1
|
Avery JT, Qiao J, Medeiros E, Bollenbach TJ, Kimmerling KA, Mowry KC. Bi-layered living cellular construct resulted in greater healing in an alloxan-induced diabetic porcine model. Int Wound J 2023; 20:403-412. [PMID: 35918057 PMCID: PMC9885468 DOI: 10.1111/iwj.13889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 02/03/2023] Open
Abstract
Tissue-engineered skin constructs, including bi-layered living cellular constructs (BLCC) used in the treatment of chronic wounds, are structurally/functionally complex. While some work has been performed to understand their mechanisms, the totality of how BLCC may function in wound healing remains unknown. To this end, we have developed a delayed wound healing model to test BLCC cellular and molecular mechanisms of action. Diabetes was chemically-induced using alloxan in Yucatan miniature pigs, and full-thickness wounds were generated on their dorsum. These wounds were either allowed to heal by secondary intention alone (control) or treated with a single or multiple treatments of a porcine autologous BLCC. Results indicated a single treatment with porcine BLCC resulted in statistically significant wound healing at day 17, while four treatments resulted in statistically significant healing on days 10, 13, and 17 compared to control. Statistically accelerated wound closure was driven by re-epithelialisation rather than contraction or granulation. This porcine diabetic model and the use of a porcine BLCC allowed evaluation of healing responses in vivo without the complications typically seen with either xenogenic responses of human/animal systems or the use of immune compromised animals, expanding the knowledge base around how BLCC may impact chronic wounds.
Collapse
Affiliation(s)
- Justin T. Avery
- Department of Research & DevelopmentOrganogenesis Inc.CantonMassachusettsUSA
| | | | - Erika Medeiros
- Department of Quality Control, Organogenesis Inc.CantonMassachusettsUSA
| | | | - Kelly A. Kimmerling
- Department of Research & DevelopmentOrganogenesis Inc.CantonMassachusettsUSA
| | - Katie C. Mowry
- Department of Research & DevelopmentOrganogenesis Inc.CantonMassachusettsUSA
| |
Collapse
|
2
|
Vaez M, Asgari M, Hirvonen L, Bakir G, Khattignavong E, Ezzo M, Aguayo S, Schuh CM, Gough K, Bozec L. Modulation of the biophysical and biochemical properties of collagen by glycation for tissue engineering applications. Acta Biomater 2023; 155:182-198. [PMID: 36435437 DOI: 10.1016/j.actbio.2022.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
The structural and functional properties of collagen are modulated by the presence of intramolecular and intermolecular crosslinks. Advanced Glycation End-products (AGEs) can produce intermolecular crosslinks by bonding the free amino groups of neighbouring proteins. In this research, the following hypothesis is explored: The accumulation of AGEs in collagen decreases its proteolytic degradation rates while increasing its stiffness. Fluorescence Lifetime Imaging (FLIM) and Fourier-transform infrared spectroscopy (FTIR) detect biochemical changes in collagen scaffolds during the glycation process. The accumulation of AGEs increases exponentially in the collagen scaffolds as a function of Methylglyoxal (MGO) concentration by performing autofluorescence measurement and competitive ELISA. Glycated scaffolds absorb water at a much higher rate confirming the direct affinity between AGEs and interstitial water within collagen fibrils. In addition, the topology of collagen fibrils as observed by Atomic Force Microscopy (AFM) is a lot more defined following glycation. The elastic modulus of collagen fibrils decreases as a function of glycation, whereas the elastic modulus of collagen scaffolds increases. Finally, the enzymatic degradation of collagen by bacterial collagenase shows a sigmoidal pattern with a much slower degradation rate in the glycated scaffolds. This study identifies unique variations in the properties of collagen following the accumulation of AGEs. STATEMENT OF SIGNIFICANCE: In humans, Advanced Glycation End-products (AGEs) are naturally produced as a result of aging process. There is an evident lack of knowledge in the basic science literature explaining the biomechanical impact of AGE-mediated crosslinks on the functional and structural properties of collagen at both the nanoscale (single fibrils) and mesoscale (bundles of fibrils). This research, demonstrates how it is possible to harness this natural phenomenon in vitro to enhance the properties of engineered collagen fibrils and scaffolds. This study identifies unique variations in the properties of collagen at nanoscale and mesoscale following accumulation of AGEs. In their approach, they investigate the unique properties conferred to collagen, namely enhanced water sorption, differential elastic modulus, and finally sigmoidal proteolytic degradation behavior.
