Cruciate Ligament-Derived Stromal Cells and Chondrocytes. Cureus 2024; 16:e65566. [PMID: 39192919 PMCID: PMC11348450 DOI: 10.7759/cureus.65566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
Background The use of corticosteroids, such as methylprednisolone, for pain management is a common clinical practice. However, it is well known that corticosteroids induce toxicity in anterior cruciate ligament (ACL)-derived stromal cells and chondrocytes. Growth factors from platelets have anti-inflammatory effects that can potentially limit the cytotoxic effects of corticosteroids. In this study, we explored the role of growth factors obtained from the OssinextTM kit (commercially available Wockhardt growth factor concentrate (GFC) kit) in recovering methylprednisolone-induced cell damage. Methodology Primary ACL-derived stromal cells and chondrocytes were isolated from human ligament tissue and articular cartilage, respectively, and characterized by immunophenotyping, gene expression analysis, and immunostaining. GFC obtained from OssinextTM kit was used for the experiments. The ACL-derived stromal cells and chondrocytes were treated with methylprednisolone, alone or in combination with GFC. Cell viability was measured by the neutral red uptake assay. Changes in cell morphology and collagen pattern were observed microscopically by H&E staining and immunostaining, respectively. Cell proliferation was assessed by cell migration assay, and the cell ultra-structure was analyzed using transmission electron microscopy. Results Methylprednisolone was found to induce cytotoxicity, altered cell morphology, reduced cell proliferation, and organelle damage in both ACL-derived stromal cells and chondrocytes. GFC obtained from the OssinextTM kit was able to restore cell viability and reverse the cell structure damages induced by methylprednisolone. GFC was found to recover and protect the cells, both when used in combination with steroids and when used after the steroid treatment. Conclusions The results indicate that GFC may be clinically beneficial when used in combination with steroids to mitigate their adverse effects.
Collapse
Affiliation(s)
- Vijay Sharma
- Department of Regenerative Medicine, Wockhardt Regenerative Pvt. Ltd., Mumbai, IND
| | - Ulka Sakhalkar
- Department of Regenerative Medicine, Wockhardt Regenerative Pvt. Ltd., Mumbai, IND
| | - Pratiksha Nadkarni
- Department of Regenerative Medicine, Wockhardt Regenerative Pvt. Ltd., Mumbai, IND
| | - Rashmi Mishal
- Department of Regenerative Medicine, Wockhardt Regenerative Pvt. Ltd., Mumbai, IND
| | - Dinesh Parandhaman
- Department of Regenerative Medicine, Wockhardt Regenerative Pvt. Ltd., Mumbai, IND
| | - Kirti Vichare
- Department of Regenerative Medicine, Wockhardt Regenerative Pvt. Ltd., Mumbai, IND
| | - Anjalina Francis
- Department of Regenerative Medicine, Wockhardt Regenerative Pvt. Ltd., Mumbai, IND
| | - Mudit Khanna
- Orthopaedic Surgery, Wockhardt Hospital, Mumbai, IND
| | - Mohit Kukreja
- Orthopaedic Surgery, Wockhardt Hospital, Mumbai, IND
| | - Anuka Sharma
- Department of Regenerative Medicine, Wockhardt Regenerative Pvt. Ltd., Mumbai, IND
| |
Collapse
|
4
|
Kawakami J, Hisanaga S, Yoshimoto Y, Mashimo T, Kaneko T, Yoshimura N, Shimada M, Tateyama M, Matsunaga H, Shibata Y, Tanimura S, Takata K, Arima T, Maeda K, Fukuma Y, Uragami M, Ideo K, Sugimoto K, Yonemitsu R, Matsushita K, Yugami M, Uehara Y, Nakamura T, Tokunaga T, Karasugi T, Sueyoshi T, Shukunami C, Okamoto N, Masuda T, Miyamoto T. Remnant tissue enhances early postoperative biomechanical strength and infiltration of Scleraxis-positive cells within the grafted tendon in a rat anterior cruciate ligament reconstruction model. PLoS One 2023; 18:e0293944. [PMID: 37939095 PMCID: PMC10631660 DOI: 10.1371/journal.pone.0293944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
When ruptured, ligaments and tendons have limited self-repair capacity and rarely heal spontaneously. In the knee, the Anterior Cruciate Ligament (ACL) often ruptures during sports activities, causing functional impairment and requiring surgery using tendon grafts. Patients with insufficient time to recover before resuming sports risk re-injury. To develop more effective treatment, it is necessary to define mechanisms underlying ligament repair. For this, animal models can be useful, but mice are too small to create an ACL reconstruction model. Thus, we developed a transgenic rat model using control elements of Scleraxis (Scx), a transcription factor essential for ligament and tendon development, to drive GFP expression in order to localize Scx-expressing cells. As anticipated, Tg rats exhibited Scx-GFP in ACL during developmental but not adult stages. Interestingly, when we transplanted the flexor digitorum longus (FDP) tendon derived from adult Scx-GFP+ rats into WT adults, Scx-GFP was not expressed in transplanted tendons. However, tendons transplanted from adult WT rats into Scx-GFP rats showed upregulated Scx expression in tendon, suggesting that Scx-GFP+ cells are mobilized from tissues outside the tendon. Importantly, at 4 weeks post-surgery, Scx-GFP-expressing cells were more frequent within the grafted tendon when an ACL remnant was preserved (P group) relative to when it was not (R group) (P vs R groups (both n = 5), p<0.05), and by 6 weeks, biomechanical strength of the transplanted tendon was significantly increased if the remnant was preserved (P vsR groups (both n = 14), p<0.05). Scx-GFP+ cells increased in remnant tissue after surgery, suggesting remnant tissue is a source of Scx+ cells in grafted tendons. We conclude that the novel Scx-GFP Tg rat is useful to monitor emergence of Scx-positive cells, which likely contribute to increased graft strength after ACL reconstruction.
Collapse
Affiliation(s)
- Junki Kawakami
- Faculty of Life Sciences, Department of Orthopaedic Surgery, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Satoshi Hisanaga
- Faculty of Life Sciences, Department of Orthopaedic Surgery, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Yuki Yoshimoto
- Department of Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Department of Molecular Biology and Biochemistry, Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Minami-ku, Hiroshima, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takehito Kaneko
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan
| | - Naoto Yoshimura
- Faculty of Life Sciences, Department of Orthopaedic Surgery, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Masaki Shimada
- Faculty of Life Sciences, Department of Orthopaedic Surgery, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Makoto Tateyama
- Faculty of Life Sciences, Department of Orthopaedic Surgery, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Hideto Matsunaga
- Faculty of Life Sciences, Department of Orthopaedic Surgery, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Yuto Shibata
- Faculty of Life Sciences, Department of Orthopaedic Surgery, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Shuntaro Tanimura
- Faculty of Life Sciences, Department of Orthopaedic Surgery, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Kosei Takata
- Faculty of Life Sciences, Department of Orthopaedic Surgery, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Takahiro Arima
- Faculty of Life Sciences, Department of Orthopaedic Surgery, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Kazuya Maeda
- Faculty of Life Sciences, Department of Orthopaedic Surgery, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Yuko Fukuma
- Faculty of Life Sciences, Department of Orthopaedic Surgery, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Masaru Uragami
- Faculty of Life Sciences, Department of Orthopaedic Surgery, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Katsumasa Ideo
- Faculty of Life Sciences, Department of Orthopaedic Surgery, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Kazuki Sugimoto
- Faculty of Life Sciences, Department of Orthopaedic Surgery, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Ryuji Yonemitsu
- Faculty of Life Sciences, Department of Orthopaedic Surgery, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Kozo Matsushita
- Faculty of Life Sciences, Department of Orthopaedic Surgery, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Masaki Yugami
- Faculty of Life Sciences, Department of Orthopaedic Surgery, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Yusuke Uehara
- Faculty of Life Sciences, Department of Orthopaedic Surgery, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Takayuki Nakamura
- Faculty of Life Sciences, Department of Orthopaedic Surgery, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Takuya Tokunaga
- Faculty of Life Sciences, Department of Orthopaedic Surgery, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Tatsuki Karasugi
- Faculty of Life Sciences, Department of Orthopaedic Surgery, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Takanao Sueyoshi
- Faculty of Life Sciences, Department of Orthopaedic Surgery, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Basic Life Sciences, Graduate School of Biomedical and Health Sciences, Minami-ku, Hiroshima, Japan
| | - Nobukazu Okamoto
- Faculty of Life Sciences, Department of Orthopaedic Surgery, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Tetsuro Masuda
- Faculty of Life Sciences, Department of Orthopaedic Surgery, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Takeshi Miyamoto
- Faculty of Life Sciences, Department of Orthopaedic Surgery, Kumamoto University, Chuo-ku, Kumamoto, Japan
- Department of Orthopedic Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
5
|
蔡 武, 李 箭, 李 棋. [Research progress on bioactive strategies for promoting tendon graft healing after anterior cruciate ligament reconstruction]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2023; 37:1292-1299. [PMID: 37848327 PMCID: PMC10581880 DOI: 10.7507/1002-1892.202306088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/14/2023] [Indexed: 10/19/2023]
Abstract
Objective To review the bioactive strategies that enhance tendon graft healing after anterior cruciate ligament reconstruction (ACLR), and to provide insights for improving the therapeutic outcomes of ACLR. Methods The domestic and foreign literature related to the bioactive strategies for promoting the healing of tendon grafts after ACLR was extensively reviewed and summarized. Results At present, there are several kinds of bioactive materials related to tendon graft healing after ACLR: growth factors, cells, biodegradable implants/tissue derivatives. By constructing a complex interface simulating the matrix, environment, and regulatory factors required for the growth of native anterior cruciate ligament (ACL), the growth of transplanted tendons is regulated at different levels, thus promoting the healing of tendon grafts. Although the effectiveness of ACLR has been significantly improved in most studies, most of them are still limited to the early stage of animal experiments, and there is still a long way to go from the real clinical promotion. In addition, limited by the current preparation technology, the bionics of the interface still stays at the micron and millimeter level, and tends to be morphological bionics, and the research on the signal mechanism pathway is still insufficient. Conclusion With the further study of ACL anatomy, development, and the improvement of preparation technology, the research of bioactive strategies to promote the healing of tendon grafts after ACLR is expected to be further promoted.
Collapse
Affiliation(s)
- 武峰 蔡
- 四川大学华西医院骨科 骨科研究所(成都 610041)Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan Chengdu, 610041, P. R. China
| | - 箭 李
- 四川大学华西医院骨科 骨科研究所(成都 610041)Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan Chengdu, 610041, P. R. China
| | - 棋 李
- 四川大学华西医院骨科 骨科研究所(成都 610041)Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan Chengdu, 610041, P. R. China
| |
Collapse
|
6
|
D’Ambrosi R, Meena A, Arora ES, Attri M, Schäfer L, Migliorini F. Reconstruction of the anterior cruciate ligament: a historical view. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:364. [PMID: 37675316 PMCID: PMC10477645 DOI: 10.21037/atm-23-87] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/17/2023] [Indexed: 09/08/2023]
Abstract
Management of anterior cruciate ligament (ACL) tears has continuously evolved since its first description in approximately 170 A.D. by Claudius Galenus of Pergamum and Rome. The initial immobilization using casts was replaced by a variety of surgical and conservative approaches over the past centuries. The first successful case of ACL repair was conducted by Mayo Robson in 1885, suturing cruciate at the femoral site. In the nineteenth century, surgical techniques were focused on restoring knee kinematics and published the first ACL repair. The use of grafts for ACL reconstruction was introduced in 1917 but gained popularity in the late 1900s. The introduction of arthroscopy in the 1980s represented the greatest milestones in the development of ACL surgery, along with the refinements of indications, development of modern strategies, and improvement in rehabilitation methods. Despite the rapid development and multitude of new treatment approaches for ACL injuries in the last 20 years, autografting has remained the treatment of choice. Compared to the initial methods, arthroscopic procedures are mainly performed, and more resistant and safer fixation devices are available. This results in significantly less trauma from the surgery and more satisfactory long-term results. The most commonly used procedures are still patellar tendon or hamstring autograft. Additionally, popular, but less common, is the use of quadriceps tendon (QT) grafts and allografts. In parallel with surgical developments, biological reconstruction focusing on the preservation of ACL remnants through the use of cell culture techniques, partial reconstruction, tissue engineering, and gene therapy has gained popularity. In 2013, Claes reported the discovery of a new ligament [anterolateral ligament (ALL)] in the knee that could completely change the treatment of knee injuries. The intent of these modifications is to significantly improve the primary restriction of rotational laxity of the knee after ACL injury. Kinematic studies have demonstrated that anatomic ACL reconstruction and anterolateral reconstruction are synergistic in controlling pivot displacement. Recently, there has been an increased focus on the application of artificial intelligence and machine learning to improve predictive capability within numerous sectors of medicine, including orthopedic surgery.
