1
|
Nieuwstraten J, Riester R, Hofmann UK, Guilak F, Danalache M. Matrix metalloproteinases accelerate pericellular matrix breakdown and disrupt mechanotransduction in osteoarthritis. Acta Biomater 2025; 195:73-82. [PMID: 39956307 DOI: 10.1016/j.actbio.2025.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/25/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
The pericellular matrix (PCM) is a specialized, narrow matrix surrounding each chondrocyte in articular cartilage, together constituting the chondron - the fundamental metabolic and functional unit of cartilage. The PCM plays a vital role in mediating biomechanical and biochemical signals essential for chondrocyte function. In osteoarthritis (OA), a chronic joint disorder characterized by progressive cartilage degradation, the PCM is one of the earliest sites of catabolic degradation, primarily driven by matrix metalloproteinases (MMPs). This study aims to investigate the functional relationship between PCM degradation and chondrocyte mechanosignaling, with an emphasis on MMP-driven changes in mechanotransduction in osteoarthritic cartilage. Human chondrons (N = 64) were incubated with MMP-2, MMP-3, and MMP-7, and structural changes were assessed histologically by evaluating perlecan and collagen type VI. Cellular elasticity was measured using atomic force microscopy (AFM), and mechanically evoked intracellular Ca2+ transients were assessed via AFM single-cell indentations (500 nN). All three MMPs induced pronounced catabolic effects on the PCM structure, showing distinct impacts on collagen type VI and perlecan, as well as on the biomechanical properties (p < 0.001). MMP-driven alterations in PCM integrity significantly reduced the Ca2+ transients of chondrons in response to mechanical stimuli (p < 0.001). While TRPV4 activation was elevated in intact chondrons, PIEZO channels were involved in mechanotransduction in both healthy and MMP-treated chondrons. In osteoarthritic stages, the mechanotransduction dynamics shifted significantly towards PIEZO channels. This study elucidates the interplay between MMP-mediated PCM degradation, structural-functional dynamics, and chondrocyte mechanotransduction, underscoring the critical role of the PCM in maintaining normal chondrocyte functionality and mechanosensing. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) is a prevalent degenerative joint disease affecting millions worldwide. Central to its pathology is the degradation of the pericellular matrix (PCM) by matrix metalloproteinases (MMPs), which disrupts chondrocyte mechanotransduction, altering cellular responses to mechanical stimuli. This study explores the impact of MMP-2, MMP-3, and MMP-7 on PCM structure and chondrocyte mechanosensing. Our results reveal that MMP-induced degradation significantly compromises PCM structural integrity, leading to altered mechanotransduction dynamics in chondrocytes. Degradation specifically redirects the primary function of ion channels from TRPV4 to PIEZO channels in cells impacted by MMPs. This highlights the interplay between MMP-mediated PCM degradation, chondrocyte mechanotransduction and as thus structural-functional dynamics, underscoring the critical role of the PCM in maintaining normal chondrocyte functionality and mechanosensing.
Collapse
Affiliation(s)
- Jule Nieuwstraten
- Laboratory of Cell Biology, Department of Orthopedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-7207 Tübingen, Germany
| | - Rosa Riester
- Laboratory of Cell Biology, Department of Orthopedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-7207 Tübingen, Germany
| | - Ulf Krister Hofmann
- Department of Orthopedic, Trauma, and Reconstructive Surgery, Division of Arthroplasty, RWTH Aachen University Hospital, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA
| | - Marina Danalache
- Laboratory of Cell Biology, Department of Orthopedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-7207 Tübingen, Germany.
| |
Collapse
|
2
|
Struijk C, Korpershoek J, Lydon KL, Verdonk P, Michielsen J, Krych AJ, Vonk LA, Saris DBF. Identification and culture of meniscons, meniscus cells with their pericellular matrix. Cytotherapy 2025; 27:98-106. [PMID: 39373674 DOI: 10.1016/j.jcyt.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND AIMS Meniscus injury is highly debilitating and often results in osteoarthritis. Treatment is generally symptomatic; no regenerative treatments are available. "Chondrons," articular chondrocytes with preserved pericellular matrix, produce more hyaline cartilage extracellular matrix and improve cartilage repair. If meniscons exist in the meniscus and have similar therapeutic potential as chondrons, employing these cells has potential for meniscus cell therapy and tissue engineering. In this study, we isolated and cultured "meniscons," meniscus cells surrounded by their native pericellular matrix, and investigated cell behavior in culture compared with chondrons. METHODS Human meniscons were enzymatically isolated from osteoarthritic menisci and cultured up to 28 days in fibrin glue. Freshly isolated meniscons and chondrons were analyzed by histology and transmission electron microscopy. We used 5-([4,6-dichlorotriazin-2-yl]amino)fluorescein hydrochloride labeling and type VI collagen immunohistochemistry to image pericellular matrix after 0 and 28 days of culture. Gene expression was quantified using real-time polymerase chain reaction and DNA content and proteoglycan production were analyzed using biochemical assays. RESULTS Meniscons were successfully isolated from human meniscus tissue. The pericellular matrix of meniscons and chondrons was preserved during 28 days of culture. Meniscons and chondrons had similar cell proliferation and proteoglycan production. Meniscons and chondrons expressed similar levels of collagen type I alpha 1 chain, whereas collagen type II alpha 1 chain and aggrecan expression was lower in the meniscon population. CONCLUSIONS Freshly isolated meniscons and meniscons cultured for 28 days share similarities with chondrons with regard to cell proliferation, morphology and biochemical activity. Rapid isolation of meniscons (45 min) demonstrates potential for one-stage meniscus regeneration and repair, which should be confirmed in vivo.
Collapse
Affiliation(s)
- Caroline Struijk
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA; Department of Orthopedic Surgery, Antwerp University, Antwerp, Belgium
| | - Jasmijn Korpershoek
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA; Department of Orthopaedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Katherine L Lydon
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter Verdonk
- Department of Orthopedic Surgery, Antwerp University, Antwerp, Belgium; Orthoca, Antwerp, Belgium
| | - Jozef Michielsen
- Department of Orthopedic Surgery, Antwerp University, Antwerp, Belgium
| | - Aaron J Krych
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Lucienne A Vonk
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Daniel B F Saris
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA; Department of Orthopaedics, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
3
|
van Mourik M, Tiemeijer BM, van Zon M, Abinzano F, Tel J, Foolen J, Ito K. Cartilage-derived cells display heterogeneous pericellular matrix synthesis in agarose microgels. Matrix Biol Plus 2024; 23:100157. [PMID: 39139760 PMCID: PMC11321428 DOI: 10.1016/j.mbplus.2024.100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
The pericellular matrix (PCM) surrounding chondrocytes is essential for articular cartilage tissue engineering. As the current isolation methods to obtain chondrocytes with their PCM (chondrons) result in a heterogeneous mixture of chondrocytes and chondrons, regenerating the PCM using a tissue engineering approach could prove beneficial. In this study, we aimed to discern the behavior of articular chondrocytes (ACs) in regenerating the PCM in such an approach and whether this would also be true for articular cartilage-derived progenitor cells (ACPCs), as an alternative cell source. Bovine ACs and ACPCs were encapsulated in agarose microgels using droplet-based microfluidics. ACs were stimulated with TGF-β1 and dexamethasone and ACPCs were sequentially stimulated with BMP-9 followed by TGF-β1 and dexamethasone. After 0, 3, 5, and 10 days of culture, PCM components, type-VI collagen and perlecan, and ECM component, type-II collagen, were assessed using flow cytometry and fluorescence microscopy. Both ACs and ACPCs synthesized the PCM before the ECM. It was seen for the first time that synthesis of type-VI collagen always preceded perlecan. While the PCM synthesized by ACs resembled native chondrons after only 5 days of culture, ACPCs often made less well-structured PCMs. Both cell types showed variations between individual cells and donors. On one hand, this was more prominent in ACPCs, but also a subset of ACPCs showed superior PCM and ECM regeneration, suggesting that isolating these cells may potentially improve cartilage repair strategies.
Collapse
Affiliation(s)
- Marloes van Mourik
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Gem-Z 1.106, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
| | - Bart M. Tiemeijer
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
| | - Maarten van Zon
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Gem-Z 1.106, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
| | - Florencia Abinzano
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Gem-Z 1.106, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
| | - Jurjen Tel
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
- Laboratory of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
| | - Jasper Foolen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Gem-Z 1.106, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Gem-Z 1.106, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, the Netherlands
| |
Collapse
|
4
|
Danalache M, Umrath F, Riester R, Schwitalle M, Guilak F, Hofmann UK. Proteolysis of the pericellular matrix: Pinpointing the role and involvement of matrix metalloproteinases in early osteoarthritic remodeling. Acta Biomater 2024; 181:297-307. [PMID: 38710401 DOI: 10.1016/j.actbio.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
The pericellular matrix (PCM) serves a critical role in signal transduction and mechanoprotection in chondrocytes. Osteoarthritis (OA) leads to a gradual deterioration of the cartilage, marked by a shift in the spatial arrangement of chondrocytes from initially isolated strands to large cell clusters in end-stage degeneration. These changes coincide with progressive enzymatic breakdown of the PCM. This study aims to assess the role and involvement of specific matrix metalloproteinases (MMPs) in PCM degradation during OA. We selected cartilage samples from 148 OA patients based on the predominant spatial chondrocyte patterns. The presence of various MMPs (-1,-2,-3,-7,-8,-9,-10,-12,-13) was identified by multiplexed immunoassays. For each pattern and identified MMP, the levels and activation states (pro-form vs. active form) were measured by zymograms and western blots. The localization of these MMPs was determined using immunohistochemical labeling. To verify these results, healthy cartilage was exposed to purified MMPs, and the consecutive structural integrity of the PCM was analyzed through immunolabeling and proximity ligation assay. Screening showed elevated levels of MMP-1,-2,-3,-7, and -13, with their expression profile showing a clear dependency of the degeneration stage. MMP-2 and -7 were localized in the PCM, whereas MMP-1,-7, and -13 were predominantly intracellular. We found that MMP-2 and -3 directly disrupt collagen type VI, and MMP-3 and -7 destroy perlecan. MMP-2, -3, and -7 emerge as central players in early PCM degradation in OA. With the disease's initial stages already displaying elevated peaks in MMP expression, this insight may guide early targeted therapies to halt abnormal PCM remodeling. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) causes a gradual deterioration of the articular cartilage, accompanied by a progressive breakdown of the pericellular matrix (PCM). The PCM's crucial function in protecting and transmitting signals within chondrocytes is impaired in OA. By studying 148 OA-patient cartilage samples, the involvement of matrix metalloproteinases (MMPs) in PCM breakdown was explored. Findings highlighted elevated levels of certain MMPs linked to different stages of degeneration. Notably, MMP-2, -3, and -7 were identified as potent contributors to early PCM degradation, disrupting key components like collagen type VI and perlecan. Understanding these MMPs' roles in initiating OA progression, especially in its early stages, provides insights into potential targets for interventions to preserve PCM integrity and potentially impeding OA advancement.