Collapse
Affiliation(s)
- Mina Vaez
- Faculty of Dentistry, University of Toronto, Toronto, Canada.
| | - Meisam Asgari
- Department of Mechanical Engineering, McGill University, Montreal, Canada
| | - Liisa Hirvonen
- Centre for Microscopy, Characterisation & Analysis, University of Western Australia, Perth, Australia
| | - Gorkem Bakir
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | | | - Maya Ezzo
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Sebastian Aguayo
- Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christina M Schuh
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Kathleen Gough
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Laurent Bozec
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Xu Q, Torres JE, Hakim M, Babiak PM, Pal P, Battistoni CM, Nguyen M, Panitch A, Solorio L, Liu JC. Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2021; 146:100641. [PMID: 34483486 PMCID: PMC8409465 DOI: 10.1016/j.mser.2021.100641] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hydrogels have been widely investigated in biomedical fields due to their similar physical and biochemical properties to the extracellular matrix (ECM). Collagen and hyaluronic acid (HA) are the main components of the ECM in many tissues. As a result, hydrogels prepared from collagen and HA hold inherent advantages in mimicking the structure and function of the native ECM. Numerous studies have focused on the development of collagen and HA hydrogels and their biomedical applications. In this extensive review, we provide a summary and analysis of the sources, features, and modifications of collagen and HA. Specifically, we highlight the fabrication, properties, and potential biomedical applications as well as promising commercialization of hydrogels based on these two natural polymers.
Collapse
Affiliation(s)
- Qinghua Xu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jessica E Torres
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mazin Hakim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Paulina M Babiak
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Pallabi Pal
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carly M Battistoni
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael Nguyen
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
4
|
Sun M, Liu A, Yang X, Gong J, Yu M, Yao X, Wang H, He Y. 3D Cell Culture—Can It Be As Popular as 2D Cell Culture? ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Miao Sun
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - An Liu
- Department of Orthopaedic Surgery Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou 310000 China
| | - Xiaofu Yang
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Jiaxing Gong
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Mengfei Yu
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Xinhua Yao
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou 310000 China
| | - Huiming Wang
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Yong He
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou 310000 China
- State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou 310000 China
| |
Collapse
|
5
|
Dhavalikar P, Robinson A, Lan Z, Jenkins D, Chwatko M, Salhadar K, Jose A, Kar R, Shoga E, Kannapiran A, Cosgriff-Hernandez E. Review of Integrin-Targeting Biomaterials in Tissue Engineering. Adv Healthc Mater 2020; 9:e2000795. [PMID: 32940020 PMCID: PMC7960574 DOI: 10.1002/adhm.202000795] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/27/2020] [Indexed: 12/12/2022]
Abstract
The ability to direct cell behavior has been central to the success of numerous therapeutics to regenerate tissue or facilitate device integration. Biomaterial scientists are challenged to understand and modulate the interactions of biomaterials with biological systems in order to achieve effective tissue repair. One key area of research investigates the use of extracellular matrix-derived ligands to target specific integrin interactions and induce cellular responses, such as increased cell migration, proliferation, and differentiation of mesenchymal stem cells. These integrin-targeting proteins and peptides have been implemented in a variety of different polymeric scaffolds and devices to enhance tissue regeneration and integration. This review first presents an overview of integrin-mediated cellular processes that have been identified in angiogenesis, wound healing, and bone regeneration. Then, research utilizing biomaterials are highlighted with integrin-targeting motifs as a means to direct these cellular processes to enhance tissue regeneration. In addition to providing improved materials for tissue repair and device integration, these innovative biomaterials provide new tools to probe the complex processes of tissue remodeling in order to enhance the rational design of biomaterial scaffolds and guide tissue regeneration strategies.