Collapse
Affiliation(s)
- Riccardo D’Ambrosi
- CASCO Department, IRCCS Orthopedic Institute Galeazzi, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Amit Meena
- Department Orthopaedic Sports Medicine, Fowler Kennedy Sport Medicine Clinic, Western University, London, ON, Canada
| | - Ekjot Singh Arora
- Department of Orthopedic, Fortis Escorts Heart Institute, New Delhi, India
| | - Manish Attri
- Department of Orthopedic, Central Institute of Orthopedics, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Luise Schäfer
- Department of Orthopedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Aachen, Germany
| | - Filippo Migliorini
- Department of Orthopedic, Trauma, and Reconstructive Surgery, RWTH University Hospital, Aachen, Germany
- Department of Orthopedic and Trauma Surgery, Eifelklinik St. Brigida, Simmerath, Germany
| |
Collapse
|
7
|
Mesenchymal Stromal Cells (MSCs) Isolated from Various Tissues of the Human Arthritic Knee Joint Possess Similar Multipotent Differentiation Potential. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
(1) Background: The mesenchymal stromal cells (MSCs) of different tissue origins are applied in cell-based chondrogenic regeneration. However, there is a lack of comparability determining the most suitable cell source for the tissue engineering (TE) of cartilage. The purpose of this study was to compare the in vitro chondrogenic potential of MSC-like cells from different tissue sources (bone marrow, meniscus, anterior cruciate ligament, synovial membrane, and the infrapatellar fat pad removed during total knee arthroplasty (TKA)) and define which cell source is best suited for cartilage regeneration. (2) Methods: MSC-like cells were isolated from five donors and expanded using adherent monolayer cultures. Differentiation was induced by culture media containing specific growth factors. Transforming growth factor (TGF)-ß1 was used as the growth factor for chondrogenic differentiation. Osteogenesis and adipogenesis were induced in monolayer cultures for 27 days, while pellet cell cultures were used for chondrogenesis for 21 days. Control cultures were maintained under the same conditions. After, the differentiation period samples were analyzed, using histological and immunohistochemical staining, as well as molecularbiological analysis by RT-PCR, to assess the expression of specific marker genes. (3) Results: Plastic-adherent growth and in vitro trilineage differentiation capacity of all isolated cells were proven. Flow cytometry revealed the clear co-expression of surface markers CD44, CD73, CD90, and CD105 on all isolated cells. Adipogenesis was validated through the formation of lipid droplets, while osteogenesis was proven by the formation of calcium deposits within differentiated cell cultures. The formation of proteoglycans was observed during chondrogenesis in pellet cultures, with immunohistochemical staining revealing an increased relative gene expression of collagen type II. RT-PCR proved an elevated expression of specific marker genes after successful differentiation, with no significant differences regarding different cell source of native tissue. (4) Conclusions: Irrespective of the cell source of native tissue, all MSC-like cells showed multipotent differentiation potential in vitro. The multipotent differentiation capacity did not differ significantly, and chondrogenic differentiation was proven in all pellet cultures. Therefore, cell suitability for cell-based cartilage therapies and tissue engineering is given for various tissue origins that are routinely removed during total knee arthroplasty (TKA). This study might provide essential information for the clinical tool of cell harvesting, leading to more flexibility in cell availability.
Collapse
|
8
|
Yan M, Duan X, Cai L, Zhang W, Silva MJ, Brophy RH, Rai MF. KIF26B Silencing Prevents Osseous Transdifferentiation of Progenitor/Stem Cells and Attenuates Ectopic Calcification in a Murine Model. J Bone Miner Res 2022; 37:349-368. [PMID: 34787331 PMCID: PMC11684001 DOI: 10.1002/jbmr.4473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 01/28/2023]
Abstract
Ectopic calcification is an osteogenic process that leads to the formation of inappropriate bone within intra-articular soft tissues, often in response to injury or surgery. The molecular mechanisms governing this phenotype have yet to be determined. Using a population genetics approach, we identified an association of the kinesin superfamily member 26b (Kif26b) with injury-induced ectopic calcification through quantitative trait locus analysis of recombinant inbred mouse strains, consistent with a genomewide association study that identified KIF26B as a severity locus for ectopic calcification in patients with hip osteoarthritis. Despite these associations of KIF26B with ectopic calcification, its mechanistic role and functional implications have not yet been fully elucidated. Here, we aim to decipher the functional role of KIF26B in osseous and chondrogenic transdifferentiation of human and murine progenitor/stem cells and in a murine model of non-invasive injury-induced intra-articular ectopic calcification. We found that KIF26B ablation via lentivirus-mediated shRNA significantly arrested osteogenesis of progenitor/stem cells and suppressed the expression of typical osteogenic marker genes. Conversely, KIF26B loss-of-function increased chondrogenesis as demonstrated by enhanced Safranin-O staining and by the elevated expression of chondrogenic marker genes. Furthermore, cell function analysis revealed that KIF26B knockdown significantly decreased cell viability and proliferation and induced cellular apoptosis. Mechanistically, loss of osteogenesis was reverted by the addition of a Wnt agonist, SKL2001, demonstrating a role of KIF26B in canonical Wnt/β-catenin signaling. Finally, intra-articular delivery of Kif26b shRNA in B6-129SF2/J mice significantly hampered the development of intra-articular ectopic calcification at 8 weeks after injury compared with mice treated with non-target scrambled shRNA. In summary, these observations highlight that KIF26B plays a crucial role in ectopic bone formation by repressing osteogenesis, but not chondrogenesis, potentially via modulating Wnt/β-catenin signaling. These findings establish KIF26B as a critical determinant of the osteogenic process in pathologic endochondral bone formation and an actionable target for pharmacotherapy to mitigate ectopic calcification (and heterotopic ossification). © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Mingming Yan
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University, School of Medicine, St. Louis, MO, United States
- Department of Orthopedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Duan
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University, School of Medicine, St. Louis, MO, United States
| | - Lei Cai
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University, School of Medicine, St. Louis, MO, United States
| | - Weili Zhang
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University, School of Medicine, St. Louis, MO, United States
| | - Matthew J. Silva
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University, School of Medicine, St. Louis, MO, United States
| | - Robert H. Brophy
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University, School of Medicine, St. Louis, MO, United States
| | - Muhammad Farooq Rai
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University, School of Medicine, St. Louis, MO, United States
- Department of Cell Biology and Physiology, Washington University, School of Medicine, St. Louis, MO, United States
| |
Collapse
|
9
|
Lee S, Chae DS, Song BW, Lim S, Kim SW, Kim IK, Hwang KC. ADSC-Based Cell Therapies for Musculoskeletal Disorders: A Review of Recent Clinical Trials. Int J Mol Sci 2021; 22:ijms221910586. [PMID: 34638927 PMCID: PMC8508846 DOI: 10.3390/ijms221910586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 01/04/2023] Open
Abstract
Recently published clinical trials involving the use of adipose-derived stem cells (ADSCs) indicated that approximately one-third of the studies were conducted on musculoskeletal disorders (MSD). MSD refers to a wide range of degenerative conditions of joints, bones, and muscles, and these conditions are the most common causes of chronic disability worldwide, being a major burden to the society. Conventional treatment modalities for MSD are not sufficient to correct the underlying structural abnormalities. Hence, ADSC-based cell therapies are being tested as a form of alternative, yet more effective, therapies in the management of MSDs. Therefore, in this review, MSDs subjected to the ADSC-based therapy were further categorized as arthritis, craniomaxillofacial defects, tendon/ligament related disorders, and spine disorders, and their brief characterization as well as the corresponding conventional therapeutic approaches with possible mechanisms with which ADSCs produce regenerative effects in disease-specific microenvironments were discussed to provide an overview of under which circumstances and on what bases the ADSC-based cell therapy was implemented. Providing an overview of the current status of ADSC-based cell therapy on MSDs can help to develop better and optimized strategies of ADSC-based therapeutics for MSDs as well as help to find novel clinical applications of ADSCs in the near future.
Collapse
Affiliation(s)
- Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 210-701, Korea; (S.L.); (B.-W.S.); (S.L.); (S.W.K.)
| | - Dong-Sik Chae
- Department of Orthopedic Surgery, International St. Mary’s Hospital, Catholic Kwandong University, Gangneung 210-701, Korea;
| | - Byeong-Wook Song
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 210-701, Korea; (S.L.); (B.-W.S.); (S.L.); (S.W.K.)
| | - Soyeon Lim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 210-701, Korea; (S.L.); (B.-W.S.); (S.L.); (S.W.K.)
| | - Sang Woo Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 210-701, Korea; (S.L.); (B.-W.S.); (S.L.); (S.W.K.)
| | - Il-Kwon Kim
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 210-701, Korea; (S.L.); (B.-W.S.); (S.L.); (S.W.K.)
- Correspondence: (I.-K.K.); (K.-C.H.); Fax: +82-32-290-2774 (K.-C.H.)
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung 210-701, Korea; (S.L.); (B.-W.S.); (S.L.); (S.W.K.)
- Correspondence: (I.-K.K.); (K.-C.H.); Fax: +82-32-290-2774 (K.-C.H.)
| |
Collapse
|
10
|
Gonçalves AI, Vinhas A, Rodrigues MT, Gomes ME. The impact of cryopreservation in signature markers and immunomodulatory profile of tendon and ligament derived cells. J Cell Physiol 2021; 237:675-686. [PMID: 34368976 DOI: 10.1002/jcp.30540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/09/2021] [Accepted: 07/10/2021] [Indexed: 11/07/2022]
Abstract
Tendon and ligament (T/L) engineering strategies towards clinical practice have been challenged by a paucity of understanding in the identification and still poorly described characterization of cellular niches. Prospecting how resident cell populations behave in vitro, and how cryopreservation may influence T/ L-promoting factors, can provide insights into T/ L-cellular profiles for novel regenerative solutions. Therefore, we studied human T/ L-derived cells isolated from patellar tendons and cruciate ligaments as suitable cellular models to anticipate tendon and ligament niches responses for advanced strategies with predictive tenogenic and ligamentogenic value. Our results show that the crude populations isolated from tendon and ligament tissues hold a stem cell subset and share a similar behavior in terms of tenogenic/ligamentogenic commitment. Both T/ L-derived cells successfully undergo cryopreservation/thawing maintaining the tenogenic/ligamentogenic profiles. The major differences between cryopreserved and fresh populations were observed at the gene expression of MKX, SCX, and TNMD as well as at the protein levels of collagen type I and III, in which cells from tendon origin (hTDCs) evidence increased values in comparison to the ones from ligament (hLDCs, p < 0.05). In addition, low-temperature storage was shown to potentiate an immunomodulatory profile of cells, especially in hTDCs leading to an increase in the gene expression of the anti-inflammatory factors IL-4 and IL-10 (p < 0.05), as well as in the protein secretion of IL-10 (p < 0.01) and IL-4 (p < 0.001). Overall, the outcomes highlight the relevance of the cryopreserved T/ L-derived cells and their promising immunomodulatory cues as in vitro models for investigating cell-mediated mechanisms driving tissue healing and regeneration.
Collapse
Affiliation(s)
- Ana I Gonçalves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Zona Industrial da Gandra, Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Adriana Vinhas
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Zona Industrial da Gandra, Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Márcia T Rodrigues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Zona Industrial da Gandra, Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Zona Industrial da Gandra, Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
11
|
Impact of Tranexamic Acid on Chondrocytes and Osteogenically Differentiated Human Mesenchymal Stromal Cells (hMSCs) In Vitro. J Clin Med 2020; 9:jcm9123880. [PMID: 33260331 PMCID: PMC7760070 DOI: 10.3390/jcm9123880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
The topical application of tranexamic acid (TXA) helps to prevent post-operative blood loss in total joint replacements. Despite these findings, the effects on articular and periarticular tissues remain unclear. Therefore, this in vitro study examined the effects of varying exposure times and concentrations of TXA on proliferation rates, gene expression and differentiation capacity of chondrocytes and human mesenchymal stromal cells (hMSCs), which underwent osteogenic differentiation. Chondrocytes and hMSCs were isolated and multiplied in monolayer cell cultures. Osteogenic differentiation of hMSCs was induced for 21 days using a differentiation medium containing specific growth factors. Cell proliferation was analyzed using ATP assays. Effects of TXA on cell morphology were examined via light microscopy and histological staining, while expression levels of tissue-specific genes were measured using semiquantitative RT-PCR. After treatment with 50 mg/mL of TXA, a decrease in cell proliferation rates was observed. Furthermore, treatment with concentrations of 20 mg/mL of TXA for at least 48 h led to a visible detachment of chondrocytes. TXA treatment with 50 mg/mL for at least 24 h led to a decrease in the expression of specific marker genes in chondrocytes and osteogenically differentiated hMSCs. No significant effects were observed for concentrations beyond 20 mg/mL of TXA combined with exposure times of less than 24 h. This might therefore represent a safe limit for topical application in vivo. Further research regarding in vivo conditions and effects on hMSC functionality are necessary to fully determine the effects of TXA on articular and periarticular tissues.
Collapse
|
12
|
Biological Augmentation of ACL Repair and Reconstruction: Current Status and Future Perspective. Sports Med Arthrosc Rev 2020; 28:49-55. [PMID: 32345926 DOI: 10.1097/jsa.0000000000000266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Historically, anterior cruciate ligament (ACL) suture repair mostly resulted in failure because of intra-articular hypovascularity and poor intrinsic healing capacity of ACL. ACL reconstruction was therefore deemed the gold standard with a high success rate because of more evolved surgical technique. There are, however, clinical and subclinical disadvantages of reconstruction; low rate in full recovery to sports, donor harvest morbidity, tunnel enlargement, and incomplete microscopic healing of the graft. Recent experimental and clinical studies on biological augmentation of mesenchymal stem cells, platelet-rich plasma, or the other biologic agents with scaffold suggested potential feasibility of positive effects by such bio-therapies for both ACL repair and reconstruction. Biological augmentation of ACL surgery is still in the exploratory stages and more evidence from preclinical and clinical studies is required for implementation in clinical practice.