Collapse
Affiliation(s)
- Marina Danalache
- Department of Orthopedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany.
| | - Felix Umrath
- Department of Orthopedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany; Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, D-72076 Tübingen, Germany
| | - Rosa Riester
- Department of Orthopedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany
| | - Maik Schwitalle
- Winghofer Medicum, Röntgenstraße 38, D-72108 Rottenburg am Neckar, Germany
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA
| | - Ulf Krister Hofmann
- Department of Orthopedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, D-52074 Aachen, Germany
| |
Collapse
|
5
|
Pettenuzzo S, Arduino A, Belluzzi E, Pozzuoli A, Fontanella CG, Ruggieri P, Salomoni V, Majorana C, Berardo A. Biomechanics of Chondrocytes and Chondrons in Healthy Conditions and Osteoarthritis: A Review of the Mechanical Characterisations at the Microscale. Biomedicines 2023; 11:1942. [PMID: 37509581 PMCID: PMC10377681 DOI: 10.3390/biomedicines11071942] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Biomechanical studies are expanding across a variety of fields, from biomedicine to biomedical engineering. From the molecular to the system level, mechanical stimuli are crucial regulators of the development of organs and tissues, their growth and related processes such as remodelling, regeneration or disease. When dealing with cell mechanics, various experimental techniques have been developed to analyse the passive response of cells; however, cell variability and the extraction process, complex experimental procedures and different models and assumptions may affect the resulting mechanical properties. For these purposes, this review was aimed at collecting the available literature focused on experimental chondrocyte and chondron biomechanics with direct connection to their biochemical functions and activities, in order to point out important information regarding the planning of an experimental test or a comparison with the available results. In particular, this review highlighted (i) the most common experimental techniques used, (ii) the results and models adopted by different authors, (iii) a critical perspective on features that could affect the results and finally (iv) the quantification of structural and mechanical changes due to a degenerative pathology such as osteoarthritis.
Collapse
Affiliation(s)
- Sofia Pettenuzzo
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy
| | - Alessandro Arduino
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy
| | - Elisa Belluzzi
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology, University of Padova (DiSCOG), Via Giustiniani 3, 35128 Padova, Italy
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology, University of Padova (DiSCOG), 35128 Padova, Italy
| | - Assunta Pozzuoli
- Musculoskeletal Pathology and Oncology Laboratory, Department of Surgery, Oncology and Gastroenterology, University of Padova (DiSCOG), Via Giustiniani 3, 35128 Padova, Italy
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology, University of Padova (DiSCOG), 35128 Padova, Italy
| | | | - Pietro Ruggieri
- Orthopedics and Orthopedic Oncology, Department of Surgery, Oncology and Gastroenterology, University of Padova (DiSCOG), 35128 Padova, Italy
| | - Valentina Salomoni
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy
- Department of Management and Engineering (DTG), Stradella S. Nicola 3, 36100 Vicenza, Italy
| | - Carmelo Majorana
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy
| | - Alice Berardo
- Department of Civil, Environmental and Architectural Engineering, University of Padova, 35131 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
6
|
Höflsauer S, Bonnaire FC, Bamberger CE, Danalache M, Feierabend M, Hofmann UK. Changes in stiffness of the extracellular and pericellular matrix in the anulus fibrosus of lumbar intervertebral discs over the course of degeneration. Front Bioeng Biotechnol 2022; 10:1006615. [PMID: 36619385 PMCID: PMC9816436 DOI: 10.3389/fbioe.2022.1006615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2022] Open
Abstract
Analogous to articular cartilage, changes in spatial chondrocyte organisation have been proposed to be a strong indicator for local tissue degeneration in the intervertebral disc (IVD). While a progressive structural and functional degradation of the extracellular (ECM) and pericellular (PCM) matrix occurs in osteoarthritic cartilage, these processes have not yet been biomechanically elucidated in the IVD. We aimed to evaluate the local stiffness of the ECM and PCM in the anulus fibrosus of the IVD on the basis of local chondrocyte spatial organisation. Using atomic force microscopy, we measured the Young's modulus of the local ECM and PCM in human and bovine disc samples using the spatial chondrocyte patterns as an image-based biomarker. By measuring tissue from 31 patients and six bovine samples, we found a significant difference in the elastic moduli (E) of the PCM in clusters when compared to the healthy patterns single cells (p = 0.029), pairs (p = 0.016), and string-formations (p = 0.010). The ECM/PCM ratio ranged from 0.62-0.89. Interestingly, in the bovine IVD, the ECM/PCM ratio of the E significantly varied (p = 0.002) depending on the tissue origin. Overall the reduced E in clusters demonstrates that cluster formation is not only a morphological phenomenon describing disc degeneration, but it marks a compromised biomechanical functioning. Immunohistochemical analyses indicate that collagen type III degradation might be involved. This study is the first to describe and quantify the differences in the E of the ECM in relation to the PCM in the anulus fibrosus of the IVD by means of atomic force microscopy on the basis of spatial chondrocyte organisation.
Collapse
Affiliation(s)
- Sebastian Höflsauer
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany,Medical Faculty of the University of Tübingen, Tübingen, Germany
| | - Florian Christof Bonnaire
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany,Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany
| | - Charlotte Emma Bamberger
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany,Medical Faculty of the University of Tübingen, Tübingen, Germany
| | - Marina Danalache
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany,Medical Faculty of the University of Tübingen, Tübingen, Germany
| | - Martina Feierabend
- Institute for Bioinformatics and Medical Informatics, Faculty of Science of the University of Tübingen, Tübingen, Germany,*Correspondence: Martina Feierabend,
| | - Ulf Krister Hofmann
- Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany,Department of Orthopaedic Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
7
|
Islam MS, Ebrahimi-Barough S, Al Mahtab M, Shirian S, Aghayan HR, Arjmand B, Allahverdi A, Ranjbar FE, Sadeg AB, Ai J. Encapsulation of rat bone marrow-derived mesenchymal stem cells (rBMMSCs) in collagen type I containing platelet-rich plasma for osteoarthritis treatment in rat model. Prog Biomater 2022; 11:385-396. [PMID: 36271317 DOI: 10.1007/s40204-022-00200-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022] Open
Abstract
Osteoarthritis (OA) is the most common form of degenerative joint disease, affecting more than 25% of the adults despite its prevalence in the elderly population. Most of the current therapeutic modalities aim at symptomatic treatment which lingers the disease progression. In recent years, regenerative medicine such as stem cell transplantation and tissue engineering has been suggested as a potential curative intervention for OA. The objective of this current study was to assess the safety and efficacy of an injectable tissue-engineered construct composed of rat bone marrow mesenchymal stem cells (rBMMSCs), platelet-rich plasma (PRP), and collagen type I in rat model of OA. To produce collagen type I, PRP and rBMMSCs, male Wistar rats were ethically euthanized. After isolation, culture, expansion and characterization of rBMMSCs, tissue-engineered construct was formed by a combination of appropriate amount of collagen type I, PRP and rBMMSCs. In vitro studies were conducted to evaluate the effect of PRP on chondrogenic differentiation capacity of encapsulated cells. In the following, the tissue-engineered construct was injected in knee joints of rat models of OA (24 rats in 4 groups: OA, OA + MSC, OA + collagen + MSC + PRP, OA + MSC + collagen). After 6 weeks, the animals were euthanized and knee joint histopathology examinations of knee joint samples were performed to evaluate the effect of each treatment on OA. Tissue-engineered construct was successfully manufactured and in vitro assays demonstrated the relevant chondrogenic genes and proteins expression were higher in PRP group than that of others. Histopathological findings of the knee joint samples showed favorable regenerative effect of rBMMSCs + PRP + collagen group compared to others. We introduced an injectable tissue-engineered product composed of rBMMSCs + PRP + collagen with potential regenerative effect on cartilage that has been damaged by OA.
Collapse
Affiliation(s)
- Md Shahidul Islam
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.,Shefa Neuroscience Research Center, Khatam-Alanbia Hospital, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Allahverdi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Esmaeili Ranjbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Amin Bigham Sadeg
- Department of Clinical Sciences, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.,Shiraz Molecular Pathology Research Center, Dr Daneshbod Path Lab, Shiraz, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Zhang Z, Schon L. The Current Status of Clinical Trials on Biologics for Cartilage Repair and Osteoarthritis Treatment: An Analysis of ClinicalTrials.gov Data. Cartilage 2022; 13:19476035221093065. [PMID: 35546280 PMCID: PMC9152205 DOI: 10.1177/19476035221093065] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Biologics are increasingly used for cartilage repair and osteoarthritis (OA) treatment. This study aimed to provide an overview of the clinical trials conducted on this subject. DESIGN Two-word combinations of two sets of key words "cartilage"; "joint"; "osteoarthritis" and "biologics"; "stem cells"; "cell implantation" were used to search the database of ClinicalTrials.gov and supplemented with searches of PubMed and EMbase. The registered trials were analyzed for clinical conditions, completion status, phases, and investigated biologics. Recently completed trials with posted/published results were summarized. RESULTS From 2000 to 2022, a total of 365 clinical trials were registered at ClinicalTrials.gov to use biologics for cartilage repair and OA treatment. Since 2006, the number of registered trials accelerated at an annual rate of 16.4%. Of the 265 trials designated with a phase, 72% were early Phase 1, Phase 1, and Phase 2. Chondrocytes and platelet-rich plasma (PRP) were studied in nearly equal number of early- and late-stage trials. Mesenchymal stem/stromal cells (MSCs) were the most commonly investigated biologics (38%) and mostly derived from bone marrow and adipose tissue (70%). In last 5 years, 32 of the 72 completed trials posted/published results, among which seven Phase 3 trials investigated chondrocytes, PRP, bone marrow aspirate concentrate, hyaluronic acid, collagen membrane, and albumin. CONCLUSIONS There was a rapid increase in the number of registered clinical trials in recent years, using a variety of biologics for cartilage repair and OA treatment. Majority of the biologics still require late-stage trials to validate their clinical effectiveness.