Collapse
Affiliation(s)
- Prachi Dhavalikar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Robinson
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ziyang Lan
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Dana Jenkins
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Malgorzata Chwatko
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Karim Salhadar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Anupriya Jose
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ronit Kar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Erik Shoga
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Aparajith Kannapiran
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | | |
Collapse
|
6
|
Hong H, Kim J, Cho H, Park SM, Jeon M, Kim HK, Kim DS. Ultra-stiff compressed collagen for corneal perforation patch graft realized by in situ photochemical crosslinking. Biofabrication 2020; 12:045030. [PMID: 33000763 DOI: 10.1088/1758-5090/abb52a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite the potential of a collagen construct, consisting of a major extracellular matrix component of the native cornea, as a patch graft to treat the corneal perforation, there has still been difficulty in acquiring sufficient mechanical properties for clinical availability. This study developed a novel in situ photochemical crosslinking (IPC)-assisted collagen compression process, namely, the IPC-C2 process, to significantly enhance the mechanical properties of the collagen construct for the development of a collagenous patch graft. For the first time, we found that compressed collagen construct was rapidly rehydrated in an aqueous solution, which inhibited effective riboflavin-mediated photochemical crosslinking for mechanical improvement. The IPC-C2 process was designed to concurrently induce the physical compaction and photochemical crosslinking of a compressed collagen construct, thereby avoiding the loosening of collagen fibrillar structure during rehydration and ultimately improving crosslinking efficiency. Hence, the suggested IPC-C2 process could fabricate a collagen construct with a high collagen density (∼120-280 mg ml-1) and ∼103-fold increased mechanical properties (an elastic modulus of up to ∼29 MPa and ultimate tensile strength of ∼8 MPa) compared with collagen gel. This construct can then be used as a clinically applicable collagenous patch graft. With sufficient mechanical strength for surgical suture and the controllable thickness for patient specificity, the potential of the fabricated IPC-compressed collagen construct for clinical applications was demonstrated by using an in vivo rabbit corneal perforation model. It effectively protected aqueous humor leakage and maintained the integrity of the eye globe without an additional complication.
Collapse
Affiliation(s)
- Hyeonjun Hong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
7
|
Sohutskay DO, Buno KP, Tholpady SS, Nier SJ, Voytik-Harbin SL. Design and biofabrication of dermal regeneration scaffolds: role of oligomeric collagen fibril density and architecture. Regen Med 2020; 15:1295-1312. [PMID: 32228274 DOI: 10.2217/rme-2019-0084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: To evaluate dermal regeneration scaffolds custom-fabricated from fibril-forming oligomeric collagen where the total content and spatial gradient of collagen fibrils was specified. Materials & methods: Microstructural and mechanical features were verified by electron microscopy and tensile testing. The ability of dermal scaffolds to induce regeneration of rat full-thickness skin wounds was determined and compared with no fill control, autograft skin and a commercial collagen dressing. Results: Increasing fibril content of oligomer scaffolds inhibited wound contraction and decreased myofibroblast marker expression. Cellular and vascular infiltration of scaffolds over the 14-day period varied with the graded density and orientation of fibrils. Conclusion: Fibril content, spatial gradient and orientation are important collagen scaffold design considerations for promoting vascularization and dermal regeneration while reducing wound contraction.