Collapse
|
13
|
Ayan B, Wu Y, Karuppagounder V, Kamal F, Ozbolat IT. Aspiration-assisted bioprinting of the osteochondral interface. Sci Rep 2020; 10:13148. [PMID: 32753630 PMCID: PMC7403300 DOI: 10.1038/s41598-020-69960-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/22/2020] [Indexed: 11/09/2022] Open
Abstract
Osteochondral defects contain damage to both the articular cartilage and underlying subchon- dral bone, which remains a significant challenge in orthopedic surgery. Layered structure of bone, cartilage and the bone-cartilage interface must be taken into account in the case of biofabrication of the osteochondral (OC) interface. In this study, a dual layered OC interface was bioprinted using a newly developed aspiration-assisted bioprinting (AAB) technique, which has been the first time that scaffold-free bioprinting was applied to OC interface engineering. Tissue spheroids, made of human adipose-derived stem cells (ADSCs), were differentiated in three dimensions (3D) into chondrogenic and osteogenic spheroids, which were confirmed by immunostaining and histology qualitatively, and biochemistry assays and gene expression, quantitatively. Remarkably, the OC interface was bioprinted by accurate positioning of a layer of osteogenic spheroids onto a sacrificial alginate support followed by another layer of chondrogenic spheroids overlaid by the same support. Spheroids in individual zones fused and the maintenance of phenotypes in both zones confirmed the successful biofabrication of the histomorphologically-relevant OC interface. The biofabrication of OC tissue model without the use of polymeric scaffolds unveils great potential not only in regenerative medicine but also in drug testing and disease modeling for osteoarthritis.
Collapse
Affiliation(s)
- Bugra Ayan
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Yang Wu
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Vengadeshprabhu Karuppagounder
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Re-Habilitation, Penn State University, Hershey, PA, 17033, USA
| | - Fadia Kamal
- Center for Orthopedic Research and Translational Sciences, Department of Orthopedics and Re-Habilitation, Penn State University, Hershey, PA, 17033, USA
| | - Ibrahim T Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA.
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA.
- Biomedical Engineering Department, Penn State University, University Park, PA, 16802, USA.
- Materials Research Institute, Penn State University, University Park, PA, 16802, USA.
- Department of Neurosurgery, Penn State University, Hershey, PA, 17033, USA.
| |
Collapse
|
14
|
Wagenbrenner M, Heinz T, Horas K, Jakuscheit A, Arnholdt J, Herrmann M, Rudert M, Holzapfel BM, Steinert AF, Weißenberger M. The human arthritic hip joint is a source of mesenchymal stromal cells (MSCs) with extensive multipotent differentiation potential. BMC Musculoskelet Disord 2020; 21:297. [PMID: 32404085 PMCID: PMC7222515 DOI: 10.1186/s12891-020-03340-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/08/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND While multiple in vitro studies examined mesenchymal stromal cells (MSCs) derived from bone marrow or hyaline cartilage, there is little to no data about the presence of MSCs in the joint capsule or the ligamentum capitis femoris (LCF) of the hip joint. Therefore, this in vitro study examined the presence and differentiation potential of MSCs isolated from the bone marrow, arthritic hyaline cartilage, the LCF and full-thickness samples of the anterior joint capsule of the hip joint. METHODS MSCs were isolated and multiplied in adherent monolayer cell cultures. Osteogenesis and adipogenesis were induced in monolayer cell cultures for 21 days using a differentiation medium containing specific growth factors, while chondrogenesis in the presence of TGF-ß1 was performed using pellet-culture for 27 days. Control cultures were maintained for comparison over the same duration of time. The differentiation process was analyzed using histological and immunohistochemical stainings as well as semiquantitative RT-PCR for measuring the mean expression levels of tissue-specific genes. RESULTS This in vitro research showed that the isolated cells from all four donor tissues grew plastic-adherent and showed similar adipogenic and osteogenic differentiation capacity as proven by the histological detection of lipid droplets or deposits of extracellular calcium and collagen type I. After 27 days of chondrogenesis proteoglycans accumulated in the differentiated MSC-pellets from all donor tissues. Immunohistochemical staining revealed vast amounts of collagen type II in all differentiated MSC-pellets, except for those from the LCF. Interestingly, all differentiated MSCs still showed a clear increase in mean expression of adipogenic, osteogenic and chondrogenic marker genes. In addition, the examination of an exemplary selected donor sample revealed that cells from all four donor tissues were clearly positive for the surface markers CD44, CD73, CD90 and CD105 by flow cytometric analysis. CONCLUSIONS This study proved the presence of MSC-like cells in all four examined donor tissues of the hip joint. No significant differences were observed during osteogenic or adipogenic differentiation depending on the source of MSCs used. Further research is necessary to fully determine the tripotent differentiation potential of cells isolated from the LCF and capsule tissue of the hip joint.
Collapse
Affiliation(s)
- Mike Wagenbrenner
- Department of Orthopaedic Surgery, University of Wuerzburg, Koenig-Ludwig-Haus, Brettreichstr. 11, 97074, Wuerzburg, Germany
| | - Tizian Heinz
- Department of Orthopaedic Surgery, University of Wuerzburg, Koenig-Ludwig-Haus, Brettreichstr. 11, 97074, Wuerzburg, Germany
| | - Konstantin Horas
- Department of Orthopaedic Surgery, University of Wuerzburg, Koenig-Ludwig-Haus, Brettreichstr. 11, 97074, Wuerzburg, Germany
| | - Axel Jakuscheit
- Department of Orthopaedic Surgery, University of Wuerzburg, Koenig-Ludwig-Haus, Brettreichstr. 11, 97074, Wuerzburg, Germany
| | - Joerg Arnholdt
- Department of Orthopaedic Surgery, University of Wuerzburg, Koenig-Ludwig-Haus, Brettreichstr. 11, 97074, Wuerzburg, Germany
| | - Marietta Herrmann
- Bernhard-Heine-Center for Locomotion Research, University of Wuerzburg, Wuerzburg, Germany.,IZKF Research Group Tissue Regeneration in Musculoskeletal Disease, University Clinics Wuerzburg, Wuerzburg, Germany
| | - Maximilian Rudert
- Department of Orthopaedic Surgery, University of Wuerzburg, Koenig-Ludwig-Haus, Brettreichstr. 11, 97074, Wuerzburg, Germany
| | - Boris M Holzapfel
- Department of Orthopaedic Surgery, University of Wuerzburg, Koenig-Ludwig-Haus, Brettreichstr. 11, 97074, Wuerzburg, Germany
| | - Andre F Steinert
- Department of Orthopaedic, Trauma, Shoulder and Arthroplasty Surgery, Rhön-Klinikum Campus Bad Neustadt, Von-Guttenberg-Str. 11, 97616, Bad Neustadt, Germany
| | - Manuel Weißenberger
- Department of Orthopaedic Surgery, University of Wuerzburg, Koenig-Ludwig-Haus, Brettreichstr. 11, 97074, Wuerzburg, Germany.
| |
Collapse
|
15
|
Youssefzadeh KA, Stein SM, Limpisvasti O. Anterior Cruciate Ligament Repair Using a Knotless Suture Implant. Arthrosc Tech 2020; 9:e623-e626. [PMID: 32489836 PMCID: PMC7253715 DOI: 10.1016/j.eats.2020.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/09/2020] [Indexed: 02/03/2023] Open
Abstract
Recent orthopedic literature has shown that primary repair for femoral-sided avulsion tears of the anterior cruciate ligament (ACL) can be successful. Primary ACL repair avoids invasive reconstruction techniques, graft-site morbidity, and the loss of native anatomy while producing excellent results in appropriately selected patients. Here we describe our patient selection parameters, ACL repair technique, and rehabilitation protocol.
Collapse
Affiliation(s)
| | | | - Orr Limpisvasti
- Kerlan-Jobe Orthopaedic Clinic, Los Angeles, California, U.S.A
| |
Collapse
|
16
|
De la Vega RE, Scheu M, Brown LA, Evans CH, Ferreira E, Porter RM. Specific, Sensitive, and Stable Reporting of Human Mesenchymal Stromal Cell Chondrogenesis. Tissue Eng Part C Methods 2020; 25:176-190. [PMID: 30727864 DOI: 10.1089/ten.tec.2018.0295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
IMPACT STATEMENT The promoter characterized in this study has been made accessible as a resource for the skeletal tissue engineering and regenerative medicine community. When combined with suitable reporter vectors, the resulting tools can be used for noninvasive and/or high-throughput screening of test conditions for stimulating chondrogenesis by candidate stem/progenitor cells. As demonstrated in this study, they can also be used with small animal imaging platforms to monitor the chondrogenic activity of implanted progenitors within orthotopic models of bone and cartilage repair.
Collapse
Affiliation(s)
- Rodolfo E De la Vega
- 1 Department of Orthopaedic Surgery, Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,2 Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts
| | - Maximiliano Scheu
- 1 Department of Orthopaedic Surgery, Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,2 Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts.,3 Department of Orthopaedic Surgery, Clínica Alemana de Santiago, Universidad del Desarrollo, Vitacura, Chile
| | - Lennart A Brown
- 1 Department of Orthopaedic Surgery, Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,2 Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts
| | - Christopher H Evans
- 1 Department of Orthopaedic Surgery, Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,2 Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts
| | - Elisabeth Ferreira
- 1 Department of Orthopaedic Surgery, Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,2 Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts
| | - Ryan M Porter
- 1 Department of Orthopaedic Surgery, Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, Massachusetts.,2 Department of Orthopaedic Surgery, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
17
|
Characterization of human telomerase reverse transcriptase immortalized anterior cruciate ligament cell lines. Biomed J 2019; 42:371-380. [PMID: 31948601 PMCID: PMC6962762 DOI: 10.1016/j.bj.2019.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 04/01/2019] [Accepted: 05/14/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The anterior-cruciate-ligament (ACL) contains mesenchymal stem cells (ACL-MSCs), suggesting the feasibility of regenerative treatments of this tissue. The immortalization of isolated cells results in cell-lines applicable to develop cell-based therapies. Immortal cell lines eliminate the need for frequent cell isolation from donor tissues. The objective of this study was to characterize cell lines that were generated from isolated ACL-MSCs using TERT gene transfer. METHODS We isolated ACL-MSCs from human ACLs derived at the time of ACL reconstruction surgery or total knee arthroplasty. We generated cell lines and compared them to non-immortalized ACL-MSCs. We assessed the cellular morphology and we detected surface antigen expression. The resistance to senescence was inferred using the beta galactosidase activity. Histology, immunohistochemistry, and reverse transcriptase polymerase chain reaction (RT-PCR) were used to evaluate the multilineage differentiation capacity. RESULTS The morphology of hTERT-ACL-MSCs was similar to ACL up to the last assessment at passage eight. We detected a strong surface expression of CD44, CD90, CD105, and STRO-1 in hTERT-ACL-MSCs. No substantial reduction in the ATP activity was observed in hTERT-ACL-MSCs. CONCLUSION Cell lines generated from ACL-MSCs maintain their morphology, surface antigen expression profile, and proliferative capacity; while markers of senescence appear to be reduced. These cell-lines maintained their multilineage differentiation capacity. The demonstrated model systems can be used for further development of new cell-based regenerative approaches in anterior cruciate ligament research, which may lead to new therapeutic strategies in the future.
Collapse
|
18
|
Gobbi A, Herman K, Grabowski R, Szwedowski D. Primary Anterior Cruciate Ligament Repair With Hyaluronic Scaffold and Autogenous Bone Marrow Aspirate Augmentation in Adolescents With Open Physes. Arthrosc Tech 2019; 8:e1561-e1568. [PMID: 31890538 PMCID: PMC6928459 DOI: 10.1016/j.eats.2019.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/14/2019] [Indexed: 02/03/2023] Open
Abstract
It is well known that the anterior cruciate ligament (ACL) is the main stabilizer to the anterior tibial translation in the knee. The current gold standard of treatment for such lesions is ACL reconstruction. However, there are notable disadvantages to ACL reconstruction that include loss of proprioception, donor site morbidity, incomplete return to high-demand sports, and the inability to restore normal kinematics of the knee joint. Additionally, in adolescents who have open physes, there is a risk of potential iatrogenic growth plate injury. Tibial-sided soft-tissue avulsion is a rare subtype of ACL injuries. This Technical Note presents a method for primary anatomic ACL repair with a bioabsorbable scaffold and bone marrow concentrate augmentation for an acute distal ACL injury. Our technique is an alternative to reconstruction as it allows the preservation of the native insertion site and has the potential to reduce the risk of posttraumatic osteoarthritis.