Collapse
Affiliation(s)
- Zijun Zhang
- Center for Orthopaedic Innovation, Mercy Medical Center, Baltimore, MD, USA,Zijun Zhang, Center for Orthopaedic Innovation, Mercy Medical Center, 301 Saint Paul Place, Baltimore, MD 21202, USA.
| | - Lew Schon
- Center for Orthopaedic Innovation, Mercy Medical Center, Baltimore, MD, USA,Institute for Foot and Ankle Reconstruction, Mercy Medical Center, Baltimore, MD, USA
| |
Collapse
|
9
|
Targeted mesenchymal stem cell therapy equipped with a cell-tissue nanomatchmaker attenuates osteoarthritis progression. Sci Rep 2022; 12:4015. [PMID: 35256711 PMCID: PMC8901617 DOI: 10.1038/s41598-022-07969-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/22/2022] [Indexed: 11/08/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are at the forefront of research for a wide range of diseases, including osteoarthritis (OA). Despite having attracted the attention of orthopedists, current MSC therapy techniques are limited by poor MSC implantation in tissue defects and lack of lateral tissue integration, which has restricted the efficacy of cell therapy to alleviate OA symptoms only. Here, we developed targeted MSC therapy for OA cartilage using a cell-tissue matchmaking nanoconstruct (C-TMN). C-TMN, as an MSC vehicle, consists of a central iron oxide nanoparticle armed with two types of antibodies, one directed at the MSC surface and the other against articular cartilage. We treated rat OA articular cartilage with intra-articular injections of C-TMN with and without exogenous MSCs. We observed substantial improvements in both symptomatic and radiographic OA caused by C-TMN, which was independent of exogenous MSCs. This new approach could predict a promising future for OA management.
Collapse
|
10
|
Franklin M, Sperry M, Phillips E, Granquist E, Marcolongo M, Winkelstein BA. Painful temporomandibular joint overloading induces structural remodeling in the pericellular matrix of that joint's chondrocytes. J Orthop Res 2022; 40:348-358. [PMID: 33830541 PMCID: PMC8497636 DOI: 10.1002/jor.25050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 03/01/2021] [Accepted: 03/24/2021] [Indexed: 02/04/2023]
Abstract
Mechanical stress to the temporomandibular joint (TMJ) is an important factor in cartilage degeneration, with both clinical and preclinical studies suggesting that repeated TMJ overloading could contribute to pain, inflammation, and/or structural damage in the joint. However, the relationship between pain severity and early signs of cartilage matrix microstructural dysregulation is not understood, limiting the advancement of diagnoses and treatments for temporomandibular joint-osteoarthritis (TMJ-OA). Changes in the pericellular matrix (PCM) surrounding chondrocytes may be early indicators of OA. A rat model of TMJ pain induced by repeated jaw loading (1 h/day for 7 days) was used to compare the extent of PCM modulation for different loading magnitudes with distinct pain profiles (3.5N-persistent pain, 2N-resolving pain, or unloaded controls-no pain) and macrostructural changes previously indicated by Mankin scoring. Expression of PCM structural molecules, collagen VI and aggrecan NITEGE neo-epitope, were evaluated at Day 15 by immunohistochemistry within TMJ fibrocartilage and compared between pain conditions. Pericellular collagen VI levels increased at Day 15 in both the 2N (p = 0.003) and 3.5N (p = 0.042) conditions compared to unloaded controls. PCM width expanded to a similar extent for both loading conditions at Day 15 (2N, p < 0.001; 3.5N, p = 0.002). Neo-epitope expression increased in the 3.5N group over levels in the 2N group (p = 0.041), indicating pericellular changes that were not identified in the same groups by Mankin scoring of the pericellular region. Although remodeling occurs in both pain conditions, the presence of pericellular catabolic neo-epitopes may be involved in the macrostructural changes and behavioral sensitivity observed in persistent TMJ pain.
Collapse
Affiliation(s)
- Melissa Franklin
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, 19104
| | - Megan Sperry
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104,Corresponding Author(s): Megan Sperry, PhD, Wyss Institute at Harvard University, 3 Blackfan Circle, Boston, MA 02115, , 978-387-3763
| | - Evan Phillips
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104
| | - Eric Granquist
- Oral & Maxillofacial Surgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Michele Marcolongo
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104
| | - Beth A. Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
11
|
Shah SS, Mithoefer K. Scientific Developments and Clinical Applications Utilizing Chondrons and Chondrocytes with Matrix for Cartilage Repair. Cartilage 2021; 13:1195S-1205S. [PMID: 33155482 PMCID: PMC8808934 DOI: 10.1177/1947603520968884] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Injuries to articular cartilage of the knee are increasingly common. The operative management of these focal chondral lesions continues to be problematic for the treating orthopedic surgeon secondary to the limited regenerative capacity of articular cartilage. The pericellular matrix (PCM) is a specialized, thin layer of the extracellular matrix that immediately surrounds chondrocytes forming a unit together called the chondron. The advancements in our knowledge base with regard to the PCM/chondrons as well as interterritorial matrix has permeated and led to advancements in product development in conjunction with minced cartilage, marrow stimulation, osteochondral allograft, and autologous chondrocyte implantation (ACI). This review intends to summarize recent progress in chondrocytes with matrix research, with an emphasis on the role the PCM/extracellular matrix (ECM) plays for favorable chondrogenic gene expression, as a barrier/filtration unit, and in osteoarthritis. The bulk of the review describes cutting-edge and evolving clinical developments and discuss these developments in light of underlying basic science applications. Clinical applications of chondrocytes with matrix science include Reveille Cartilage Processor, Cartiform, and ACI with Spherox (which was recently recommended for the treatment of grade III or IV articular cartilage defects over 2 cm2 by the National Institute of Health and Care Excellence [NICE] in the United Kingdom). The current article presents a comprehensive overview of both the basic science and clinical results of these next-generation cartilage repair techniques by focusing specifically on the scientific evolution in each category as it pertains with underlying chondrocytes with matrix theory.
Collapse
Affiliation(s)
- Sarav S. Shah
- Division of Sports Medicine, Department
of Orthopaedic Surgery, New England Baptist Hospital, Boston, MA, USA,Sarav S. Shah, Division of Sports Medicine,
Department of Orthopaedic Surgery, New England Baptist Hospital, 125 Parker Hill
Avenue, Boston, MA 02120, USA.
| | - Kai Mithoefer
- Division of Sports Medicine, Department
of Orthopaedic Surgery, New England Baptist Hospital, Boston, MA, USA
| |
Collapse
|
12
|
Khawaja H, Fazal N, Yaqub F, Ahmad MR, Hanif M, Yousaf MA, Latief N. Protective and proliferative effect of Aesculus indica extract on stressed human adipose stem cells via downregulation of NF-κB pathway. PLoS One 2021; 16:e0258762. [PMID: 34679084 PMCID: PMC8535185 DOI: 10.1371/journal.pone.0258762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/06/2021] [Indexed: 01/22/2023] Open
Abstract
Inflammatory microenvironment after transplantation affects the proliferation and causes senescence of adipose-derived mesenchymal stem cells (hADMSCs) thus compromising their clinical efficacy. Priming stem cells with herbal extracts is considered very promising to improve their viability in the inflammatory milieu. Aesculus indica (A. indica) is used to treat many inflammatory diseases in Asia for decades. Herein, we explored the protective role of A. indica extract on human adipose-derived Mesenchymal Stem Cells (hADMSCs) against Monosodium Iodoacetate (MIA) induced stress in vitro. A. indica ameliorated the injury as depicted by significantly enhanced proliferation, viability, improved cell migration and superoxide dismutase activity. Furthermore, reduced lactate dehydrogenase activity, reactive oxygen species release, senescent and apoptotic cells were detected in A. indica primed hADMSCs. Downregulation of NF-κB pathway and associated inflammatory genes, NF-κB p65/RelA and p50/NF-κB 1, Interleukin 6 (IL-6), Interleukin 1 (IL-1β), Tumor necrosis factor alpha (TNF-α) and matrix metalloproteinase 13 (MMP-13) were observed in A. indica primed hADMSCs as compared to stressed hADMSCs. Complementary to gene expression, A. indica priming reduced the release of transcription factor p65, inhibitory-κB kinase (IKK) α and β, IL-1β and TNF-α proteins expression. Our data elucidates that A. indica extract preconditioning rescued hADMSCs against oxidative stress and improved their therapeutic potential by relieving inflammation through regulation of NF-κB pathway.
Collapse
Affiliation(s)
- Hamzah Khawaja
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, Leipzig University, Leipzig, Germany
| | - Numan Fazal
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Faiza Yaqub
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Rauf Ahmad
- Department of Molecular Biology, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Muzaffar Hanif
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Amin Yousaf
- Department of Dermatology, Jinnah Burn & Reconstructive Surgery Centre, Lahore, Pakistan
| | - Noreen Latief
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- * E-mail: ,
| |
Collapse
|
13
|
Combination of chondrocytes and chondrons improves extracellular matrix production to promote the repairs of defective knee cartilage in rabbits. J Orthop Translat 2021; 28:47-54. [PMID: 33717981 PMCID: PMC7906883 DOI: 10.1016/j.jot.2021.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/12/2020] [Accepted: 01/13/2021] [Indexed: 12/02/2022] Open
Abstract
Background Chondrons are composed of chondrocytes and the surrounding pericellular matrix (PCM) and function to enhance chondrocyte-mediated cartilage tissue engineering. This study aimed at investigating the potential effect of combined chondrocytes with chondrons on the production of proteoglycan and collagen-II (Col-2) and the repair of defective knee cartilage in rabbits. Methods Chondrocytes and chondrons were isolated from the knee cartilage of rabbits, and cultured alone or co-cultured for varying periods in vitro. Their morphology was characterized by histology. The levels of aggrecan (AGG), Col-2 and glycosaminoglycan (GAG) expression were quantified by qRT-PCR, Alcian blue-based precipitation and ELISA. The effect of combined chondrocytes with chondrons in alginate spheres on the repair of defective knee cartilage was examined in rabbits. Results The isolated chondrocytes and chondrons displayed unique morphology and began to proliferate on day 3 and 6 post culture, respectively, accompanied by completely degenerated PCM on day 6 post culture. Evidently, chondrocytes had stronger proliferation capacity than chondrons. Longitudinal analyses indicated that culture of chondrons, but not chondrocytes, increased AGG mRNA transcripts and GAG levels with time and Col-2 mRNA transcripts only on day 3 post culture. Compared with chondrocytes or chondrons alone, co-culture of chondrocytes and chondrons significantly up-regulated AGG and Col-2 expression and GAG production, particularly at a ratio of 1:1. Implantation with chondrocytes and chondrons at 1:1 significantly promoted the repair of defective knee cartilage in rabbits, accompanied by reduced the Wakiteni scores with time. Conclusion Combined chondrons with chondrocytes promoted the production of extracellular matrix and the repair of defective knee cartilage in rabbits. The translational potential of this article This study explores that the combination of chondrons and chondrocytes may be new therapeutic strategy for cartilage tissue engineering and repair of defective cartilage.