Collapse
Affiliation(s)
- David O Sohutskay
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.,Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kevin P Buno
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Sunil S Tholpady
- Division of Plastic Surgery, Department of Surgery, Indiana University, IN 46202, USA.,Division of Plastic Surgery, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN 46202, USA
| | - Samantha J Nier
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Sherry L Voytik-Harbin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.,Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
8
|
Witt J, Borrelli M, Mertsch S, Geerling G, Spaniol K, Schrader S. Evaluation of Plastic-Compressed Collagen for Conjunctival Repair in a Rabbit Model. Tissue Eng Part A 2019; 25:1084-1095. [DOI: 10.1089/ten.tea.2018.0190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Joana Witt
- Department of Ophthalmology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Maria Borrelli
- Department of Ophthalmology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sonja Mertsch
- Department of Ophthalmology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Gerd Geerling
- Department of Ophthalmology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Kristina Spaniol
- Department of Ophthalmology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stefan Schrader
- Department of Ophthalmology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
9
|
Regeneration of Dermis: Scarring and Cells Involved. Cells 2019; 8:cells8060607. [PMID: 31216669 PMCID: PMC6627856 DOI: 10.3390/cells8060607] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 12/31/2022] Open
Abstract
There are many studies on certain skin cell specifications and their contribution to wound healing. In this review, we provide an overview of dermal cell heterogeneity and their participation in skin repair, scar formation, and in the composition of skin substitutes. The papillary, reticular, and hair follicle associated fibroblasts differ not only topographically, but also functionally. Human skin has a number of particular characteristics that are different from murine skin. This should be taken into account in experimental procedures. Dermal cells react differently to skin wounding, remodel the extracellular matrix in their own manner, and convert to myofibroblasts to different extents. Recent studies indicate a special role of papillary fibroblasts in the favorable outcome of wound healing and epithelial-mesenchyme interactions. Neofolliculogenesis can substantially reduce scarring. The role of hair follicle mesenchyme cells in skin repair and possible therapeutic applications is discussed. Participation of dermal cell types in wound healing is described, with the addition of possible mechanisms underlying different outcomes in embryonic and adult tissues in the context of cell population characteristics and extracellular matrix composition and properties. Dermal white adipose tissue involvement in wound healing is also overviewed. Characteristics of myofibroblasts and their activity in scar formation is extensively discussed. Cellular mechanisms of scarring and possible ways for its prevention are highlighted. Data on keloid cells are provided with emphasis on their specific characteristics. We also discuss the contribution of tissue tension to the scar formation as well as the criteria and effectiveness of skin substitutes in skin reconstruction. Special attention is given to the properties of skin substitutes in terms of cell composition and the ability to prevent scarring.
Collapse
|
10
|
da Silva LP, Reis RL, Correlo VM, Marques AP. Hydrogel-Based Strategies to Advance Therapies for Chronic Skin Wounds. Annu Rev Biomed Eng 2019; 21:145-169. [DOI: 10.1146/annurev-bioeng-060418-052422] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic skin wounds are the leading cause of nontraumatic foot amputations worldwide and present a significant risk of morbidity and mortality due to the lack of efficient therapies. The intrinsic characteristics of hydrogels allow them to benefit cutaneous healing essentially by supporting a moist environment. This property has long been explored in wound management to aid in autolytic debridement. However, chronic wounds require additional therapeutic features that can be provided by a combination of hydrogels with biochemical mediators or cells, promoting faster and better healing. We survey hydrogel-based approaches with potential to improve the healing of chronic wounds by reviewing their effects as observed in preclinical models. Topics covered include strategies to ablate infection and resolve inflammation, the delivery of bioactive agents to accelerate healing, and tissue engineering approaches for skin regeneration. The article concludes by considering the relevance of treating chronic skin wounds using hydrogel-based strategies.
Collapse
Affiliation(s)
- Lucília P. da Silva
- 3B's Research Group, I3B's: Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal;, , ,
- ICVS/3B's: PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3B's: Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal;, , ,
- ICVS/3B's: PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
- Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, 4805-017 Barco, Guimarães, Portugal
| | - Vitor M. Correlo
- 3B's Research Group, I3B's: Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal;, , ,
- ICVS/3B's: PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
- Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, 4805-017 Barco, Guimarães, Portugal
| | - Alexandra P. Marques
- 3B's Research Group, I3B's: Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, and Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal;, , ,
- ICVS/3B's: PT Government Associate Laboratory, 4710-057 Braga, Guimarães, Portugal
- Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, 4805-017 Barco, Guimarães, Portugal
| |
Collapse
|
11
|
In Vitro Models for Studying Transport Across Epithelial Tissue Barriers. Ann Biomed Eng 2018; 47:1-21. [DOI: 10.1007/s10439-018-02124-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022]
|
12
|
Hong H, Huh MI, Park SM, Lee KP, Kim HK, Kim DS. Decellularized corneal lenticule embedded compressed collagen: toward a suturable collagenous construct for limbal reconstruction. Biofabrication 2018; 10:045001. [PMID: 29978836 DOI: 10.1088/1758-5090/aad1a4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recently, compressed collagen has attracted much attention as a potential alternative for a limbal epithelial stem cell (LESC) carrier to treat limbal stem cell deficiency (LSCD), in that it can provide mechanically improved collagen fibrillar structures compared to conventional collagen hydrogel. However, its clinical efficacy as an LESC carrier has not yet been studied through in vivo transplantation due to limited mechanical strength that cannot withstand a force induced by surgical suturing and low resistance to enzymatic degradation. This study firstly presents a suturable LESC carrier based on compressed collagen in the form of a biocomposite. The biocomposite was achieved by integrating a decellularized corneal lenticule, which is a decellularized stromal tissue obtained from corneal refractive surgery, inside a compressed collagen to form a sandwich structure. A suture retention test verified that the biocomposite has a much higher suture retention strength (0.56 ± 0.12 N) compared to the compressed collagen (0.02 ± 0.01 N). The biocomposite also exhibited more than 3 times higher resistance to enzymatic degradation, indicating long-term stability after transplantation. In vitro cell culture results revealed that the biocomposite effectively supported the expansion and stratification of the LESCs with expressions of putative stem cell and differentiated corneal epithelial cell markers. Finally, the biocomposite verified its clinical efficacy by stably delivering the LESCs onto an eye of a rabbit model of LSCD and effectively reconstructing the ocular surface.