Collapse
Affiliation(s)
- Alberto Gobbi
- Address correspondence to Alberto Gobbi, OASI Bioresearch Foundation, via amadeo 24, 20133 Milan, Italiy.
| | | | | | | |
Collapse
|
19
|
Häfner SJ. The body's integrated repair kit: Studying mesenchymal stem cells for better ligament repair. Biomed J 2019; 42:365-370. [PMID: 31948600 PMCID: PMC6962754 DOI: 10.1016/j.bj.2019.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
In this issue of the Biomedical Journal, we learn that the sport injury-prone knee ligaments might harbour their own repair kit in the form of mesenchymal stem cells, and that TERT transformation helps to keep these cells longer in culture for more extensive studies. In addition, we get a demonstration that diffusion tensor imaging can reliably show the activity of specific neural circuits, that rheumatoid arthritis patients are more prone to insulin resistance, and that platelet-enriched plasma gels significantly improve wound healing after pilonidal sinus surgery. Furthermore, two procreation-related articles inform us that growth hormone treatment improves endometrial receptivity in older women, and that elevated maternal liver enzymes do not impact on the outcome of laser therapy for twin-twin transfusion syndrome. Finally, our attention is brought to the importance of subjective well-being evaluation for orthodontic correction needs, as well as the possibility that exercise could maybe increase sperm telomere length.
Collapse
Affiliation(s)
- Sophia Julia Häfner
- University of Copenhagen, BRIC Biotech Research & Innovation Centre, Anders Lund Group, Copenhagen, Denmark.
| |
Collapse
|
20
|
Brophy RH, Cai L, Duan X, Zhang Q, Townsend RR, Nunley R, Guilak F, Rai MF. Proteomic analysis of synovial fluid identifies periostin as a biomarker for anterior cruciate ligament injury. Osteoarthritis Cartilage 2019; 27:1778-1789. [PMID: 31430535 PMCID: PMC6875635 DOI: 10.1016/j.joca.2019.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/25/2019] [Accepted: 08/07/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Emerging evidence suggests that injury to the anterior cruciate ligament (ACL) typically initiates biological changes that contribute to the development of osteoarthritis (OA). The molecular biomarkers or mediators of these biological events remain unknown. The goal of this exploratory study was to identify novel synovial fluid biomarkers associated with early biological changes following ACL injury distinct from findings in end-stage OA. METHODS Synovial fluid was aspirated from patients with acute (≤30 days) and subacute (31-90 days) ACL tears and from patients with advanced OA and probed via tandem mass spectrometry for biomarkers to distinguish OA from ACL injury. Periostin (POSTN) was identified as a potential candidate. Further analyses of POSTN were performed in synovial fluid, OA cartilage, torn ACL remnants, and cultured cells and media by Western blot, PCR, immunostaining and ELISA. RESULTS Synovial fluid analysis revealed that POSTN exhibited higher expression in subacute ACL injury than OA. POSTN expression was relatively low in cartilage/chondrocytes suggesting it is also produced by other intra-articular tissues. Conversely, high and time-dependent expression of POSTN in ACL tear remnants and isolated cells was consistent with the synovial fluid results. CONCLUSIONS Elevated POSTN may provide a synovial fluid biomarker of subacute ACL injury setting separate from OA. Increased expression of POSTN in ACL suggests that the injured ACL may play a pivotal role in POSTN production, which is sensitive to time from injury. Previous studies have shown potential catabolic effects of POSTN, raising the possibility that POSTN contributes to the initiation of joint degeneration and may offer a window of opportunity to intervene in the early stages of post-traumatic OA.
Collapse
Affiliation(s)
- Robert H. Brophy
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Lei Cai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Xin Duan
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Qiang Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - R. Reid Townsend
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan Nunley
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States,,Shriners Hospitals for Children – St. Louis, St. Louis, MO, United States
| | - Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States,,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
21
|
Schmalzl J, Plumhoff P, Gilbert F, Gohlke F, Konrads C, Brunner U, Jakob F, Ebert R, Steinert AF. Tendon-derived stem cells from the long head of the biceps tendon: Inflammation does not affect the regenerative potential. Bone Joint Res 2019; 8:414-424. [PMID: 31588358 PMCID: PMC6775540 DOI: 10.1302/2046-3758.89.bjr-2018-0214.r2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objectives The long head of the biceps (LHB) is often resected in shoulder surgery and could therefore serve as a cell source for tissue engineering approaches in the shoulder. However, whether it represents a suitable cell source for regenerative approaches, both in the inflamed and non-inflamed states, remains unclear. In the present study, inflamed and native human LHBs were comparatively characterized for features of regeneration. Methods In total, 22 resected LHB tendons were classified into inflamed samples (n = 11) and non-inflamed samples (n = 11). Proliferation potential and specific marker gene expression of primary LHB-derived cell cultures were analyzed. Multipotentiality, including osteogenic, adipogenic, chondrogenic, and tenogenic differentiation potential of both groups were compared under respective lineage-specific culture conditions. Results Inflammation does not seem to affect the proliferation rate of the isolated tendon-derived stem cells (TDSCs) and the tenogenic marker gene expression. Cells from both groups showed an equivalent osteogenic, adipogenic, chondrogenic and tenogenic differentiation potential in histology and real-time polymerase chain reaction (RT-PCR) analysis. Conclusion These results suggest that the LHB tendon might be a suitable cell source for regenerative approaches, both in inflamed and non-inflamed states. The LHB with and without tendinitis has been characterized as a novel source of TDSCs, which might facilitate treatment of degeneration and induction of regeneration in shoulder surgery. Cite this article: J. Schmalzl, P. Plumhoff, F. Gilbert, F. Gohlke, C. Konrads, U. Brunner, F. Jakob, R. Ebert, A. F. Steinert. Tendon-derived stem cells from the long head of the biceps tendon: Inflammation does not affect the regenerative potential. Bone Joint Res 2019;8:414–424. DOI: 10.1302/2046-3758.89.BJR-2018-0214.R2.
Collapse
Affiliation(s)
- Jonas Schmalzl
- Department of Orthopaedic Surgery, Julius-Maximilians-University, Wuerzburg, Germany; Department of Traumatology and Hand Surgery, St. Vincentius Clinic, ViDia Clinis, Teaching Hospital Albert-Ludwigs University Freiburg, Karlsruhe, Germany
| | - Piet Plumhoff
- Department of Orthopaedic Surgery, Julius-Maximilians-University, Wuerzburg, Germany
| | - Fabian Gilbert
- Department of Orthopaedic Surgery, Julius-Maximilians-University, Wuerzburg, Germany; Department of Trauma, Hand, Plastic and Reconstructive Surgery, University Hospital, Wuerzburg, Germany
| | - Frank Gohlke
- Department of Orthopaedic Surgery, Julius-Maximilians-University, Wuerzburg, Germany; Clinic for Shoulder Surgery, Rhoen Klinikum AG, Bad Neustadt an der Saale, Germany
| | - Christian Konrads
- Department of Orthopaedic Surgery, Julius-Maximilians-University, Wuerzburg, Germany
| | - Ulrich Brunner
- Department of Orthopaedic and Trauma Surgery, Krankenhaus Agatharied GmbH, Hausham, Germany
| | - Franz Jakob
- Department of Orthopaedic Surgery, Julius-Maximilians-University, Wuerzburg, Germany
| | - Regina Ebert
- Department of Orthopaedic Surgery, Julius-Maximilians-University, Wuerzburg, Germany
| | - Andre F Steinert
- Department of Orthopaedic Surgery, Julius-Maximilians-University, Wuerzburg, Germany; Department of Orthopaedic and Trauma Surgery, Krankenhaus Agatharied GmbH, Hausham, Germany
| |
Collapse
|
22
|
Conrad S, Weber K, Walliser U, Geburek F, Skutella T. Stem Cell Therapy for Tendon Regeneration: Current Status and Future Directions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1084:61-93. [PMID: 30043235 DOI: 10.1007/5584_2018_194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In adults the healing tendon generates fibrovascular scar tissue and recovers never histologically, mechanically, and functionally which leads to chronic and to degenerative diseases. In this review, the processes and mechanisms of tendon development and fetal regeneration in comparison to adult defect repair and degeneration are discussed in relation to regenerative therapeutic options. We focused on the application of stem cells, growth factors, transcription factors, and gene therapy in tendon injury therapies in order to intervene the scarring process and to induce functional regeneration of the lesioned tissue. Outlines for future therapeutic approaches for tendon injuries will be provided.
Collapse
Affiliation(s)
| | - Kathrin Weber
- Tierärztliches Zentrum für Pferde in Kirchheim Altano GmbH, Kirchheim unter Teck, Germany
| | - Ulrich Walliser
- Tierärztliches Zentrum für Pferde in Kirchheim Altano GmbH, Kirchheim unter Teck, Germany
| | - Florian Geburek
- Justus-Liebig-University Giessen, Faculty of Veterinary Medicine, Clinic for Horses - Department of Surgery, Giessen, Germany
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
23
|
Chen B, Zhang J, Nie D, Zhao G, Fu FH, Wang JHC. Characterization of the structure of rabbit anterior cruciate ligament and its stem/progenitor cells. J Cell Biochem 2019; 120:7446-7457. [PMID: 30387227 DOI: 10.1002/jcb.28019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/15/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND It is known that anterior cruciate ligament (ACL) of the knee joint is prone to injuries with poor healing potential. The healing capacity of a tissue-like ACL is dependent on its structural components and the properties of the stem cells (SCs). Therefore, this study aimed to characterize the structure of ACL tissue and the properties of the SCs derived from the tissue components. METHODS The tissue structure of rabbit ACL was determined using a scanning electron microscope, hematoxylin and eosin, and immunohistochemical staining. The biological properties of SCs derived from the structural components of ACL were studied by colony formation, cell proliferation assay, SC marker expression and collagen exhibition, and multidifferentiation potential. RESULTS The two distinct components of ACL are classified as sheath and core, which possess differential properties in terms of collagen type, organization, and presence of blood vessels. The sheath tissue contains vascular SCs and the core tissue contains ligamentous SCs, respectively. The two types of SCs differ in clonogenicity, proliferation, and multidifferentiation potential. CONCLUSION This study shows that ACL consists of sheath and core tissues, which contain sheath and core SCs with distinctive biological properties. These findings highlight the need for use of both sheath and core SCs to promote the repair of the complex structure of injured ACL.
Collapse
Affiliation(s)
- Biao Chen
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Orthopaedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Jianying Zhang
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daibang Nie
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Guangyi Zhao
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Freddie H Fu
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James H-C Wang
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
24
|
Migrating Myofibroblastic Iliotibial Band-Derived Fibroblasts Represent a Promising Cell Source for Ligament Reconstruction. Int J Mol Sci 2019; 20:ijms20081972. [PMID: 31013670 PMCID: PMC6514966 DOI: 10.3390/ijms20081972] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 12/24/2022] Open
Abstract
The iliotibial band (ITB) is a suitable scaffold for anterior cruciate ligament (ACL) reconstruction, providing a sufficient mechanical resistance to loading. Hence, ITB-derived fibroblasts attract interest for ligament tissue engineering but have so far not been characterized. This present study aimed at characterizing ITB fibroblasts before, during, and after emigration from cadaveric ITB explants to decipher the emigration behavior and to utilize their migratory capacity for seeding biomaterials. ITB and, for comparison, ACL tissues were assessed for the content of alpha smooth muscle actin (αSMA) expressing fibroblasts and degeneration. The cell survival and αSMA expression were monitored in explants used for cell isolation, monolayer, self-assembled ITB spheroids, and spheroids seeded in polyglycolic acid (PGA) scaffolds. The protein expression profile of targets typically expressed by ligamentocytes (collagen types I-III, elastin, lubricin, decorin, aggrecan, fibronectin, tenascin C, CD44, β1-integrins, vimentin, F-actin, αSMA, and vascular endothelial growth factor A [VEGFA]) was compared between ITB and ACL fibroblasts. A donor- and age-dependent differing percentage of αSMA positive cells could be detected, which was similar in ITB and ACL tissues despite the grade of degeneration being significantly higher in the ACL due to harvesting them from OA knees. ITB fibroblasts survived for several months in an explant culture, continuously forming monolayers with VEGFA and an increased αSMA expression. They shared their expression profile with ACL fibroblasts. αSMA decreased during the monolayer to spheroid/scaffold transition. Using self-assembled spheroids, the migratory capacity of reversible myofibroblastic ITB cells can be utilized for colonizing biomaterials for ACL tissue engineering and to support ligament healing.