Collapse
|
14
|
Danalache M, Erler AL, Wolfgart JM, Schwitalle M, Hofmann UK. Biochemical changes of the pericellular matrix and spatial chondrocyte organization-Two highly interconnected hallmarks of osteoarthritis. J Orthop Res 2020; 38:2170-2180. [PMID: 32301522 DOI: 10.1002/jor.24699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 02/04/2023]
Abstract
During osteoarthritis, chondrocytes change their spatial arrangement from single to double strings, then to small and big clusters. This change in pattern has recently been established as an image-based biomarker for osteoarthritis. The pericellular matrix (PCM) appears to degrade together alongside cellular reorganization. The aim of this study was to characterize this PCM-degradation based on different cellular patterns. We additionally wanted to identify the earliest time point of PCM-breakdown in this physiopathological model. To this end, cartilage samples were selected according to their predominant cellular pattern. Qualitative analysis of PCM degradation was performed immunohistochemically by analysing five main PCM components: collagen type VI, perlecan, collagen type III, biglycan, and fibrillin-1 (n = 6 patients). Their protein content was quantified by enzyme-linked immunosorbent assay (127 patients). Accompanying spatial cellular rearrangement, the PCM is progressively destroyed, with a pericellular signal loss in fluorescence microscopy for collagen type VI, perlecan, and biglycan. This loss in protein signal is accompanied by a reduction in total protein content from single strings to big clusters (P < .001 for collagen type VI, P = .003 for perlecan, and P < .001 for biglycan). As a result of an increase in the number of cells from single strings to big clusters, the amount of protein available per cell also decreases for collagen type III and fibrillin-1, where total protein levels remain constant. Biochemical changes of the PCM and cellular rearrangement are thus highly interconnected hallmarks of osteoarthritis. Interestingly, the earliest point in time for a relevant PCM impairment appears to be at the transition to small clusters.
Collapse
Affiliation(s)
- Marina Danalache
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany
| | - Anna-Lisa Erler
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany.,Medical Faculty of the University of Tübingen, Tübingen, Germany
| | - Julius M Wolfgart
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany.,Medical Faculty of the University of Tübingen, Tübingen, Germany
| | | | - Ulf K Hofmann
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany.,Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|
15
|
Proteome Alterations in Equine Osteochondrotic Chondrocytes. Int J Mol Sci 2019; 20:ijms20246179. [PMID: 31817880 PMCID: PMC6940994 DOI: 10.3390/ijms20246179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 01/07/2023] Open
Abstract
Osteochondrosis is a failure of the endochondral ossification that affects developing joints in humans and several animal species. It is a localized idiopathic joint disorder characterized by focal chondronecrosis and growing cartilage retention, which can lead to the formation of fissures, subchondral bone cysts, or intra-articular fragments. Osteochondrosis is a complex multifactorial disease associated with extracellular matrix alterations and failure in chondrocyte differentiation, mainly due to genetic, biochemical, and nutritional factors, as well as traumas. This study describes the main proteomic alterations occurring in chondrocytes isolated from osteochondrotic cartilage fragments. A comparative analysis performed on equine osteochondrotic and healthy chondrocytes showed 26 protein species as differentially represented. In particular, quantitative changes in the extracellular matrix, cytoskeletal and chaperone proteins, and in cell adhesion and signaling molecules were observed in osteochondrotic cells, compared to healthy controls. Functional group analysis annotated most of these proteins in “growth plate and cartilage development”, while others were included in “glycolysis and gluconeogenesis”, “positive regulation of protein import”, “cell–cell adhesion mediator activity”, and “mitochondrion nucleoid”. These results may help to clarify some chondrocyte functional alterations that may play a significant role in determining the onset and progression of equine osteochondrosis and, being related, of human juvenile osteochondrosis.
Collapse
|
16
|
Danalache M, Kleinert R, Schneider J, Erler AL, Schwitalle M, Riester R, Traub F, Hofmann UK. Changes in stiffness and biochemical composition of the pericellular matrix as a function of spatial chondrocyte organisation in osteoarthritic cartilage. Osteoarthritis Cartilage 2019; 27:823-832. [PMID: 30711608 DOI: 10.1016/j.joca.2019.01.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 12/26/2018] [Accepted: 01/20/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE During osteoarthritis (OA), chondrocytes seem to change their spatial arrangement from single to double strings, small and big clusters. Since the pericellular matrix (PCM) appears to degrade alongside this reorganisation, it has been suggested that spatial patterns act as an image-based biomarker for OA. The aim of this study was to establish the functional relevance of spatial organisation in articular cartilage. METHOD Cartilage samples were selected according to their predominant spatial cellular pattern. Young's modulus of their PCM was measured by atomic force microscopy (AFM) (∼500 measurements/pattern). The distribution of two major PCM components (collagen type VI and perlecan) was analysed by immunohistochemistry (8 patients) and protein content quantified by enzyme-linked immunosorbent assay (ELISA) (58 patients). RESULTS PCM stiffness significantly decreased with the development from single to double strings (p = 0.030), from double strings to small clusters (p = 0.015), and from small clusters to big clusters (p < 0.001). At the same time, the initially compact collagen type VI and perlecan staining progressively weakened and was less focalised. The earliest point with a significant reduction in protein content as shown by ELISA was the transition from single strings to small clusters for collagen type VI (p = 0.016) and from double strings to small clusters for perlecan (p = 0.008), with the lowest amounts for both proteins seen in big clusters. CONCLUSIONS This study demonstrates the functional relevance of spatial chondrocyte organisation as an image-based biomarker. At the transition from single to double strings PCM stiffness decreases, followed by protein degradation from double strings to small clusters.
Collapse
Affiliation(s)
- M Danalache
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany.
| | - R Kleinert
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany.
| | - J Schneider
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany.
| | - A L Erler
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany; Medical Faculty of the University of Tübingen, D-72076 Tübingen, Germany.
| | - M Schwitalle
- Winghofer Medicum, Röntgenstraße 38, D-72108 Rottenburg am Neckar, Germany.
| | - R Riester
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany.
| | - F Traub
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany; Department of Orthopaedic Surgery, University Hospital of Tübingen, Hoppe-Seyler-Strasse 3, D-72076 Tübingen, Germany.
| | - U K Hofmann
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, Waldhörnlestraße 22, D-72072 Tübingen, Germany; Department of Orthopaedic Surgery, University Hospital of Tübingen, Hoppe-Seyler-Strasse 3, D-72076 Tübingen, Germany.
| |
Collapse
|
17
|
Andarawis-Puri N, Flatow EL. Promoting effective tendon healing and remodeling. J Orthop Res 2018; 36:3115-3124. [PMID: 30175859 PMCID: PMC6608714 DOI: 10.1002/jor.24133] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/06/2018] [Indexed: 02/04/2023]
Abstract
Daily activities subject our tendons to accumulation of sub-rupture fatigue injury which can lead to tendon rupture. Consequently, tendinopathies account for over 30% of musculoskeletal consultations. We adopted a multidisciplinary approach to determine the role of the extracellular matrix (ECM) in the pathogenesis of tendinopathy and impaired healing of ruptured tendons. We have been investigating three main areas: (i) the pathogenesis of tendon degeneration; (ii) approaches to promoting remodeling of sub-rupture fatigue injuries; and the (iii) role of the ECM in promoting scarless tendon healing. In this Kappa Delta Young Investigator award paper, we describe the key discoveries made in each of our three research areas of focus. Briefly, we discovered that sub-rupture fatigue damage can accumulate from just one bout of fatigue loading. Furthermore, any attempt to repair the fatigue damage diminishes as the severity of induced damage increases. We have utilized exercise to develop animal models of exercise-led degeneration and exercise-led repair of sub-rupture fatigue damage injuries, wherein underlying mechanisms can be uncovered, thereby overcoming a major hurdle to development of therapeutics. Since damage accumulation ultimately leads to rupture that is characterized by formation of a mechanically inferior scar, we have used the MRL/MpJ mouse to evaluate the role of the systemic environment and the local tendon environment in driving regeneration to identify new therapeutic pathways to promote scarless healing. Our data suggests that the therapeutic potential of the MRL/MpJ provisional ECM should be further explored as it may harness biological and structural mechanisms to promote scarless healing. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:3115-3124, 2018.
Collapse
Affiliation(s)
- Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
- Hospital for Special Surgery, New York, New York
| | - Evan L. Flatow
- Department of Orthopaedic Surgery, Mount Sinai West, New York, New York
| |
Collapse
|
18
|
Hofmann UK, Steidle J, Danalache M, Bonnaire F, Walter C, Rolauffs B. Chondrocyte death after mechanically overloading degenerated human intervertebral disk explants is associated with a structurally impaired pericellular matrix. J Tissue Eng Regen Med 2018; 12:2000-2010. [PMID: 30053767 DOI: 10.1002/term.2735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/19/2018] [Accepted: 07/11/2018] [Indexed: 12/15/2022]
Abstract
A type VI collagen-rich pericellular matrix (PCM) encloses both intervertebral disk (IVD) and articular cartilage chondrocytes. In the latter, the PCM protects the chondrocytes from mechanical overload, whereas tissue degeneration is associated with PCM destruction. As little is known about the IVD PCM, we investigated chondrocyte survival after mechanical overload as well as PCM structural integrity as a function of clinical tissue degeneration. The hypothesis was that IVD degeneration may affect PCM integrity and overload-related chondrocyte survival. Cylindrical human IVD explants from patients undergoing surgical procedures for lumbar disk degeneration, disk prolapse, or spinal trauma were generated and scored. Mechanical overload was applied by single uniaxial 50% compression followed by immediate release, and the explants were live-dead stained (n = 20 explants). Type VI collagen, the major PCM component, was fluorescent stained and the extent was determined, in which individual cells were enclosed by a recognizable PCM; this was termed PCM fraction. More than 50% of chondrocytes in all degenerative IVD explants displayed <25% PCM fraction and a lower PCM fraction correlated with higher cell numbers (p < 0.001), suggesting a PCM structural impairment in IVD degeneration that is associated with chondrocyte clustering. Mechanical overload-induced significantly increased cell death (p = 0.005), and the PCM fraction was significantly lower in overload-induced cell death than in live cells (p = 0.042), suggesting that a fully present PCM has a protective role in mechanical overload. Collectively, human IVD degeneration is associated with a structural impairment of the PCM, which may promote cell death under mechanical overload.