Collapse
Affiliation(s)
- Hyeonjun Hong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk, 37673, Republic of Korea
| | | | | | | | | | | |
Collapse
|
13
|
Use of bilaminar grafts as life-saving interventions for severe burns: A single-center experience. Burns 2018; 44:1336-1345. [PMID: 29573885 DOI: 10.1016/j.burns.2018.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/02/2018] [Accepted: 01/30/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Skin coverage remains a significant hurdle in large-sized burns. Recent advances have allowed to grow Bilaminar Cultured Skin Autografts (BCSGs) from patients' own donor sites. The aim of this study was to report long-term outcomes in patients with large-sized burns having received BCSGs. METHODS Nine patients received BCSGs from January 2010 to May 2015. Except one patient who died during hospitalization, all patients were contacted. Four agreed to partake in the study. Patients were tested with the Vancouver Scar Scale (VSS), QuickDASH questionnaire and Burn Specific Health Scale (BSHS). Incisional biopsies of BCSGs were compared with patients' autografts. RESULTS From nine patients, mean age was 40 years and mean TBSA was 70.3%. For the four patients included, score averaged was 2.25 on the VSS, 29.5 on QuickDASH, 36/36 for psychosocial items and 63/84 for functional abilities on the BSHS. Compared with autografts, BCSGs demonstrated better pliability VSS and functionality. Biopsies showed no evidence of malignancy or atypical changes, but areas of hyperpigmentation. CONCLUSION This is the first report investigating the long-term outcome of a newly developed BCSG. BCSGs demonstrated comparable results with patients' autografts, functional outcomes on self-reported questionnaires and excellent psychological states. Precaution given the extensive unexpected hyperpigmentation must be taken and a randomized controlled study is underway.
Collapse
|
14
|
Sheikholeslam M, Wright MEE, Jeschke MG, Amini-Nik S. Biomaterials for Skin Substitutes. Adv Healthc Mater 2018; 7:10.1002/adhm.201700897. [PMID: 29271580 PMCID: PMC7863571 DOI: 10.1002/adhm.201700897] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/13/2017] [Indexed: 12/13/2022]
Abstract
Patients with extensive burns rely on the use of tissue engineered skin due to a lack of sufficient donor tissue, but it is a challenge to identify reliable and economical scaffold materials and donor cell sources for the generation of a functional skin substitute. The current review attempts to evaluate the performance of the wide range of biomaterials available for generating skin substitutes, including both natural biopolymers and synthetic polymers, in terms of tissue response and potential for use in the operating room. Natural biopolymers display an improved cell response, while synthetic polymers provide better control over chemical composition and mechanical properties. It is suggested that not one material meets all the requirements for a skin substitute. Rather, a composite scaffold fabricated from both natural and synthetic biomaterials may allow for the generation of skin substitutes that meet all clinical requirements including a tailored wound size and type, the degree of burn, the patient age, and the available preparation technique. This review aims to be a valuable directory for researchers in the field to find the optimal material or combination of materials based on their specific application.