Collapse
|
25
|
Zhou J, Wang Y, Liu Y, Zeng H, Xu H, Lian F. Adipose derived mesenchymal stem cells alleviated osteoarthritis and chondrocyte apoptosis through autophagy inducing. J Cell Biochem 2019; 120:2198-2212. [PMID: 30315711 DOI: 10.1002/jcb.27530] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/01/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVE We aim to explore the effect of adipose derived mesenchymal stem cells (ADMSCs) on a knee osteoarthritis rat model and analyze how ADMSCs affect chondrocyte apoptosis. MATERIALS AND METHODS A surgically induced rat knee osteoarthritis (OA) model was constructed. ADMSCs were engrafted into the right knee cavity. Hematoxylin and eosin (H&E), Masson, and Safranin O were used to compare the histopathology of synovial membrane and cartilage. Immunohistochemical (IHC) was used to measure MMP-13, Collagen 2 (Col-2), Caspase-3 (Cas-3), PARP, p62, LC3b, DDR-2, FGFR-1, Wnt, P-AKT/AKT, p-CAMKII/CAMKII, and p-Smad1/Smad1 expression in the articular cartilage. qPCR and Western blot analysis were used to detect mRNA and protein levels of markers in chondrocytes. TUNEL and Annexin-V were used to assess apoptosis. RESULTS Histological analysis showed that ADMSCs alleviated the deterioration of cartilage and osteoarthritis. ADMSCs coculture increase the expression of Col2 and Sox-9, while down regulated MMP-13 in IL-1β stimulated chondrocytes. ADMSCs decreased proinflammatory cytokines IL-1β, IL-6, and TNF-α. ADMSCs enhanced the viability of IL-1β stimulated chondrocytes. ADMSC attenuated chondrocyte apoptosis. The pretreatment of 3-methyladenine (3-MA) reversed the reduction of Caspase-3 caused by ADMSCs, showing that the antiapoptotic effect was associated with autophagy inducing. ADMSCs significantly reduced the expression of FGFR-1, DDR-2, and Wnt in IL-1β stimulated chondrocytes. ADMSCs reduced the ratio of p-Smad1/Smad1 and p-CAMK II/CAMKII, and increased the ratio of p-AKT/AKT. CONCLUSIONS ADMSCs treatment alleviate osteoarthritis in rat OA models. AMDSCs reduced the secretion of proinflammatory cytokines and protected against apoptosis through autophagy inducing. ADMSCs' function could be related to multiple signaling pathway.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Rheumatology & Clinical Immunology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu Wang
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yiming Liu
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hanjiang Zeng
- Department of Rheumatology & Clinical Immunology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hanshi Xu
- Department of Rheumatology & Clinical Immunology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fan Lian
- Department of Rheumatology & Clinical Immunology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Lee KJ, Comerford EJ, Simpson DM, Clegg PD, Canty-Laird EG. Identification and Characterization of Canine Ligament Progenitor Cells and Their Extracellular Matrix Niche. J Proteome Res 2019; 18:1328-1339. [DOI: 10.1021/acs.jproteome.8b00933] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Katie J Lee
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
| | - Eithne J Comerford
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
- School of Veterinary Science, Leahurst Campus, University of Liverpool, Chester High Road, Neston, CH64 7TE, United Kingdom
| | - Deborah M Simpson
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Peter D Clegg
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
- School of Veterinary Science, Leahurst Campus, University of Liverpool, Chester High Road, Neston, CH64 7TE, United Kingdom
- The MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool L7 8TX, United Kingdom
| | - Elizabeth G Canty-Laird
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
- The MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Liverpool L7 8TX, United Kingdom
| |
Collapse
|
27
|
Calejo I, Costa-Almeida R, Gomes ME. Cellular Complexity at the Interface: Challenges in Enthesis Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1144:71-90. [PMID: 30632116 DOI: 10.1007/5584_2018_307] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The complex heterogeneous cellular environment found in tendon-to-bone interface makes this structure a challenge for interface tissue engineering. Orthopedic surgeons still face some problems associated with the formation of fibrotic tissue or re-tear occurring after surgical re-attachment of tendons to the bony insertion or the application of grafts. Unfortunately, an understanding of the cellular component of enthesis lags far behind of other well-known musculoskeletal interfaces, which blocks the development of new treatment options for the healing and regeneration of this multifaceted junction. In this chapter, the main characteristics of tendon and bone cell populations are introduced, followed by a brief description of the interfacial cellular niche, highlighting molecular mechanisms governing tendon-to-bone attachment and mineralization. Finally, we describe and critically assess some challenges faced concerning the use of cell-based strategies in tendon-to-bone healing and regeneration.
Collapse
Affiliation(s)
- Isabel Calejo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Costa-Almeida
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal. .,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal.
| |
Collapse
|
28
|
Gobbi A, Whyte GP. Long-term Outcomes of Primary Repair of the Anterior Cruciate Ligament Combined With Biologic Healing Augmentation to Treat Incomplete Tears. Am J Sports Med 2018; 46:3368-3377. [PMID: 30398894 DOI: 10.1177/0363546518805740] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Surgical treatment to repair partial anterior cruciate ligament (ACL) injury without reconstruction has demonstrated inconsistent clinical success. PURPOSE To examine the long-term clinical outcomes of primary ACL repair combined with biologic healing augmentation in patients with symptomatic partial ACL tears. STUDY DESIGN Case series; Level of evidence, 4. METHODS 50 patients (mean age, 29.5 years) with a partial ACL tear and symptomatic knee instability were treated with primary ligament repair in conjunction with marrow stimulation and followed prospectively for a mean duration of 10.2 years (range, 5.3-14.3 years). Comparative analysis of preinjury, preoperative, and postoperative scores using patient-reported assessment instruments was performed to examine clinical outcomes. Correlation of final outcome scores with patient age, type of ACL tear, side-to-side difference in ligamentous laxity, and body mass index (BMI) was performed through use of Spearman rank analysis. RESULTS 44 patients were available for assessment at final follow-up. The median Tegner Activity Scale score of 7 at final follow-up was the same as the preinjury median score of 7 ( P = .128). The mean Marx Activity Scale, International Knee Documentation Committee (IKDC) Subjective, and Lysholm Knee Questionnaire scores were 10.8, 90.4, and 96.2, respectively, at final follow-up. Mean final Knee injury and Osteoarthritis Outcome Score (KOOS) subset assessments of Pain, Symptoms, Activities of Daily Living, Sports, and Quality of Life were 98.6, 97.5, 99.7, 94.3, and 95.6, respectively. Secondary ACL insufficiency occurred in 27% of patients. Clinical outcome scores were similar for all scoring instruments between patients treated for an associated diagnosis of meniscal or articular cartilage injury. No significant correlations of age, BMI, ACL tear type, or laxity and final IKDC Subjective, Lysholm, or KOOS scores were found. Analysis revealed a negative correlation of patient age and Tegner score at preinjury ( rs = -0.333, P = .022) and at final follow-up ( rs = -0.376, P = .013). The mean side-to-side difference in ligamentous laxity of 3.4 mm at short-term follow-up in those patients who developed secondary ACL insufficiency over the duration of follow-up was significantly greater than the mean of 0.9 mm in those who did not ( P = .010). CONCLUSION Primary ACL repair combined with biologic healing augmentation to treat select cases of knee instability secondary to incomplete ACL rupture demonstrated good to excellent long-term outcomes in this cohort for those patients who did not experience secondary ACL insufficiency, with high rates of restoration of knee stability and return to preinjury athletic activities. The rate of secondary treatment for recurrent ACL insufficiency over the course of long-term follow-up was greater than would be expected for primary ACL reconstruction. Greater side-to-side differences in objective findings of ligamentous laxity were identified at shorter term follow-up in the patients who later went on to experience symptomatic secondary ACL insufficiency, compared with those who maintained stability long term.
Collapse
Affiliation(s)
- Alberto Gobbi
- Orthopaedic Arthroscopic Surgery International (OASI) Bioresearch Foundation, Milan, Italy
| | - Graeme P Whyte
- Orthopaedic Arthroscopic Surgery International (OASI) Bioresearch Foundation, Milan, Italy.,Cornell University, Weill Medical College, New York, NY, USA.,New York Presbyterian Hospital/Queens, Queens, New York, NY, USA
| |
Collapse
|
29
|
Prager P, Kunz M, Ebert R, Klein-Hitpass L, Sieker J, Barthel T, Jakob F, Konrads C, Steinert A. Mesenchymal Stem Cells Isolated from the Anterior Cruciate Ligament: Characterization and Comparison of Cells from Young and Old Donors. Knee Surg Relat Res 2018; 30:193-205. [PMID: 29554721 PMCID: PMC6122945 DOI: 10.5792/ksrr.17.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/26/2017] [Accepted: 12/16/2017] [Indexed: 12/17/2022] Open
Abstract
Purpose Mesenchymal stem cells (MSCs) isolated from the anterior cruciate ligament (ACL) share multiple characteristics of bone marrow-derived mesenchymal stem cells (BMSCs), allowing their use for regenerative therapies. Injuries to the ACL can affect people of all ages. This study assesses whether the regenerative potential of ACL-derived MSCs (ACL-MSCs) from old donors is as high as the potential of ACL-MSCs from young donors. Materials and Methods ACL-MSCs were isolated from ACL tissues obtained from young and old donors at the time of ACL reconstruction or arthroplasty. Proliferative capacity, multilineage differentiation potential (chondrogenic, osteogenic, and adipogenic lineages), and transcriptome-wide gene expression were assessed and compared between young and old donors. BMSCs of middle-aged donors served as an additional comparator. Results No substantial differences between ACL-MSCs from young and old donors were observed in their proliferative capacity and multilineage differentiation potential. The latter did not substantially differ between both ACL-MSC groups and BMSCs. Differential expression of genes related to the cytoskeleton and to protein dephosphorylation amongst other pathways was detected between ACL-MSCs from young and old donors. Conclusions Regenerative potential of ACL-MSCs from old donors was not substantially lower than that from young donors, suggesting that regenerative therapies of ACL tears are feasible in both age groups. In vivo studies of the effect of age on the efficacy of such therapies are needed.
Collapse
Affiliation(s)
- Patrick Prager
- Department of Orthopaedic Surgery, Koenig-Ludwig-Haus, Center for Musculoskeletal Research, Julius-Maximilians-University Wuerzburg, Wuerzburg, Germany
| | - Manuela Kunz
- Department of Orthopaedic Surgery, Koenig-Ludwig-Haus, Center for Musculoskeletal Research, Julius-Maximilians-University Wuerzburg, Wuerzburg, Germany
| | - Regina Ebert
- Department of Orthopaedic Surgery, Koenig-Ludwig-Haus, Center for Musculoskeletal Research, Julius-Maximilians-University Wuerzburg, Wuerzburg, Germany
| | - Ludger Klein-Hitpass
- BioChip Laboratory, Center for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Jakob Sieker
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, USA
| | - Thomas Barthel
- Department of Orthopaedic Surgery, Koenig-Ludwig-Haus, Center for Musculoskeletal Research, Julius-Maximilians-University Wuerzburg, Wuerzburg, Germany
| | - Franz Jakob
- Department of Orthopaedic Surgery, Koenig-Ludwig-Haus, Center for Musculoskeletal Research, Julius-Maximilians-University Wuerzburg, Wuerzburg, Germany
| | - Christian Konrads
- Department of Orthopaedic Surgery, Koenig-Ludwig-Haus, Center for Musculoskeletal Research, Julius-Maximilians-University Wuerzburg, Wuerzburg, Germany.,Department of Orthopaedic Trauma, Center for Trauma Research, BG Trauma Center Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Andre Steinert
- Department of Orthopaedic Surgery, Koenig-Ludwig-Haus, Center for Musculoskeletal Research, Julius-Maximilians-University Wuerzburg, Wuerzburg, Germany.,Department of Orthopaedics and Traumatology, Agatharied Hospital, Teaching Hospital of the University of Munich, Hausham, Germany
| |
Collapse
|
30
|
Mahapatra P, Horriat S, Anand BS. Anterior cruciate ligament repair - past, present and future. J Exp Orthop 2018; 5:20. [PMID: 29904897 PMCID: PMC6002325 DOI: 10.1186/s40634-018-0136-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/31/2018] [Indexed: 12/14/2022] Open
Abstract
Background This article provides a detailed narrative review on the history and current concepts surrounding ligamentous repair techniques in athletic patients. In particular, we will focus on the anterior cruciate ligament (ACL) as a case study in ligament injury and ligamentous repair techniques. PubMed (MEDLINE), EMBASE and Cochrane Library databases for papers relating to primary anterior cruciate ligament reconstruction were searched by all participating authors. All relevant historical papers were included for analysis. Additional searches of the same databases were made for papers relating to biological enhancement of ligament healing. Current standard The poor capacity of the ACL to heal is one of the main reasons why the current gold standard surgical treatment for an ACL injury in an athletic patient is ACL reconstruction with autograft from either the hamstrings or patella tendon. It is hypothesised that by preserving and repairing native tissues and negating the need for autograft that primary ACL repair may represent a key step change in the treatment of ACL injuries. History of primary ACL repair The history of primary ACL repair will be discussed and the circumstances that led to the near-abandonment of primary ACL repair techniques will be reviewed. New primary repair techniques There has been a recent resurgence in interest with regards to primary ACL repair. Improvements in imaging now allow for identification of tear location, with femoral-sided injuries, being more suitable for repair. We will discuss in details strategies for improving the mechanical and biological environment in order to allow primary healing to occur. In particular, we will explain mechanical supplementation such as Internal Brace Ligament Augmentation and Dynamic Intraligamentary Stabilisation techniques. These are novel techniques that aim to protect the primary repair by providing a stabilising construct that connects the femur and the tibia, thus bridging the repair. Bio enhanced repair In addition, biological supplementation is being investigated as an adjunct and we will review the current literature with regards to bio-enhancement in the form platelet rich plasma, bio-scaffolds and stem cells. On the basis of current evidence, there appears to be a role for bio-enhancement, however, this is not yet translated into clinical practice. Conclusions Several promising avenues of further research now exist in the form of mechanical and biological augmentation techniques. Further work is clearly needed but there is renewed interest and focus for primary ACL repair that may yet prove the new frontier in ligament repair.