Collapse
Affiliation(s)
- Ulf Krister Hofmann
- Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany
| | - Jessica Steidle
- Medical Faculty of the University of Tübingen, Tübingen, Germany
| | - Marina Danalache
- Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany
| | - Florian Bonnaire
- Medical Faculty of the University of Tübingen, Tübingen, Germany
| | - Christian Walter
- Department of Orthopaedic Surgery, University Hospital of Tübingen, Tübingen, Germany
| | - Bernd Rolauffs
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Bell R, Robles-Harris M, Anderson M, Laudier D, Schaffler M, Flatow E, Andarawis-Puri N. Inhibition of apoptosis exacerbates fatigue-damage tendon injuries in an in vivo rat model. Eur Cell Mater 2018; 36:44-56. [PMID: 30058060 PMCID: PMC6350530 DOI: 10.22203/ecm.v036a04] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Tendinopathy is a common and progressive musculoskeletal disease. Increased apoptosis is an end-stage tendinopathy manifestation, but its contribution to the pathology of the disease is unknown. A previously established in vivo model of fatigue damage accumulation shows that increased apoptosis is correlated with the severity of induced tendon damage, even in early onset of the disease, supporting its implication in the pathogenesis of the disease. Consequently, this study aimed to determine: (1) whether apoptosis could be inhibited after fatigue damage and (2) whether its inhibition could lead to remodeling of the extracellular matrix (ECM) and pericellular matrix (PCM), to ultimately improve the mechanical properties of fatigue-damaged tendons. The working hypothesis was that, despite the low vascular nature of the tendon, apoptosis would be inhibited, prompting increased production of matrix proteins and restoring tendon mechanical properties. Rats received 2 or 5 d of systemic pan-caspase inhibitor (Q-VD-OPh) or dimethyl sulfoxide (DMSO) carrier control injections starting immediately prior to fatigue loading and were sacrificed at days 7 and 14 post-fatigue-loading. Systemic pan-caspase inhibition for 2 d led to a surprising increase in apoptosis, but inhibition for 5 d increased the population of live cells that could repair the fatigue damage. Further analysis of the 5 d group showed that effective inhibition led to an increased population of cells producing ECM and PCM proteins, although typically in conjunction with oxidative stress markers. Ultimately, inhibition of apoptosis led to further deterioration in mechanical properties of fatigue-damaged tendons.
Collapse
Affiliation(s)
- R. Bell
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - M.A. Robles-Harris
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - M. Anderson
- Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - D. Laudier
- Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M.B. Schaffler
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - E.L. Flatow
- Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - N. Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA,Hospital for Special Surgery, New York, NY, USA,Address for correspondence: Nelly Andarawis-Puri, PhD, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, 14850, NY, USA.
| |
Collapse
|
20
|
Xia H, Liang C, Luo P, Huang J, He J, Wang Z, Cao X, Peng C, Wu S. Pericellular collagen I coating for enhanced homing and chondrogenic differentiation of mesenchymal stem cells in direct intra-articular injection. Stem Cell Res Ther 2018; 9:174. [PMID: 29945671 PMCID: PMC6020325 DOI: 10.1186/s13287-018-0916-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/09/2018] [Accepted: 05/27/2018] [Indexed: 01/06/2023] Open
Abstract
Background Direct intra-articular injection (DIAI) of mesenchymal stem cells (MSCs) is a promising technique for cartilage repair. However, the repair process was hindered by the absence of scaffold and poor cell–matrix interactions. Methods In this study, we developed a pericellular collagen I coating (PCC) on MSCs. The overall performances of MSC-PCC homing, chondrogenic differentiation, and cartilage regeneration have been comprehensively evaluated in a New Zealand rabbit model. Firstly, we examined the morphology and physical characteristics of PCC. Secondly, MSC ex-vivo cartilage slice adhesion and in-vivo cartilage defect homing were observed using multiscale methods. Thirdly, the precartilage condensation of cell pellets formed by aggregation of MSCs was examined to evaluate the cartilage-inducing potential of PCC. Finally, the cartilage regeneration by DIAI of PCC-coated MSCs was observed and scored macroscopically and histologically. Results In general, the cell adhesion and homing assay revealed that PCC facilitated MSC adhesion on cartilage slices, enhancing MSC homing and retention to cartilage defect. This increased homing ratio was accompanied by an increasing cell–cell contact. Compared with naked MSCs, the cell pellets formed by PCC-coated MSCs exhibited more evident appearance of condensation. In pellets, cell–cell interaction has been significantly stimulated, inducing the expression of condensation marker N-cadherin, and subsequent chondrogenic marker collagen II and aggrecan. By 12 weeks after DIAI, cartilage defects have been repaired by MSCs to varying degrees. Overall, PCC significantly enhances the quality of cartilage regeneration judging from macroscopic observation, ICRS score, histological examination, and collagen type I, II, and X immunohistochemical staining. Conclusions The capacity and viability of MSCs can be enhanced by collagen I coating, which provides cues for enhancing cell homing and differentiation. Our method provides a novel strategy for stem cell therapy. Electronic supplementary material The online version of this article (10.1186/s13287-018-0916-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hansong Xia
- Department of Orthopaedics, 3rd Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Chi Liang
- Department of Orthopaedics, 3rd Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Pan Luo
- Department of Orthopaedics, 3rd Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Junjie Huang
- Department of Orthopaedics, 3rd Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jinshen He
- Department of Orthopaedics, 3rd Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zili Wang
- Department of Orthopaedics, 3rd Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xu Cao
- Department of Orthopaedics, 3rd Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Cheng Peng
- Department of Burns and Plastic Surgery, 3rd Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Song Wu
- Department of Orthopaedics, 3rd Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
21
|
Bell R, Gendron NR, Anderson M, Flatow EL, Andarawis-Puri N. A potential new role for myofibroblasts in remodeling of sub-rupture fatigue tendon injuries by exercise. Sci Rep 2018; 8:8933. [PMID: 29895865 PMCID: PMC5997675 DOI: 10.1038/s41598-018-27196-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/30/2018] [Indexed: 12/14/2022] Open
Abstract
Tendons are ineffective at repairing sub-rupture fatigue injuries. Accordingly, we evaluated whether an exercise protocol that we have previously found to decrease structural damage kinks in fatigue damaged tendons, leads to improvement in mechanical properties. We hypothesized that exercise that promotes repair of fatigue damage will decrease apoptosis and increase the population of myofibroblasts. Rat patellar tendons underwent in vivo fatigue loading for 500 or 7200 cycles. Animals resumed cage activity for 2-weeks, then either remained cage active or began treadmill running until sacrifice at 4- or 10-weeks post-fatigue loading. Exercise following fatigue damage increased the stiffness back towards naïve levels, decreased apoptosis and increased the population of myofibroblasts. Next, proteins associated with inhibition of apoptosis (Collagen VI) or activation of myofibroblast (pSmad 2/3, fibrillin, integrin subunits αV and α5) were evaluated. Data suggests that collagen VI may not be integral to inhibition of apoptosis in this context. Exercise increased pSmad 2/3 and fibrillin in the insertion region for the 7200-cycles group. In addition, exercise decreased integrin αV and increased integrin α5 in fatigue damaged tendons. Data suggests that a decrease in apoptosis and an increase in population of myofibroblasts may be integral to remodeling of fatigue damaged tendons.
Collapse
Affiliation(s)
- Rebecca Bell
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - N Remi Gendron
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew Anderson
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evan L Flatow
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nelly Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA. .,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA. .,Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
22
|
Guilak F, Nims RJ, Dicks A, Wu CL, Meulenbelt I. Osteoarthritis as a disease of the cartilage pericellular matrix. Matrix Biol 2018; 71-72:40-50. [PMID: 29800616 DOI: 10.1016/j.matbio.2018.05.008] [Citation(s) in RCA: 301] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 01/16/2023]
Abstract
Osteoarthritis is a painful joint disease characterized by progressive degeneration of the articular cartilage as well as associated changes to the subchondral bone, synovium, and surrounding joint tissues. While the effects of osteoarthritis on the cartilage extracellular matrix (ECM) have been well recognized, it is now becoming apparent that in many cases, the onset of the disease may be initially reflected in the matrix region immediately surrounding the chondrocytes, termed the pericellular matrix (PCM). Growing evidence suggests that the PCM - which along with the enclosed chondrocytes are termed the "chondron" - acts as a critical transducer or "filter" of biochemical and biomechanical signals for the chondrocyte, serving to help regulate the homeostatic balance of chondrocyte metabolic activity in response to environmental signals. Indeed, it appears that alterations in PCM properties and cell-matrix interactions, secondary to genetic, epigenetic, metabolic, or biomechanical stimuli, could in fact serve as initiating or progressive factors for osteoarthritis. Here, we discuss recent advances in the understanding of the role of the PCM, with an emphasis on the reciprocity of changes that occur in this matrix region with disease, as well as how alterations in PCM properties could serve as a driver of ECM-based diseases such as osteoarthritis. Further study of the structure, function, and composition of the PCM in normal and diseased conditions may provide new insights into the understanding of the pathogenesis of osteoarthritis, and presumably new therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110, United States; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, United States; Department of Biomedical Engineering, Washington University, Saint Louis, MO 63110, United States.