Collapse
Affiliation(s)
- Mohammadali Sheikholeslam
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
| | - Meghan E E Wright
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Marc G Jeschke
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Saeid Amini-Nik
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Eberwein P, Reinhard T. [New biomaterials and alternative stem cell sources for the reconstruction of the limbal stem cell niche]. Ophthalmologe 2017; 114:318-326. [PMID: 28378048 DOI: 10.1007/s00347-017-0463-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Reconstruction of the limbal stem cell niche in patients with limbal stem cell insufficiency remains one of the most challenging tasks in the treatment of ocular surface diseases. Ex vivo expansion of limbal stem cells still has potential for optimization despite positive reports in centers worldwide. New biomaterials as well as alternative cell sources for the reconstruction of the limbal stem cell niche have been published in recent years. The aim of this review is to provide insight into new biomaterials and cell sources which may find their way into clinical routine in the upcoming decades.
Collapse
Affiliation(s)
- P Eberwein
- Klinik für Augenheilkunde, Uniklinikum Freiburg, Killianstr. 5, 79106, Freiburg, Deutschland.
| | - T Reinhard
- Klinik für Augenheilkunde, Uniklinikum Freiburg, Killianstr. 5, 79106, Freiburg, Deutschland
| |
Collapse
|
16
|
Martin YH, Jubin K, Smalley S, Wong JPF, Brown RA, Metcalfe AD. A novel system for expansion and delivery of human keratinocytes for the treatment of severe cutaneous injuries using microcarriers and compressed collagen. J Tissue Eng Regen Med 2017; 11:3124-3133. [PMID: 28052577 DOI: 10.1002/term.2220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 04/06/2016] [Accepted: 04/19/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Y. H. Martin
- Blond McIndoe Research Foundation; Queen Victoria Hospital; East Grinstead West Sussex UK
- Brighton Centre for Regenerative Medicine; University of Brighton; Brighton East Sussex UK
| | - K. Jubin
- Blond McIndoe Research Foundation; Queen Victoria Hospital; East Grinstead West Sussex UK
| | - S. Smalley
- Blond McIndoe Research Foundation; Queen Victoria Hospital; East Grinstead West Sussex UK
| | - J. P. F. Wong
- UCL Tissue Repair and Engineering Centre; University College London; London UK
| | - R. A. Brown
- UCL Tissue Repair and Engineering Centre; University College London; London UK
| | - A. D. Metcalfe
- Blond McIndoe Research Foundation; Queen Victoria Hospital; East Grinstead West Sussex UK
- Brighton Centre for Regenerative Medicine; University of Brighton; Brighton East Sussex UK
| |
Collapse
|
17
|
Gottipamula S, Saraswat SK, Sridhar KN. Comparative study of isolation, expansion and characterization of epithelial cells. Cytotherapy 2016; 19:263-271. [PMID: 27894881 DOI: 10.1016/j.jcyt.2016.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/05/2016] [Accepted: 10/17/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND AIMS The human epithelial cells (EPCs) have been identified as the essential element for the regeneration of skin construct for burns, wounds and various tissue engineer-based products. METHODS In this study, the isolation, expansion and characterization of EPCs from various sources such as juvenile foreskin (JSK), buccal mucosa (BM), penile skin (PS) and urothelium (UR) in serum-free and xeno-free EpiLife media were evaluated. RESULTS The growth kinetics study revealed that EPCs from JSK and BM had notably higher growth rates compared with the others. Overall, the EPCs from all sources retained basic morphological characteristics and the functional characteristics such as Pan Cytokeratin (AE1/AE3). In addition, the cryopreservation stability of EPCs was accessed for post-thaw viability and found to be greater than 80% at 1 year of storage, but demonstrated reduced cell recovery (51%) at the second year in fetal bovine serum-free cryopreservation media. CONCLUSIONS Our result suggests that the EPCs from four cell sources can be grown in feeder-free, serum-free and xeno-free systems using commercially available EpiLife medium without losing epithelial cell characteristics even after passage 4. However, its suitability for clinical application must be accessed by preclinical and clinical studies.