Collapse
Affiliation(s)
- Piyush Mahapatra
- Trauma and Orthopaedic Department, Croydon University Hospital, 530 London Road, London, CR7 7YE, UK.
| | - Saman Horriat
- Trauma and Orthopaedic Department, Croydon University Hospital, 530 London Road, London, CR7 7YE, UK
| | - Bobby S Anand
- Trauma and Orthopaedic Department, Croydon University Hospital, 530 London Road, London, CR7 7YE, UK
| |
Collapse
|
31
|
Hu Y, Ran J, Zheng Z, Jin Z, Chen X, Yin Z, Tang C, Chen Y, Huang J, Le H, Yan R, Zhu T, Wang J, Lin J, Xu K, Zhou Y, Zhang W, Cai Y, Dominique P, Heng BC, Chen W, Shen W, Ouyang HW. Exogenous stromal derived factor-1 releasing silk scaffold combined with intra-articular injection of progenitor cells promotes bone-ligament-bone regeneration. Acta Biomater 2018. [PMID: 29524675 DOI: 10.1016/j.actbio.2018.02.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Anterior cruciate ligament (ACL) is one of the most difficult tissues to heal once injured. Ligament regeneration and tendon-bone junction healing are two major goals of ACL reconstruction. This study aimed to investigate the synergistic therapeutic effects of Stromal cell-derived factor 1 (SDF-1)-releasing collagen-silk (CSF) scaffold combined with intra-articular injection of ligament-derived stem/progenitor cells (LSPCs) for ACL regeneration and the amelioration in the long-term complication of osteoarthritis (OA). The stem cell recruitment ability of CSF scaffold and the multipotency, particularly the tendon forming ability of LSPCs from rabbits were characterized in vitro, while the synergistic effect of the CSF scaffold and LSPCs for ACL regeneration and OA amelioration were investigated in vivo at 1, 3, and 6 months with a rabbit ACL reconstruction model. The CSF scaffold was used as a substitute for the ACL, and LSPCs were injected into the joint cavity after 7 days of the ACL reconstruction. CSF scaffold displayed a controlled release pattern for the encapsulated protein for up to 7 days with an increased stiffness in the mechanical property. LSPCs, which exhibited highly I Collagen and CXCR4 expression, were attracted by SDF-1 and successfully relocated into the CSF scaffold at 1 month in vivo. At 3 and 6 months post-treatment, the CSF scaffold combined with LSPCs (CSFL group) enhanced the regeneration of ACL tissue, and promoted bone tunnel healing. Furthermore, the OA progression was impeded efficiently. Our findings here provided a new strategy that using stem cell recruiting CSF scaffold with tissue-specific stem cells, could be a promising solution for ACL regeneration. STATEMENT OF SIGNIFICANCE In this study, we developed a silk scaffold with increased stiffness and SDF-1 controlled release capacity for ligament repair. This advanced scaffold transplantation combined with intra-articular injection of LSPCs (which was isolated from rabbit ligament for the first time in this study) promoted the regeneration of both the tendinous and bone tunnel portion of ACL. This therapeutic strategy also ameliorated cartilage degeneration and reduced the severity of arthrofibrosis. Hence, combining LSPCs injection with SDF-1-releasing silk scaffold is demonstrated as a therapeutic strategy for ACL regeneration and OA treatment in the clinic.
Collapse
|
32
|
Asahara H, Inui M, Lotz MK. Tendons and Ligaments: Connecting Developmental Biology to Musculoskeletal Disease Pathogenesis. J Bone Miner Res 2017; 32:1773-1782. [PMID: 28621492 PMCID: PMC5585011 DOI: 10.1002/jbmr.3199] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/08/2017] [Accepted: 06/14/2017] [Indexed: 01/09/2023]
Abstract
Tendons and ligaments provide connections between muscle and bone or bone and bone to enable locomotion. Damage to tendons and ligaments caused by acute or chronic injury or associated with aging and arthritis is a prevalent cause of disability. Improvements in approaches for the treatment of these conditions depend on a better understanding of tendon and ligament development, cell biology, and pathophysiology. This review focuses on recent advances in the discovery of transcription factors that control ligament and tendon cell differentiation, how cell and extracellular matrix homeostasis are altered in disease, and how this new insight can lead to novel therapeutic approaches. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hiroshi Asahara
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masafumi Inui
- Laboratory of Animal Regeneration Systemology, Department of Life Science, School of Agriculture, Meiji University, Kanagawa, 214-8571
| | - Martin K. Lotz
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
33
|
Kitamura N, Yasuda K, Yokota M, Goto K, Wada S, Onodera J, Kondo E. The Effect of Intraoperative Graft Coverage With Preserved Remnant Tissue on the Results of the Pivot-Shift Test After Anatomic Double-Bundle Anterior Cruciate Ligament Reconstruction: Quantitative Evaluations With an Electromagnetic Sensor System. Am J Sports Med 2017; 45:2217-2225. [PMID: 28541797 DOI: 10.1177/0363546517706702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Remnant tissue preservation may be important in improving graft healing after anterior cruciate ligament (ACL) reconstruction, but it has yet to be established whether remnant tissue preservation improves the control of pivot-shift laxity. HYPOTHESIS The amount of ACL graft coverage with preserved remnant tissue improves the control of pivot-shift laxity, as qualitatively determined with an electromagnetic device. STUDY DESIGN Cohort study; Level of evidence, 3. METHODS The 3-dimensional kinematics were evaluated intraoperatively using an electromagnetic sensor system in 38 patients at the time of anatomic double-bundle ACL reconstruction with remnant tissue preservation and again at a minimum of 12 months postoperatively. The magnitude of the peak coupled anterior tibial translation (pCAT) and the maximal acceleration of posterior translation (APT) during the pivot-shift test were evaluated. The degree of graft coverage by remnant tissue was determined arthroscopically at the end of surgery, which was evaluated quantitatively using a scoring system (0-9 points). The relationship between the values during the pivot-shift test and preoperative and intraoperative factors were assessed. RESULTS The mean (±SD) side-to-side difference of the pCAT (ΔpCAT) was significantly ( P < .0001) improved from 14.0 ± 5.0 mm to 2.6 ± 1.1 mm. Also, the mean side-to-side difference of the APT (ΔAPT) was significantly ( P < .0001) improved from 525.6 ± 99.7 mm/s2 to 32.9 ± 23.6 mm/s2. The mean initial graft coverage score was 5.3 ± 2.6. The correlation analysis demonstrated that the degree of initial graft coverage was significantly correlated with the ΔpCAT ( r = -0.517, P = .0007) and ΔAPT ( r = -0.532, P = .0005). The status of the reconstructed graft at second-look arthroscopic surgery showed no significant correlations with the degree of initial graft coverage or the results of the pivot-shift test. CONCLUSION The present study demonstrated that the preservation of ACL remnant tissue in anatomic double-bundle ACL reconstruction appears to improve the control of pivot-shift laxity at a minimum of 12 months postoperatively, as measured by an electromagnetic device. This improvement was significantly affected by the degree of intraoperative graft coverage with preserved remnant tissue.
Collapse
Affiliation(s)
- Nobuto Kitamura
- Department of Sports Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kazunori Yasuda
- Department of Sports Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masashi Yokota
- Department of Sports Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Keiko Goto
- Department of Sports Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Susumu Wada
- Department of Sports Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Jun Onodera
- Department of Sports Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Eiji Kondo
- Department of Advanced Therapeutic Research for Sports Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
34
|
Nyland J, Gamble C, Franklin T, Caborn DNM. Permanent knee sensorimotor system changes following ACL injury and surgery. Knee Surg Sports Traumatol Arthrosc 2017; 25:1461-1474. [PMID: 28154888 DOI: 10.1007/s00167-017-4432-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/12/2017] [Indexed: 01/14/2023]
Abstract
The cruciate ligaments are components of the knee capsuloligamentous system providing vital neurosensory and biomechanical function. Since most historical primary ACL repair attempts were unsuccessful, reconstruction has become the preferred surgery. However, an increased understanding of the efficacy of lesion-site scaffolding, innovative suturing methods and materials, and evolving use of biological healing mediators such as platelet-rich plasma and stem cells has prompted reconsideration of what was once believed to be impossible. A growing number of in vivo animal studies and prospective clinical studies are providing increasing support for this intervention. The significance of ACL repair rather than reconstruction is that it more likely preserves the native neurosensory system, entheses, and ACL footprints. Tissue preservation combined with restored biomechanical function increases the likelihood for premorbid neuromuscular control system and dynamic knee stability recovery. This recovery should increase the potential for more patients to safely return to sports at their desired intensity and frequency. This current concepts paper revisits cruciate ligament neurosensory and neurovascular anatomy from the perspective of knee capsuloligamentous system function. Peripheral and central nerve pathways and central cortical representation mapping are also discussed. Surgical restoration of a more physiologically sound knee joint may be essential to solving the osteoarthritis dilemma. Innovative rehabilitative strategies and outcome measurement methodologies using more holistic and clinically relevant measurements that closely link biomechanical and neurosensory characteristics of physiological ACL function are discussed. Greater consideration of task-specific patient physical function and psychobehavioral links should better delineate the true efficacy of all ACL surgical and non-surgical interventions. Level of evidence IV.
Collapse
Affiliation(s)
- John Nyland
- Athletic Training Program Director and Professor, Kosair Charities College of Health and Natural Sciences, Spalding University, 901 South 4th Street, Louisville, KY, 40203, USA.
| | - Collin Gamble
- School of Medicine, University of Louisville, 323 East Chestnut Street, Louisville, KY, 40202, USA
| | - Tiffany Franklin
- Athletic Training Program Director and Professor, Kosair Charities College of Health and Natural Sciences, Spalding University, 901 South 4th Street, Louisville, KY, 40203, USA
| | - David N M Caborn
- Shea Orthopedic Group, KentuckyOne Health, 201 Abraham Flexner Way, Ste. 100, Louisville, KY, 40202, USA
| |
Collapse
|
35
|
Ligament-Derived Stem Cells: Identification, Characterisation, and Therapeutic Application. Stem Cells Int 2017; 2017:1919845. [PMID: 28386284 PMCID: PMC5366203 DOI: 10.1155/2017/1919845] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/19/2017] [Indexed: 01/09/2023] Open
Abstract
Ligament is prone to injury and degeneration and has poor healing potential and, with currently ineffective treatment strategies, stem cell therapies may provide an exciting new treatment option. Ligament-derived stem cell (LDSC) populations have been isolated from a number of different ligament types with the majority of studies focussing on periodontal ligament. To date, only a few studies have investigated LDSC populations in other types of ligament, for example, intra-articular ligaments; however, this now appears to be a developing field. This literature review aims to summarise the current information on nondental LDSCs including in vitro characteristics of LDSCs and their therapeutic potential. The stem cell niche has been shown to be vital for stem cell survival and function in a number of different physiological systems; therefore, the LDSC niche may have an impact on LDSC phenotype. The role of the LDSC niche on LDSC viability and function will be discussed as well as the therapeutic potential of LDSC niche modulation.
Collapse
|
36
|
Biomaterials as Tendon and Ligament Substitutes: Current Developments. REGENERATIVE STRATEGIES FOR THE TREATMENT OF KNEE JOINT DISABILITIES 2017. [DOI: 10.1007/978-3-319-44785-8_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Li B, Jha RK, Qi YJ, Ni QB, Wang H, Chen B, Chen LB. Early cellular responses of BMSCs genetically modified with bFGF/BMP2 co-cultured with ligament fibroblasts in a three-dimensional model in vitro. Int J Mol Med 2016; 38:1578-1586. [PMID: 28025991 DOI: 10.3892/ijmm.2016.2752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 09/07/2016] [Indexed: 11/05/2022] Open
Abstract
Currently, a number of strategies including the implantation of bone marrow-derived mesenchymal stem cells (BMSCs) and growth factors have been developed to regenerate the tendon-to-bone interface after performing anterior cruciate ligament reconstruction. However, the mechanisms behind the interactions of the implanted BMSCs and tendon cells remain to be elucidated. The aim of this study was to evaluate the early cellular responses of BMSCs genetically modified with basic growth factor growth factor (bFGF)/bone morphogenic protein 2 (BMP2) and ligament fibroblasts in a three-dimensional co-culture model. BMSCs and ligament fibroblasts were both isolated from male Wistar rats. The BMSCs were then transfected with an adenoviral vector carrying bFGF or BMP2. The transfected BMSCs and ligament fibroblasts both encapsulated in alginate beads were co-cultured for 6 days in three-dimensional model. On days 0, 3 and 6, cell proliferation was assayed. On day 6, the expression of several tendon-bone related markers was evaluated. In the co-culture system, bFGF and BMP2 were highly expressed at the mRNA and protein level. During the process, bFGF significantly promoted cell proliferation, as well as the expression of scleraxis (SCX) and collagen (COL) type Ⅰ (COL1) in the BMSCs; however, it markedly decreased the expression of phenotype markers in the ligament fibroblasts, including COL1 and COL3. BMP2 markedly increased the expression of alkaline phosphatase and osteocalcin in the BMSCs and ligament fibroblasts, whereas it had no obvious effect on cell proliferation and collagen synthesis in the ligament fibroblasts. The combination of bFGF and BMP2 resulted in the similarly enhanced proliferation of BMSCs and ligament fibroblasts as observed with bFGF alone; however, this combination more potently promoted osteogenic differentiation than did BMP2 alone. The findings of our study demonstrate the superiority of the combined use of growth factors in inducing osteogenic differentiation and provide a theoretical foundation for the regeneration of the tendon-to-bone interface.