| | - Robert J Nims
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110, United States; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, United States
| | - Amanda Dicks
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110, United States; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, United States; Department of Biomedical Engineering, Washington University, Saint Louis, MO 63110, United States
| | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, Saint Louis, MO 63110, United States; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, United States
| | - Ingrid Meulenbelt
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
23
|
Qiao YQ, Jiang PF, Gao YZ. Lutein prevents osteoarthritis through Nrf2 activation and downregulation of inflammation. Arch Med Sci 2018; 14:617-624. [PMID: 29765450 PMCID: PMC5949909 DOI: 10.5114/aoms.2016.59871] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/11/2016] [Indexed: 01/30/2023] Open
Abstract
INTRODUCTION Osteoarthritis is an inflammatory disorder associated with oxidative stress and apoptosis leading to cartilage destruction and impairment of cartilage formation. In the present study, we studied the protective effect of lutein against monosodium iodoacetate (MIA)-induced osteoarthritis in primary chondrocyte cells. MATERIAL AND METHODS Oxidative stress was determined through testing antioxidant status, reactive oxygen species levels and lipid peroxide content. Also, Nrf2 expression and its downstream target genes HO-1 and NQO-1 were determined. Inflammation was analyzed through NF-κB, COX-2 and pro-inflammatory cytokines (IL-6, TNF-α, IL-1β). In addition, the effects of MIA and lutein on mitochondrial membrane potential and caspase-3 levels were analyzed. RESULTS The results showed that lutein treatment significantly increased the cell viability of chondrocytes and offered significant cytoprotection by enhancing the antioxidant defense mechanisms and reducing oxidative stress (reactive oxygen species and lipid peroxidation). Lutein treatment showed anti-inflammatory effects by downregulating inflammatory proteins (NF-κB, COX-2) and pro-inflammatory cytokines (IL-6, TNF-α, IL-1β). Lutein reduced MIA-induced apoptosis through maintaining mitochondrial membrane potential and downregulating caspase-3 activity. CONCLUSIONS The present study shows significant cytoprotection offered by lutein against MIA-induced oxidative stress, inflammation and apoptosis by the modulatory effect of NF-κB and Nrf2 activation.
Collapse
Affiliation(s)
- Yan-Qin Qiao
- First Department of Orthopedics, Xinxiang Central Hospital, Xinxiang, Henan, China
| | - Pan-Feng Jiang
- First Department of Orthopedics, Xinxiang Central Hospital, Xinxiang, Henan, China
| | - Yan-Zheng Gao
- Department of Orthopedics, Henan Provincial People's Hospital, Henan, China
| |
Collapse
|
24
|
Rothdiener M, Uynuk-Ool T, Südkamp N, Aurich M, Grodzinsky AJ, Kurz B, Rolauffs B. Human osteoarthritic chondrons outnumber patient- and joint-matched chondrocytes in hydrogel culture-Future application in autologous cell-based OA cartilage repair? J Tissue Eng Regen Med 2017; 12:e1206-e1220. [PMID: 28714570 DOI: 10.1002/term.2516] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 06/09/2017] [Accepted: 07/11/2017] [Indexed: 12/22/2022]
Abstract
Autologous chondrocyte implantation (ACI) is used in 34-60% for osteoarthritic (OA) cartilage defects, although ACI is neither recommended nor designed for OA. Envisioning a hydrogel-based ACI for OA that uses chondrons instead of classically used chondrocytes, we hypothesized that human OA chondrons may outperform OA chondrocytes. We compared patient- and joint surface-matched human OA chondrons with OA chondrocytes cultured for the first time in a hydrogel, using a self-assembling peptide system. We determined yield, viability, cell numbers, mRNA expression, GAPDH mRNA enzyme activity, Collagen II synthesis (CPII) and degradation (C2C), and sulfated glycosaminoglycan. Ex vivo, mRNA expression was comparable. Over time, significant differences in survival led to 3.4-fold higher OA chondron numbers in hydrogels after 2 weeks (p = .002). Significantly, more enzymatically active GAPDH protein indicated higher metabolic activity. The number of cultures that expressed mRNA for Collagen Types I and VI, COMP, aggrecan, VEGF, TGF-β1, and FGF-2 (but not Collagen Types II and X) was different, resulting in a 3.5-fold higher number of expression-positive OA chondron cultures (p < .05). Measuring CPII and C2C per hydrogel, OA chondron hydrogels synthesized more than they degraded Collagen Type II, the opposite was true for OA chondrocytes. Per cell, OA chondrons but not OA chondrocytes displayed more synthesis than degradation. Thus, OA chondrons displayed superior biosynthesis and mRNA expression of tissue engineering and phenotype-relevant genes. Moreover, human OA chondrons displayed a significant survival advantage in hydrogel culture, whose presence, drastic extent, and timescale was novel and is clinically significant. Collectively, these data highlight the high potential of human OA chondrons for OA ACI, as they would outnumber and, thus, surpass OA chondrocytes.
Collapse
Affiliation(s)
- Miriam Rothdiener
- Siegfried Weller Institute for Trauma Research, BG Trauma Clinic, Eberhard Karls University, Tuebingen, Germany
| | - Tatiana Uynuk-Ool
- Siegfried Weller Institute for Trauma Research, BG Trauma Clinic, Eberhard Karls University, Tuebingen, Germany
| | - Norbert Südkamp
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, University Medical Center Freiburg, Faculty of Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Matthias Aurich
- Department of Orthopaedic and Trauma Surgery, Sana Kliniken Leipziger Land, Borna, Germany.,Department of Trauma, Hand and Reconstructive Surgery, Universitätsklinikum Jena, Jena, Germany.,Department of Biochemistry, Rush Medical College, Chicago, IL, USA
| | - Alan J Grodzinsky
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bodo Kurz
- Department of Anatomy, Christian Albrechts University, Kiel, Germany
| | - Bernd Rolauffs
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, University Medical Center Freiburg, Faculty of Medicine, Albert Ludwigs University of Freiburg, Freiburg, Germany.,Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
25
|
Distribution of pericellular matrix molecules in the temporomandibular joint and their chondroprotective effects against inflammation. Int J Oral Sci 2017; 9:43-52. [PMID: 28282029 PMCID: PMC5379161 DOI: 10.1038/ijos.2016.57] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2016] [Indexed: 01/02/2023] Open
Abstract
The objectives of this study were to (1) determine the distribution and synthesis of pericellular matrix (PCM) molecules (collagen VI, collagen IV and laminin) in rat temporomandibular joint (TMJ) and (2) investigate the effects of PCM molecules on chondrocytes against inflammation in osteoarthritis. Four zones (fibrous, proliferating, mature and hypertrophic) of condylar cartilage and three bands (anterior, intermediate and posterior) of disc were analysed by immunohistochemistry for the presence of PCM molecules in rat TMJs. Isolated chondrocytes were pre-treated with PCM molecules before being subjected to interleukin (IL)-1β treatment to stimulate inflammation. The responses of the chondrocytes were analysed using gene expression, nitric oxide release and matrix metalloproteinase (MMP)-13 production measures. Histomorphometric analyses revealed that the highest areal deposition of collagen VI (67.4%), collagen IV (45.7%) and laminin (52.4%) was in the proliferating zone of TMJ condylar cartilage. No significant difference in the distribution of PCM molecules was noted among the three bands of the TMJ disc. All three PCM molecules were expressed intracellularly by chondrocytes cultured in the monolayer. Among the PCM molecules, pre-treatment with collagen VI enhanced cellular proliferation, ameliorated IL-1β-induced MMP-3, MMP-9, MMP-13 and inducible nitric oxide synthase gene expression, and attenuated the downregulation of cartilage matrix genes, including collagen I, aggrecan and cartilage oligomeric matrix protein (COMP). Concurrently, collagen VI pretreatment inhibited nitric oxide and MMP-13 production. Our study demonstrates for the first time the distribution and role of PCM molecules, particularly collagen VI, in the protection of chondrocytes against inflammation.
Collapse
|
26
|
Toh WS, Brittberg M, Farr J, Foldager CB, Gomoll AH, Hui JHP, Richardson JB, Roberts S, Spector M. Cellular senescence in aging and osteoarthritis. Acta Orthop 2016; 87:6-14. [PMID: 27658487 PMCID: PMC5389431 DOI: 10.1080/17453674.2016.1235087] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
- It is well accepted that age is an important contributing factor to poor cartilage repair following injury, and to the development of osteoarthritis. Cellular senescence, the loss of the ability of cells to divide, has been noted as the major factor contributing to age-related changes in cartilage homeostasis, function, and response to injury. The underlying mechanisms of cellular senescence, while not fully understood, have been associated with telomere erosion, DNA damage, oxidative stress, and inflammation. In this review, we discuss the causes and consequences of cellular senescence, and the associated biological challenges in cartilage repair. In addition, we present novel strategies for modulation of cellular senescence that may help to improve cartilage regeneration in an aging population.
Collapse
Affiliation(s)
- Wei Seong Toh
- Faculty of Dentistry, National University of Singapore,Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore,Correspondence:
| | - Mats Brittberg
- Cartilage Research Unit, University of Gothenburg, Gothenburg,Department of Orthopaedics, Kungsbacka Hospital, Kungsbacka, Sweden
| | - Jack Farr
- Indiana University School of Medicine, OrthoIndy Cartilage Restoration Center, Indianapolis, IN, USA
| | | | - Andreas H Gomoll
- Cartilage Repair Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - James Hoi Po Hui
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore,Cartilage Repair Program, Therapeutic Tissue Engineering Laboratory, Department of Orthopaedic Surgery, National University Health System, National University of Singapore, Singapore
| | - James B Richardson
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire,Institute for Science andTechnology in Medicine, Keele University, Keele, Staffordshire, UK
| | - Sally Roberts
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire,Institute for Science andTechnology in Medicine, Keele University, Keele, Staffordshire, UK
| | - Myron Spector
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA,Tissue Engineering Laboratories, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
27
|
Felka T, Rothdiener M, Bast S, Uynuk-Ool T, Zouhair S, Ochs BG, De Zwart P, Stoeckle U, Aicher WK, Hart ML, Shiozawa T, Grodzinsky AJ, Schenke-Layland K, Venkatesan JK, Cucchiarini M, Madry H, Kurz B, Rolauffs B. Loss of spatial organization and destruction of the pericellular matrix in early osteoarthritis in vivo and in a novel in vitro methodology. Osteoarthritis Cartilage 2016; 24:1200-9. [PMID: 26879798 PMCID: PMC4907798 DOI: 10.1016/j.joca.2016.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 01/26/2016] [Accepted: 02/07/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Current repair procedures for articular cartilage (AC) cannot restore the tissue's original form and function because neither changes in its architectural blueprint throughout life nor the respective biological understanding is fully available. We asked whether two unique elements of human cartilage architecture, the chondrocyte-surrounding pericellular matrix (PCM) and the superficial chondrocyte spatial organization (SCSO) beneath the articular surface (AS) are congenital, stable or dynamic throughout life. We hypothesized that inducing chondrocyte proliferation in vitro impairs organization and PCM and induces an advanced osteoarthritis (OA)-like structural phenotype of human cartilage. METHODS We recorded propidium-iodine-stained fetal and adult cartilage explants, arranged stages of organization into a sequence, and created a lifetime-summarizing SCSO model. To replicate the OA-associated dynamics revealed by our model, and to test our hypothesis, we transduced specifically early OA-explants with hFGF-2 for inducing proliferation. The PCM was examined using immuno- and auto-fluorescence, multiphoton second-harmonic-generation (SHG), and scanning electron microscopy (SEM). RESULTS Spatial organization evolved from fetal homogeneity, peaked with adult string-like arrangements, but was completely lost in OA. Loss of organization included PCM perforation (local micro-fibrillar collagen intensity decrease) and destruction [regional collagen type VI (CollVI) signal weakness or absence]. Importantly, both loss of organization and PCM destruction were successfully recapitulated in FGF-2-transduced explants. CONCLUSION Induced proliferation of spatially characterized early OA-chondrocytes within standardized explants recapitulated the full range of loss of SCSO and PCM destruction, introducing a novel in vitro methodology. This methodology induces a structural phenotype of human cartilage that is similar to advanced OA and potentially of significance and utility.