Collapse
Affiliation(s)
- Bin Li
- Department of Orthopaedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, P.R. China
| | - Ramesh Kumar Jha
- Department of Orthopaedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, P.R. China
| | - Yong-Jian Qi
- Department of Orthopaedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, P.R. China
| | - Qu-Bo Ni
- Department of Orthopaedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, P.R. China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, P.R. China
| | - Biao Chen
- Department of Orthopaedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, P.R. China
| | - Liao-Bin Chen
- Department of Orthopaedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, P.R. China
| |
Collapse
|
38
|
Wagner ER, Bravo D, Dadsetan M, Riester SM, Chase S, Westendorf JJ, Dietz AB, van Wijnen AJ, Yaszemski MJ, Kakar S. Ligament Tissue Engineering Using a Novel Porous Polycaprolactone Fumarate Scaffold and Adipose Tissue-Derived Mesenchymal Stem Cells Grown in Platelet Lysate. Tissue Eng Part A 2016; 21:2703-13. [PMID: 26413793 DOI: 10.1089/ten.tea.2015.0183] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Surgical reconstruction of intra-articular ligament injuries is hampered by the poor regenerative potential of the tissue. We hypothesized that a novel composite polymer "neoligament" seeded with progenitor cells and growth factors would be effective in regenerating native ligamentous tissue. METHODS We synthesized a fumarate-derivative of polycaprolactone fumarate (PCLF) to create macro-porous scaffolds to allow cell-cell communication and nutrient flow. Clinical grade human adipose tissue-derived human mesenchymal stem cells (AMSCs) were cultured in 5% human platelet lysate (PL) and seeded on scaffolds using a dynamic bioreactor. Cell growth, viability, and differentiation were examined using metabolic assays and immunostaining for ligament-related markers (e.g., glycosaminoglycans [GAGs], alkaline phosphatase [ALP], collagens, and tenascin-C). RESULTS AMSCs seeded on three-dimensional (3D) PCLF scaffolds remain viable for at least 2 weeks with proliferating cells filling the pores. AMSC proliferation rates increased in PL compared to fetal bovine serum (FBS) (p < 0.05). Cells had a low baseline expression of ALP and GAG, but increased expression of total collagen when induced by the ligament and tenogenic growth factor fibroblast growth factor 2 (FGF-2), especially when cultured in the presence of PL (p < 0.01) instead of FBS (p < 0.05). FGF-2 and PL also significantly increased immunostaining of tenascin-C and collagen at 2 and 4 weeks compared with human fibroblasts. SUMMARY Our results demonstrate that AMSCs proliferate and eventually produce a collagen-rich extracellular matrix on porous PCLF scaffolds. This novel scaffold has potential in stem cell engineering and ligament regeneration.
Collapse
Affiliation(s)
- Eric R Wagner
- 1 Department of Orthopedic Surgery, Mayo Clinic , Rochester, Minnesota
| | - Dalibel Bravo
- 1 Department of Orthopedic Surgery, Mayo Clinic , Rochester, Minnesota
| | - Mahrokh Dadsetan
- 2 Department of Orthopedic Surgery and Biomedical Engineering, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Scott M Riester
- 2 Department of Orthopedic Surgery and Biomedical Engineering, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Steven Chase
- 2 Department of Orthopedic Surgery and Biomedical Engineering, Mayo Clinic College of Medicine , Rochester, Minnesota
| | | | - Allan B Dietz
- 2 Department of Orthopedic Surgery and Biomedical Engineering, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Andre J van Wijnen
- 2 Department of Orthopedic Surgery and Biomedical Engineering, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Michael J Yaszemski
- 2 Department of Orthopedic Surgery and Biomedical Engineering, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Sanjeev Kakar
- 1 Department of Orthopedic Surgery, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
39
|
Dyrna F, Herbst E, Hoberman A, Imhoff AB, Schmitt A. Stem cell procedures in arthroscopic surgery. Eur J Med Res 2016; 21:29. [PMID: 27411303 PMCID: PMC4944463 DOI: 10.1186/s40001-016-0224-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/05/2016] [Indexed: 12/13/2022] Open
Abstract
The stem cell as the building block necessary for tissue reparation and homeostasis plays a major role in regenerative medicine. Their unique property of being pluripotent, able to control immune process and even secrete a whole army of anabolic mediators, draws interest. While new arthroscopic procedures and techniques involving stem cells have been established over the last decade with improved outcomes, failures and dissatisfaction still occur. Therefore, there is increasing interest in ways to improve the healing response. MSCs are particularly promising for this task given their regenerative potential. While methods of isolating those cells are no longer poses a challenge, the best way of application is not clear. Several experiments in the realm of basic science and animal models have recently been published, addressing this issue, yet the application in clinical practice has lagged. This review provides an overview addressing the current standing of MSCs in the field of arthroscopic surgery.
Collapse
Affiliation(s)
- Felix Dyrna
- Department of Sports Orthopedics Klinikum rechts der Isar, Technical University, Ismaninger Str. 22, 81675, Munich, Germany
| | - Elmar Herbst
- Department of Sports Orthopedics Klinikum rechts der Isar, Technical University, Ismaninger Str. 22, 81675, Munich, Germany
| | - Alexander Hoberman
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT, USA
| | - Andreas B Imhoff
- Department of Sports Orthopedics Klinikum rechts der Isar, Technical University, Ismaninger Str. 22, 81675, Munich, Germany
| | - Andreas Schmitt
- Department of Sports Orthopedics Klinikum rechts der Isar, Technical University, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
40
|
Kowalski TJ, Leong NL, Dar A, Wu L, Kabir N, Khan AZ, Eliasberg CD, Pedron A, Karayan A, Lee S, Di Pauli von Treuheim T, Jiacheng J, Wu BM, Evseenko D, McAllister DR, Petrigliano FA. Hypoxic culture conditions induce increased metabolic rate and collagen gene expression in ACL-derived cells. J Orthop Res 2016; 34:985-94. [PMID: 26621359 DOI: 10.1002/jor.23116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 11/25/2015] [Indexed: 02/04/2023]
Abstract
There has been substantial effort directed toward the application of bone marrow and adipose-derived mesenchymal stromal cells (MSCs) in the regeneration of musculoskeletal tissue. Recently, resident tissue-specific stem cells have been described in a variety of mesenchymal structures including ligament, tendon, muscle, cartilage, and bone. In the current study, we systematically characterize three novel anterior cruciate ligament (ACL)-derived cell populations with the potential for ligament regeneration: ligament-forming fibroblasts (LFF: CD146(neg) , CD34(neg) CD44(pos) , CD31(neg) , CD45(neg) ), ligament perivascular cells (LPC: CD146(pos) CD34(neg) CD44(pos) , CD31(neg) , CD45(neg) ) and ligament interstitial cells (LIC: CD34(pos) CD146(neg) , CD44(pos) , CD31(neg) , CD45(neg) )-and describe their proliferative and differentiation potential, collagen gene expression and metabolism in both normoxic and hypoxic environments, and their trophic potential in vitro. All three groups of cells (LIC, LPC, and LFF) isolated from adult human ACL exhibited progenitor cell characteristics with regard to proliferation and differentiation potential in vitro. Culture in low oxygen tension enhanced the collagen I and III gene expression in LICs (by 2.8- and 3.3-fold, respectively) and LFFs (by 3- and 3.5-fold, respectively) and increased oxygen consumption rate and extracellular acidification rate in LICs (by 4- and 3.5-fold, respectively), LFFs (by 5.5- and 3-fold, respectively), LPCs (by 10- and 4.5-fold, respectively) as compared to normal oxygen concentration. In summary, this study demonstrates for the first time the presence of three novel progenitor cell populations in the adult ACL that demonstrate robust proliferative and matrix synthetic capacity; these cells may play a role in local ligament regeneration, and consequently represent a potential cell source for ligament engineering applications. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:985-994, 2016.
Collapse
Affiliation(s)
- Tomasz J Kowalski
- Department of Orthopaedic Surgery, Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, 90095, California
| | - Natalie L Leong
- Department of Orthopaedic Surgery, Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, 90095, California
| | - Ayelet Dar
- Department of Orthopaedic Surgery, Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, 90095, California
| | - Ling Wu
- Department of Orthopaedic Surgery, Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, 90095, California
| | - Nima Kabir
- Department of Orthopaedic Surgery, Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, 90095, California
| | - Adam Z Khan
- Department of Orthopaedic Surgery, Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, 90095, California
| | - Claire D Eliasberg
- Department of Orthopaedic Surgery, Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, 90095, California
| | - Andrew Pedron
- Department of Orthopaedic Surgery, Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, 90095, California
| | - Anthony Karayan
- Department of Orthopaedic Surgery, Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, 90095, California
| | - Siyoung Lee
- Department of Orthopaedic Surgery, Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, 90095, California
| | - Theodor Di Pauli von Treuheim
- Department of Orthopaedic Surgery, Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, 90095, California
| | - Jin Jiacheng
- Department of Orthopaedic Surgery, Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, 90095, California
| | - Ben M Wu
- Department of Bioengineering, University of California, Los Angeles, 90095, California
| | - Denis Evseenko
- Department of Orthopaedic Surgery, Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, 90095, California
| | - David R McAllister
- Department of Orthopaedic Surgery, Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, 90095, California
| | - Frank A Petrigliano
- Department of Orthopaedic Surgery, Orthopedic Hospital Research Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, 90095, California
| |
Collapse
|
41
|
Chen B, Li B, Qi YJ, Ni QB, Pan ZQ, Wang H, Chen LB. Enhancement of tendon-to-bone healing after anterior cruciate ligament reconstruction using bone marrow-derived mesenchymal stem cells genetically modified with bFGF/BMP2. Sci Rep 2016; 6:25940. [PMID: 27173013 PMCID: PMC4865959 DOI: 10.1038/srep25940] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/25/2016] [Indexed: 11/10/2022] Open
Abstract
Many strategies, including various growth factors and gene transfer, have been used to augment healing after anterior cruciate ligament (ACL) reconstruction. The biological environment regulated by the growth factors during the stage of tendon-bone healing was considered important in controlling the integrating process. The purpose of this study was to evaluate the effects of bone marrow-derived mesenchymal stem cells (BMSCs) genetically modified with bone morphogenetic protein 2 (BMP2) and basic fibroblast growth factor (bFGF) on healing after ACL reconstruction. BMSCs were infected with an adenoviral vector encoding BMP2 (AdBMP2) or bFGF (AdbFGF). Then, the infected BMSCs were surgically implanted into the tendon-bone interface. At 12 weeks postoperatively, the formation of abundant cartilage-like cells, smaller tibial bone tunnel and significantly higher ultimate load and stiffness levels, through histological analysis, micro-computed tomography and biomechanical testing, were observed. In addition, the AdBMP2-plus-AdbFGF group had the smallest bone tunnel and the best mechanical properties among all the groups. The addition of BMP2 or bFGF by gene transfer resulted in better cellularity, new bone formation and higher mechanical property, which contributed to the healing process after ACL reconstruction. Furthermore, the co-application of these two genes was more powerful and efficient than either single gene therapy.
Collapse
Affiliation(s)
- Biao Chen
- Department of Orthopaedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Bin Li
- Department of Orthopaedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yong-Jian Qi
- Department of Orthopaedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Qu-Bo Ni
- Department of Orthopaedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Zheng-Qi Pan
- Department of Orthopaedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Liao-Bin Chen
- Department of Orthopaedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
42
|
Chang YH, Liu HW, Wu KC, Ding DC. Mesenchymal Stem Cells and Their Clinical Applications in Osteoarthritis. Cell Transplant 2016; 25:937-50. [DOI: 10.3727/096368915x690288] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis is a chronic degenerative joint disorder characterized by articular cartilage destruction and osteophyte formation. Chondrocytes in the matrix have a relatively slow turnover rate, and the tissue itself lacks a blood supply to support repair and remodeling. Researchers have evaluated the effectiveness of stem cell therapy and tissue engineering for treating osteoarthritis. All sources of stem cells, including embryonic, induced pluripotent, fetal, and adult stem cells, have potential use in stem cell therapy, which provides a permanent biological solution. Mesenchymal stem cells (MSCs) isolated from bone marrow, adipose tissue, and umbilical cord show considerable promise for use in cartilage repair. MSCs can be sourced from any or all joint tissues and can modulate the immune response. Additionally, MSCs can directly differentiate into chondrocytes under appropriate signal transduction. They also have immunosuppressive and anti-inflammatory paracrine effects. This article reviews the current clinical applications of MSCs and future directions of research in osteoarthritis.
Collapse
Affiliation(s)
- Yu-Hsun Chang
- Department of Pediatrics, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Hwan-Wun Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Occupational Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Kun-Chi Wu
- Department of Orthopedics, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Dah-Ching Ding
- Department of Pediatrics, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- Department of Obstetrics and Gynecology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| |
Collapse
|
43
|
Hao ZC, Wang SZ, Zhang XJ, Lu J. Stem cell therapy: a promising biological strategy for tendon-bone healing after anterior cruciate ligament reconstruction. Cell Prolif 2016; 49:154-62. [PMID: 26929145 DOI: 10.1111/cpr.12242] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/09/2015] [Indexed: 12/12/2022] Open
Abstract
Tendon-bone healing after anterior cruciate ligament (ACL) reconstruction is a complex process, impacting significantly on patients' prognosis. Natural tendon-bone healing usually results in fibrous scar tissue, which is of inferior quality compared to native attachment. In addition, the early formed fibrous attachment after surgery is often not reliable to support functional rehabilitation, which may lead to graft failure or unsatisfied function of the knee joint. Thus, strategies to promote tendon-bone healing are crucial for prompt and satisfactory functional recovery. Recently, a variety of biological approaches, including active substances, gene transfer, tissue engineering and stem cells, have been proposed and applied to enhance tendon-bone healing. Among these, stem cell therapy has been shown to have promising prospects and draws increasing attention. From commonly investigated bone marrow-derived mesenchymal stem cells (bMSCs) to emerging ACL-derived CD34+ stem cells, multiple stem cell types have been proven to be effective in accelerating tendon-bone healing. This review describes the current understanding of tendon-bone healing and summarizes the current status of related stem cell therapy. Future limitations and perspectives are also discussed.
Collapse
Affiliation(s)
- Zi-Chen Hao
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Shan-Zheng Wang
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Xue-Jun Zhang
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Jun Lu
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China.,Surgical Research Center, Medical School of Southeast University, Nanjing, 210009, China
| |
Collapse
|
44
|
Steinert AF, Kunz M, Prager P, Göbel S, Klein-Hitpass L, Ebert R, Nöth U, Jakob F, Gohlke F. Characterization of bursa subacromialis-derived mesenchymal stem cells. Stem Cell Res Ther 2015; 6:114. [PMID: 26036250 PMCID: PMC4479225 DOI: 10.1186/s13287-015-0104-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 08/15/2014] [Accepted: 05/21/2015] [Indexed: 12/31/2022] Open
Abstract
Introduction The bursa subacromialis (BS) provides the gliding mechanism of the shoulder and regenerates itself after surgical removal. Therefore, we explored the presence of mesenchymal stem cells (MSCs) within the human adult BS tissue and characterized the BS cells compared to MSCs from bone marrow (BMSCs) on a molecular level. Methods BS cells were isolated by collagenase digest from BS tissues derived from patients with degenerative rotator cuff tears, and BMSCs were recovered by adherent culture from bone-marrow of patients with osteoarthritis of the hip. BS cells and BMSCs were compared upon their potential to proliferate and differentiate along chondrogenic, osteogenic and adipogenic lineages under specific culture conditions. Expression profiles of markers associated with mesenchymal phenotypes were comparatively evaluated by flow cytometry, immunohistochemistry, and whole genome array analyses. Results BS cells and BMSCs appeared mainly fibroblastic and revealed almost similar surface antigen expression profiles, which was CD44+, CD73+, CD90+, CD105+, CD106+, STRO-1+, CD14−, CD31−, CD34−, CD45−, CD144−. Array analyses revealed 1969 genes upregulated and 1184 genes downregulated in BS cells vs. BMSCs, indicating a high level of transcriptome similarity. After 3 weeks of differentiation culture, BS cells and BMSCs showed a similar strong chondrogenic, adipogenic and osteogenic potential, as shown by histological, immunohistochemical and RT-PCR analyses in contrast to the respective negative controls. Conclusions Our in vitro characterizations show that BS cells fulfill all characteristics of mesenchymal stem cells, and therefore merit further attention for the development of improved therapies for various shoulder pathologies.
Collapse
Affiliation(s)
- Andre F Steinert
- Julius-Maximilians-University Würzburg, Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, Brettreichstr. 11, D - 97074, Würzburg, Germany.
| | - Manuela Kunz
- Julius-Maximilians-University Würzburg, Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, Brettreichstr. 11, D - 97074, Würzburg, Germany.
| | - Patrick Prager
- Julius-Maximilians-University Würzburg, Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, Brettreichstr. 11, D - 97074, Würzburg, Germany.
| | - Sascha Göbel
- Julius-Maximilians-University Würzburg, Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, Brettreichstr. 11, D - 97074, Würzburg, Germany.
| | - Ludger Klein-Hitpass
- University of Duisburg-Essen, Center for Medical Biotechnology, BioChip Laboratory, Essen, Germany.
| | - Regina Ebert
- Julius-Maximilians-University Würzburg, Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, Brettreichstr. 11, D - 97074, Würzburg, Germany.
| | - Ulrich Nöth
- Julius-Maximilians-University Würzburg, Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, Brettreichstr. 11, D - 97074, Würzburg, Germany.
| | - Franz Jakob
- Julius-Maximilians-University Würzburg, Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, Brettreichstr. 11, D - 97074, Würzburg, Germany.
| | - Frank Gohlke
- Julius-Maximilians-University Würzburg, Department of Orthopaedic Surgery, König-Ludwig-Haus, Orthopaedic Center for Musculoskeletal Research, Julius-Maximilians-University Würzburg, Brettreichstr. 11, D - 97074, Würzburg, Germany. .,Present address: Klinik für Schulterchirurgie, Rhön Klinikum AG, Bad Neustadt/Saale, Germany.
| |
Collapse
|
45
|
Abstract
Tendon injuries are common and present a clinical challenge to orthopedic surgery mainly because these injuries often respond poorly to treatment and require prolonged rehabilitation. Therapeutic options used to repair ruptured tendons have consisted of suture, autografts, allografts, and synthetic prostheses. To date, none of these alternatives has provided a successful long-term solution, and often the restored tendons do not recover their complete strength and functionality. Unfortunately, our understanding of tendon biology lags far behind that of other musculoskeletal tissues, thus impeding the development of new treatment options for tendon conditions. Hence, in this review, after introducing the clinical significance of tendon diseases and the present understanding of tendon biology, we describe and critically assess the current strategies for enhancing tendon repair by biological means. These consist mainly of applying growth factors, stem cells, natural biomaterials and genes, alone or in combination, to the site of tendon damage. A deeper understanding of how tendon tissue and cells operate, combined with practical applications of modern molecular and cellular tools could provide the long awaited breakthrough in designing effective tendon-specific therapeutics and overall improvement of tendon disease management.
Collapse
|
46
|
Ghebes CA, Kelder C, Schot T, Renard AJ, Pakvis DFM, Fernandes H, Saris DB. Anterior cruciate ligament- and hamstring tendon-derived cells: in vitro differential properties of cells involved in ACL reconstruction. J Tissue Eng Regen Med 2015; 11:1077-1088. [PMID: 25758215 DOI: 10.1002/term.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 12/08/2014] [Accepted: 01/12/2015] [Indexed: 01/13/2023]
Abstract
Anterior cruciate ligament (ACL) reconstruction involves the replacement of the torn ligament with a new graft, often a hamstring tendon (HT). Described as similar, the ACL and HT have intrinsic differences related to their distinct anatomical locations. From a cellular perspective, identifying these differences represents a step forward in the search for new cues that enhance recovery after the reconstruction. The purpose of this study was to characterize the phenotype and multilineage potential of ACL- and HT-derived cells. ACL- and HT-derived cells were isolated from tissue harvest from patients undergoing total knee arthroplasty (TKA) or ACL reconstruction. In total, three ACL and three HT donors were investigated. Cell morphology, self-renewal potential (CFU-F), surface marker profiling, expression of tendon/ligament-related markers (PCR) and multilineage potential were analysed for both cell types; both had fibroblast-like morphology and low self-renewal potential. No differences in the expression of tendon/ligament-related genes or a selected set of surface markers were observed between the two cell types. However, differences in their multilineage potential were observed: while ACL-derived cells showed a high potential to differentiate into chondrocytes and adipocytes, but not osteoblasts, HT-derived cells showed poor potential to form adipocytes, chondrocytes and osteoblasts. Our results demonstrated that HT-derived cells have low multilineage potential compared to ACL-derived cells, further highlighting the need for extrinsic signals to fully restore the function of the ACL upon reconstruction. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Corina Adriana Ghebes
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Cindy Kelder
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Thomas Schot
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Auke J Renard
- Department of Orthopaedic Surgery, Medisch Spectrum Twente Hospital, Enschede, The Netherland
| | - Dean F M Pakvis
- Department of Orthopaedics and Traumatology, Orthopaedic Centre OCON, Hengelo, The Netherlands
| | - Hugo Fernandes
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.,Center for Neuroscience and Cell Biology (CNC), Stem Cells and Drug Screening group, University of Coimbra, Coimbra, Portugal
| | - Daniel B Saris
- MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
47
|
Nau T, Teuschl A. Regeneration of the anterior cruciate ligament: Current strategies in tissue engineering. World J Orthop 2015; 6:127-136. [PMID: 25621217 PMCID: PMC4303781 DOI: 10.5312/wjo.v6.i1.127] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/19/2014] [Accepted: 07/29/2014] [Indexed: 02/06/2023] Open
Abstract
Recent advancements in the field of musculoskeletal tissue engineering have raised an increasing interest in the regeneration of the anterior cruciate ligament (ACL). It is the aim of this article to review the current research efforts and highlight promising tissue engineering strategies. The four main components of tissue engineering also apply in several ACL regeneration research efforts. Scaffolds from biological materials, biodegradable polymers and composite materials are used. The main cell sources are mesenchymal stem cells and ACL fibroblasts. In addition, growth factors and mechanical stimuli are applied. So far, the regenerated ACL constructs have been tested in a few animal studies and the results are encouraging. The different strategies, from in vitro ACL regeneration in bioreactor systems to bio-enhanced repair and regeneration, are under constant development. We expect considerable progress in the near future that will result in a realistic option for ACL surgery soon.
Collapse
|
48
|
Current perspectives in mesenchymal stem cell therapies for osteoarthritis. Stem Cells Int 2014; 2014:194318. [PMID: 25548573 PMCID: PMC4274908 DOI: 10.1155/2014/194318] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease most commonly occurring in the ageing population. It is a slow progressive condition resulting in the destruction of hyaline cartilage followed by pain and reduced activity. Conventional treatments have little effects on the progression of the condition often leaving surgery as the last option. In the last 10 years tissue engineering utilising mesenchymal stem cells has been emerging as an alternative method for treating OA. Mesenchymal stem cells (MSCs) are multipotent progenitor cells found in various tissues, most commonly bone marrow and adipose tissue. MSCs are capable of differentiating into osteocytes, adipocytes, and chondrocytes. Autologous MSCs can be easily harvested and applied in treatment, but allogenic cells can also be employed. The early uses of MSCs focused on the implantations of cell rich matrixes during open surgeries, resulting in the formation of hyaline-like durable cartilage. More recently, the focus has completely shifted towards direct intra-articular injections where a great number of cells are suspended and injected into affected joints. In this review the history and early uses of MSCs in cartilage regeneration are reviewed and different approaches in current trends are explained and evaluated.
Collapse
|
49
|
Kondo M, Yamaoka K, Tanaka Y. Acquiring chondrocyte phenotype from human mesenchymal stem cells under inflammatory conditions. Int J Mol Sci 2014; 15:21270-85. [PMID: 25407530 PMCID: PMC4264224 DOI: 10.3390/ijms151121270] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 01/15/2023] Open
Abstract
An inflammatory milieu breaks down the cartilage matrix and induces chondrocyte apoptosis, resulting in cartilage destruction in patients with cartilage degenerative diseases, such as rheumatoid arthritis or osteoarthritis. Because of the limited regenerative ability of chondrocytes, defects in cartilage are irreversible and difficult to repair. Mesenchymal stem cells (MSCs) are expected to be a new tool for cartilage repair because they are present in the cartilage and are able to differentiate into multiple lineages of cells, including chondrocytes. Although clinical trials using MSCs for patients with cartilage defects have already begun, its efficacy and repair mechanisms remain unknown. A PubMed search conducted in October 2014 using the following medical subject headings (MeSH) terms: mesenchymal stromal cells, chondrogenesis, and cytokines resulted in 204 articles. The titles and abstracts were screened and nine articles relevant to “inflammatory” cytokines and “human” MSCs were identified. Herein, we review the cell biology and mechanisms of chondrocyte phenotype acquisition from human MSCs in an inflammatory milieu and discuss the clinical potential of MSCs for cartilage repair.
Collapse
Affiliation(s)
- Masahiro Kondo
- The First Department of Internal Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan.
| | - Kunihiro Yamaoka
- The First Department of Internal Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan.
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan.
| |
Collapse
|
50
|
Evans CH. Native, living tissues as cell seeded scaffolds. Ann Biomed Eng 2014; 43:787-95. [PMID: 25373700 DOI: 10.1007/s10439-014-1174-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 10/25/2014] [Indexed: 01/11/2023]
Abstract
Much effort is expended in developing biomimetic scaffolds that provide the micro-architecture of native tissue with appropriate cellular niches. Such scaffolds are often seeded with progenitor cells to generate engineered replacements for diseased or damaged tissues. An alternative approach relies on biology, rather than technology, to provide scaffolds containing progenitor cells in authentic niches. This article describes the use of accessible living tissues containing endogenous progenitor cells in their native, physiological environments. Such tissues also possess scaffolding properties, and can be readily harvested, manipulated and returned to the patient intra-operatively to facilitate repair and regeneration. Our group has explored the in situ genetic manipulation of cells within these tissues before they are reimplanted, although other means of modulation are certainly possible. Examples of suitable donor tissues include marrow, skeletal muscle and fat. In the case of marrow, clotting produces a moldable, autologous fibrin matrix containing endogenous cells; if necessary, exogenous cells can be added prior to clotting. These approaches have been studied experimentally in orthopaedic contexts, particularly for the healing and regeneration of bone and cartilage.
Collapse
Affiliation(s)
- Christopher H Evans
- Rehabilitation Medicine Research Center, Mayo Clinic, 200, First Street SW, Rochester, MN, 55905, USA,
| |
Collapse
|