Collapse
Affiliation(s)
- Tino Felka
- Siegfried Weller Institute for Trauma Research, BG Trauma Clinic Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Miriam Rothdiener
- Siegfried Weller Institute for Trauma Research, BG Trauma Clinic Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Sina Bast
- Siegfried Weller Institute for Trauma Research, BG Trauma Clinic Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Tatiana Uynuk-Ool
- Siegfried Weller Institute for Trauma Research, BG Trauma Clinic Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Sabra Zouhair
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | - Björn Gunnar Ochs
- Clinic for Trauma and Restorative Surgery, BG Trauma Clinic Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Peter De Zwart
- Clinic for Trauma and Restorative Surgery, BG Trauma Clinic Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Ulrich Stoeckle
- Clinic for Trauma and Restorative Surgery, BG Trauma Clinic Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Wilhelm K Aicher
- Department of Urology, University of Tuebingen, Tuebingen, Germany
| | - Melanie L Hart
- Department of Urology, University of Tuebingen, Tuebingen, Germany
| | - Thomas Shiozawa
- Institute of Clinical Anatomy and Cell Analysis, University of Tuebingen, Tuebingen, Germany
| | - Alan J Grodzinsky
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | - Katja Schenke-Layland
- Department of Women’s Health, Research Institute for Women’s Health, University of Tuebingen, Tuebingen, Germany,Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Stuttgart, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Bodo Kurz
- Anatomical Institute, Christian-Albrecht-University Kiel, Kiel, Germany
| | - Bernd Rolauffs
- Siegfried Weller Institute for Trauma Research, BG Trauma Clinic Tuebingen, University of Tuebingen, Tuebingen, Germany,Clinic for Trauma and Restorative Surgery, BG Trauma Clinic Tuebingen, University of Tuebingen, Tuebingen, Germany,Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, USA,Corresponding Author: Bernd Rolauffs, Siegfried Weller Institute for Trauma Research, BG Trauma Clinic Tuebingen, University of Tuebingen, ZMF, Waldhoernlestr. 22, 72074 Tuebingen, Germany,
| |
Collapse
|
28
|
Zhang Z. Chondrons and the pericellular matrix of chondrocytes. TISSUE ENGINEERING PART B-REVIEWS 2014; 21:267-77. [PMID: 25366980 DOI: 10.1089/ten.teb.2014.0286] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In cartilage, chondrocytes are embedded within an abundant extracellular matrix (ECM). A typical chondron consists of a chondrocyte and the immediate surrounding pericellular matrix (PCM). The PCM has a patent structure, defined molecular composition, and unique physical properties that support the chondrocyte. Given this spatial position, the PCM is pivotal in mediating communication between chondrocytes and the ECM and, thus, plays a critical role in cartilage homeostasis. The biological function and mechanical properties of the PCM have been extensively studied, mostly in the form of chondrons. This review intends to summarize recent progress in chondron and chondrocyte PCM research, with emphasis on the re-establishment of the PCM by isolated chondrocytes or mesenchymal stem cells during chondrogenic differentiation, and the effects of the PCM on cartilage tissue formation.
Collapse
Affiliation(s)
- Zijun Zhang
- Orthobiologic Laboratory, MedStar Union Memorial Hospital, Baltimore, Maryland
| |
Collapse
|
29
|
Wilusz RE, Sanchez-Adams J, Guilak F. The structure and function of the pericellular matrix of articular cartilage. Matrix Biol 2014; 39:25-32. [PMID: 25172825 DOI: 10.1016/j.matbio.2014.08.009] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chondrocytes in articular cartilage are surrounded by a narrow pericellular matrix (PCM) that is both biochemically and biomechanically distinct from the extracellular matrix (ECM) of the tissue. While the PCM was first observed nearly a century ago, its role is still under investigation. In support of early hypotheses regarding its function, increasing evidence indicates that the PCM serves as a transducer of biochemical and biomechanical signals to the chondrocyte. Work over the past two decades has established that the PCM in adult tissue is defined biochemically by several molecular components, including type VI collagen and perlecan. On the other hand, the biomechanical properties of this structure have only recently been measured. Techniques such as micropipette aspiration, in situ imaging, computational modeling, and atomic force microscopy have determined that the PCM exhibits distinct mechanical properties as compared to the ECM, and that these properties are influenced by specific PCM components as well as disease state. Importantly, the unique relationships among the mechanical properties of the chondrocyte, PCM, and ECM in different zones of cartilage suggest that this region significantly influences the stress-strain environment of the chondrocyte. In this review, we discuss recent advances in the measurement of PCM mechanical properties and structure that further increase our understanding of PCM function. Taken together, these studies suggest that the PCM plays a critical role in controlling the mechanical environment and mechanobiology of cells in cartilage and other cartilaginous tissues, such as the meniscus or intervertebral disc.
Collapse
Affiliation(s)
- Rebecca E Wilusz
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA; Department of Biomedical Engineering, Duke University Medical Center, Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Johannah Sanchez-Adams
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA; Department of Biomedical Engineering, Duke University Medical Center, Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA; Department of Biomedical Engineering, Duke University Medical Center, Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
30
|
Lavrijsen ICM, Leegwater PAJ, Martin AJ, Harris SJ, Tryfonidou MA, Heuven HCM, Hazewinkel HAW. Genome wide analysis indicates genes for basement membrane and cartilage matrix proteins as candidates for hip dysplasia in Labrador Retrievers. PLoS One 2014; 9:e87735. [PMID: 24498183 PMCID: PMC3907504 DOI: 10.1371/journal.pone.0087735] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/29/2013] [Indexed: 12/22/2022] Open
Abstract
Hip dysplasia, an abnormal laxity of the hip joint, is seen in humans as well as dogs and is one of the most common skeletal disorders in dogs. Canine hip dysplasia is considered multifactorial and polygenic, and a variety of chromosomal regions have been associated with the disorder. We performed a genome-wide association study in Dutch Labrador Retrievers, comparing data of nearly 18,000 single nucleotide polymorphisms (SNPs) in 48 cases and 30 controls using two different statistical methods. An individual SNP analysis based on comparison of allele frequencies with a χ(2) statistic was used, as well as a simultaneous SNP analysis based on Bayesian variable selection. Significant association with canine hip dysplasia was observed on chromosome 8, as well as suggestive association on chromosomes 1, 5, 15, 20, 25 and 32. Next-generation DNA sequencing of the exons of genes of seven regions identified multiple associated alleles on chromosome 1, 5, 8, 20, 25 and 32 (p<0.001). Candidate genes located in the associated regions on chromosomes 1, 8 and 25 included LAMA2, LRR1 and COL6A3, respectively. The associated region on CFA20 contained candidate genes GDF15, COMP and CILP2. In conclusion, our study identified candidate genes that might affect susceptibility to canine hip dysplasia. These genes are involved in hypertrophic differentiation of chondrocytes and extracellular matrix integrity of basement membrane and cartilage. The functions of the genes are in agreement with the notion that disruptions in endochondral bone formation in combination with soft tissue defects are involved in the etiology of hip dysplasia.
Collapse
Affiliation(s)
- Ineke C. M. Lavrijsen
- Department of Clinical Sciences of Companion Animal, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Peter A. J. Leegwater
- Department of Clinical Sciences of Companion Animal, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alan J. Martin
- Waltham Centre for Pet Nutrition, Leicestershire, United Kingdom
| | | | - Marianna A. Tryfonidou
- Department of Clinical Sciences of Companion Animal, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Henri C. M. Heuven
- Department of Clinical Sciences of Companion Animal, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Herman A. W. Hazewinkel
- Department of Clinical Sciences of Companion Animal, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
31
|
Dassah M, Almeida D, Hahn R, Bonaldo P, Worgall S, Hajjar KA. Annexin A2 mediates secretion of collagen VI, pulmonary elasticity and apoptosis of bronchial epithelial cells. J Cell Sci 2013; 127:828-44. [PMID: 24357721 DOI: 10.1242/jcs.137802] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The annexins are an evolutionarily conserved family of phospholipid-binding proteins of largely unknown function. We observed that the AnxA2(-/-) lung basement membrane specifically lacks collagen VI (COL6), and postulated that ANXA2 directs bronchial epithelial cell secretion of COL6, an unusually large multimeric protein. COL6 serves to anchor cells to basement membranes and, unlike other collagens, undergoes multimerization prior to secretion. Here, we show that AnxA2(-/-) mice have reduced exercise tolerance with impaired lung tissue elasticity, which was phenocopied in Col6a1(-/-) mice. In vitro, AnxA2(-/-) fibroblasts retained COL6 within intracellular vesicles and adhered poorly to their matrix unless ANXA2 expression was restored. In vivo, AnxA2(-/-) bronchial epithelial cells underwent apoptosis and disadhesion. Immunoprecipitation and immunoelectron microscopy revealed that ANXA2 associates with COL6 and the SNARE proteins SNAP-23 and VAMP2 at secretory vesicle membranes of bronchial epithelial cells, and that absence of ANXA2 leads to retention of COL6 in a late-Golgi, VAMP2-positive compartment. These results define a new role for ANXA2 in the COL6 secretion pathway, and further show that this pathway establishes cell-matrix interactions that underlie normal pulmonary function and epithelial cell survival.
Collapse
Affiliation(s)
- Maryann Dassah
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
32
|
Meng H, Zhang T, Liu W, Wang H, Wang C, Zhao Z, Liu N, Wang W. Sodium fluoride induces apoptosis through the downregulation of hypoxia-inducible factor-1α in primary cultured rat chondrocytes. Int J Mol Med 2013; 33:351-8. [PMID: 24317498 PMCID: PMC3896455 DOI: 10.3892/ijmm.2013.1576] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/29/2013] [Indexed: 12/21/2022] Open
Abstract
It has been reported that sodium fluoride (NaF) suppresses the proliferation and induces apoptosis of chondrocytes. However, the cellular and molecular mechanisms of the effect have not been elucidated. Therefore, the aim of this study was to evaluate the mechanisms of the effects of NaF on primary cultured rat chondrocytes in vitro. Chondrocytes were treated with NaF at concentrations of 0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0 mM. Cell viability decreased and the rate of apoptotic cells increased significantly with the gradient concentration of NaF in a time- and dose-dependent manner. Electron microscopy revealed cytoplasmic, organelle and nuclear alterations in the ultrastructure of chondrocytes exposed to various NaF concentrations. The cell cycle distribution was analyzed by flow cytometry, and the results indicated that NaF induced G2 cell cycle arrest. Western blotting was used to detect the apoptotic pathways. Downregulation of the Bcl-2 protein and upregulation of Bax, cleaved caspase-9, -12 and -3 proteins suggested that NaF was capable of inducing apoptosis through the mitochondrial and endoplasmic reticulum pathways. The results also showed that the levels of hypoxia-inducible factor 1α (HIF-1α), sex determining region Y box gene 9 (Sox9) and the collagen II (Col II) protein of the NaF groups were lower compared to those of the control groups. Thus, NaF may induce apoptosis through the downregulation of HIF-1α and disrupt the synthesis of extracellular matrix (ECM) through the downregulation of HIF-1α via the Sox9 pathway in primary cultured rat chondrocytes.
Collapse
Affiliation(s)
- Hongmei Meng
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Tao Zhang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Weidong Liu
- Department of Orthopedics, The First Hospital of Qiqihar, Qiqihar, Heilongjiang 161000, P.R. China
| | - Huan Wang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Chunlei Wang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Zhe Zhao
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Ning Liu
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Wenbo Wang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
33
|
Murab S, Chameettachal S, Bhattacharjee M, Das S, Kaplan DL, Ghosh S. Matrix-embedded cytokines to simulate osteoarthritis-like cartilage microenvironments. Tissue Eng Part A 2013; 19:1733-53. [PMID: 23470228 DOI: 10.1089/ten.tea.2012.0385] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In vivo, cytokines noncovalently bind to the extracellular matrix (ECM), to facilitate intimate interactions with cellular receptors and potentiate biological activity. Development of a biomaterial that simulates this type of physiological binding and function is an exciting proposition for designing controlled advanced delivery systems for simulating in vivo conditions in vitro. We have decorated silk protein with sulfonated moieties through diazonium coupling reactions to noncovalently immobilize pro-inflammatory cytokines interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) in such a biomimetic manner. After adsorption of the cytokines to the diazonium-modified silk matrix, constant release of cytokines up to at least 3 days was demonstrated, as an initial step to simulate an osteoarthritic (OA) microenvironment in vitro. Matrix-embedded cytokines induced the formation of multiple elongated processes in chondrocytes in vitro, akin to what is seen in OA cartilage in vivo. Gene expression profiles with this in vitro tissue model of OA showed significant similarities to profiles from explanted OA cartilage tissues collected from patients who underwent total knee replacement surgery. The common markers of OA, including COL, MMP, TIMP, ADAMTS, and metallothioneins, were upregulated at least 35-fold in the in vitro model when compared to the control-non-OA in vitro generated tissue-engineered cartilage. The microarray data were validated by reverse transcriptase-polymerase chain reaction. Mechanistically, protein interaction studies indicated that TNF-α and IL-1β synergistically controlled the equilibrium between MMPs and their inhibitors, TIMPs, resulting in ECM degradation through the MAPK pathway. This study offers a promising initial step toward establishing a relevant in vitro OA disease model, which can be further modified to assess signaling mechanisms, responses to cell or drug treatments and patient-specific features.
Collapse
Affiliation(s)
- Sumit Murab
- Department of Textile Technology, Indian Institute of Technology Delhi, New Delhi, India
| | | | | | | | | | | |
Collapse
|
34
|
Dowling EP, Ronan W, McGarry JP. Computational investigation of in situ chondrocyte deformation and actin cytoskeleton remodelling under physiological loading. Acta Biomater 2013; 9:5943-55. [PMID: 23271042 DOI: 10.1016/j.actbio.2012.12.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 12/22/2022]
Abstract
Previous experimental studies have determined local strain fields for both healthy and degenerate cartilage tissue during mechanical loading. However, the biomechanical response of chondrocytes in situ, in particular the response of the actin cytoskeleton to physiological loading conditions, is poorly understood. In the current study a three-dimensional (3-D) representative volume element (RVE) for cartilage tissue is created, comprising a chondrocyte surrounded by a pericellular matrix and embedded in an extracellular matrix. A 3-D active modelling framework incorporating actin cytoskeleton remodelling and contractility is implemented to predict the biomechanical behaviour of chondrocytes. Physiological and abnormal strain fields, based on the experimental study of Wong and Sah (J. Orthop. Res. 2010; 28: 1554-1561), are applied to the RVE. Simulations demonstrate that the presence of a focal defect significantly affects cellular deformation, increases the stress experienced by the nucleus, and alters the distribution of the actin cytoskeleton. It is demonstrated that during dynamic loading cyclic tension reduction in the cytoplasm causes continuous dissociation of the actin cytoskeleton. In contrast, during static loading significant changes in cytoplasm tension are not predicted and hence the rate of dissociation of the actin cytoskeleton is reduced. It is demonstrated that chondrocyte behaviour is affected by the stiffness of the pericellular matrix, and also by the anisotropy of the extracellular matrix. The findings of the current study are of particular importance in understanding the biomechanics underlying experimental observations such as actin cytoskeleton dissociation during the dynamic loading of chondrocytes.
Collapse
Affiliation(s)
- Enda P Dowling
- Mechanical and Biomedical Engineering, National University of Ireland-Galway, Galway, Ireland
| | | | | |
Collapse
|
35
|
Jiang L, Li L, Geng C, Gong D, Jiang L, Ishikawa N, Kajima K, Zhong L. Monosodium iodoacetate induces apoptosis via the mitochondrial pathway involving ROS production and caspase activation in rat chondrocytes in vitro. J Orthop Res 2013; 31:364-9. [PMID: 23124986 DOI: 10.1002/jor.22250] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/21/2012] [Indexed: 02/04/2023]
Abstract
Monosodium iodoacetate (MIA) is an inhibitor of glyceraldehyde-3-phosphate dehydrogenase activity, and causes dose-dependent cartilage degradation resembling the pathological changes of human osteoarthritis (OA). In this study, we assessed the apoptosis induced by MIA and clarified the underlying mechanisms using the primary rat chondrocytes. The apoptosis of primary rat chondrocytes was analyzed by flow cytometry. The levels of mitochondrial membrane potential (ΔΨm) were evaluated using fluorescence spectrophotometer. The production of reactive oxygen species (ROS) was determined by fluorescence spectrophotometer. Apoptosis-related protein cytochrome c and procaspase-3 expressions were examined by Western blotting. We found that MIA treatment induces apoptosis in chondrocytes, as confirmed by increases in the percent of apoptotic cells, up-regulation of cytochrome c and caspase-3 protein levels. Treatment with MIA increases ROS production and decreases the levels of ΔΨm. The antioxidant, N-acetylcysteine (NAC), significantly prevented the production of ROS, the reduction of ΔΨm, the release of cytochrome c and the activation of caspase-3. Further, NAC completely protected the cells from MIA-induced apoptosis. Together these observations suggest that the mechanisms of MIA-induced apoptosis are primarily via ROS production and mitochondria-mediated caspase-3 activation in primary rat chondrocytes.
Collapse
Affiliation(s)
- Liping Jiang
- China-Japanese Joint Institute for Medical and Pharmaceutical Science, Dalian Medical University, Dalian, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang Z, Jin W, Beckett J, Otto T, Moed B. A proteomic approach for identification and localization of the pericellular components of chondrocytes. Histochem Cell Biol 2011; 136:153-62. [PMID: 21698479 DOI: 10.1007/s00418-011-0834-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2011] [Indexed: 11/26/2022]
Abstract
Although the pericellular matrix (PCM) plays a central role in the communication between chondrocytes and extracellular matrix, its composition is largely unknown. In this study, the PCM was investigated with a proteomic approach using chondrons, which are enzymatically isolated constructs including the chondrocyte and its surrounding PCM. Chondrons and chondrocytes alone were isolated from human articular cartilage. Proteins extracted from chondrons and chondrocytes were used for two-dimensional electrophoresis. Protein spots were quantitatively compared between chondron and chondrocyte gels. Cellular proteins, which had similar density between chondron and chondrocyte gels, did not proceed for analysis. Since chondrons only differ from chondrocytes in association of the PCM, protein spots in the chondron gels that had higher quantity than that in the chondrocyte gels were selected as candidates of the PCM components and processed for mass spectrometry. Among 15 identified peptides, several were fragments of the three type VI collagen chains (α-1, α-2, and α-3). Other identified PCM proteins included triosephosphate isomerase, transforming growth factor-β induced protein, peroxiredoxin-4, ADAM (A disintegrin and metalloproteinases) 28, and latent-transforming growth factor beta-binding protein-2. These PCM components were verified with immunohisto(cyto)chemistry for localization in the PCM region of articular cartilage. The abundance of type VI collagen in the PCM emphasizes its importance to the microenvironment of chondrocytes. Several proteins were localized in the PCM of chondrocytes for the first time and that warrants further investigation for their functions in cartilage biology.
Collapse
Affiliation(s)
- Zijun Zhang
- Department of Orthopaedic Surgery, Saint Louis University, School of Medicine, 3635 Vista Avenue, Desloge Towers, DT-7, St. Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|