Collapse
Affiliation(s)
- Sanjay Gottipamula
- Shankara Research Centre, Rangadore Memorial Hospital, Sri Research for Tissue Engineering Pvt. Ltd, Bangalore, India
| | - Sumit K Saraswat
- Shankara Research Centre, Rangadore Memorial Hospital, Sri Research for Tissue Engineering Pvt. Ltd, Bangalore, India
| | - K N Sridhar
- Shankara Research Centre, Rangadore Memorial Hospital, Sri Research for Tissue Engineering Pvt. Ltd, Bangalore, India.
| |
Collapse
|
18
|
Gonzalez-Andrades M, Cardona JDLC, Ionescu AM, Mosse CA, Brown RA. Photographic-Based Optical Evaluation of Tissues and Biomaterials Used for Corneal Surface Repair: A New Easy-Applied Method. PLoS One 2015; 10:e0142099. [PMID: 26566050 PMCID: PMC4643926 DOI: 10.1371/journal.pone.0142099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/16/2015] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Tissues and biomaterials used for corneal surface repair require fulfilling specific optical standards prior to implantation in the patient. However, there is not a feasible evaluation method to be applied in clinical or Good Manufacturing Practice settings. In this study, we describe and assess an innovative easy-applied photographic-based method (PBM) for measuring functional optical blurring and transparency in corneal surface grafts. METHODS Plastic compressed collagen scaffolds (PCCS) and multilayered amniotic membranes (AM) samples were optically and histologically evaluated. Transparency and image blurring measures were obtained by PBM, analyzing photographic images of a standardized band pattern taken through the samples. These measures were compared and correlated to those obtained applying the Inverse Adding-Doubling (IAD) technique, which is the gold standard method. RESULTS All the samples used for optical evaluation by PBM or IAD were histological suitable. PCCS samples presented transmittance values higher than 60%, values that increased with increasing wavelength as determined by IAD. The PBM indicated that PCCS had a transparency ratio (TR) value of 80.3 ± 2.8%, with a blurring index (BI) of 50.6 ± 4.2%. TR and BI obtained from the PBM showed a high correlation (ρ>|0.6|) with the diffuse transmittance and the diffuse reflectance, both determined using the IAD (p<0.005). The AM optical properties showed that there was a largely linear relationship between the blurring and the number of amnion layers, with more layers producing greater blurring. CONCLUSIONS This innovative proposed method represents an easy-applied technique for evaluating transparency and blurriness of tissues and biomaterials used for corneal surface repair.
Collapse
Affiliation(s)
- Miguel Gonzalez-Andrades
- Tissue Repair & Engineering Centre, University College of London, London, United Kingdom
- Tissue Engineering Group, Department of Histology, University of Granada, Granada, Spain
- Ophthalmology Department, San Cecilio University Hospital, Granada, Spain
- * E-mail:
| | - Juan de la Cruz Cardona
- Laboratory of Biomaterials and Optics—Optics Department, University of Granada, Granada, Spain
| | - Ana Maria Ionescu
- Laboratory of Biomaterials and Optics—Optics Department, University of Granada, Granada, Spain
| | - Charles A. Mosse
- Optics Department, University College of London, London, United Kingdom
| | - Robert A. Brown
- Tissue Repair & Engineering Centre, University College of London, London, United Kingdom
| |
Collapse
|
19
|
Markeson D, Pleat JM, Sharpe JR, Harris AL, Seifalian AM, Watt SM. Scarring, stem cells, scaffolds and skin repair. J Tissue Eng Regen Med 2015; 9:649-68. [PMID: 24668923 DOI: 10.1002/term.1841] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/09/2013] [Accepted: 09/16/2013] [Indexed: 01/19/2023]
Abstract
The treatment of full thickness skin loss, which can be extensive in the case of large burns, continues to represent a challenging clinical entity. This is due to an on-going inability to produce a suitable tissue engineered substrate that can satisfactorily replicate the epidermal and dermal in vivo niches to fulfil both aesthetic and functional demands. The current gold standard treatment of autologous skin grafting is inadequate because of poor textural durability, scarring and associated contracture, and because of a paucity of donor sites in larger burns. Tissue engineering has seen exponential growth in recent years with a number of 'off-the-shelf' dermal and epidermal substitutes now available. Each has its own limitations. In this review, we examine normal wound repair in relation to stem/progenitor cells that are intimately involved in this process within the dermal niche. Endothelial precursors, in particular, are examined closely and their phenotype, morphology and enrichment from multiple sources are described in an attempt to provide some clarity regarding the controversy surrounding their classification and role in vasculogenesis. We also review the role of the next generation of cellularized scaffolds and smart biomaterials that attempt to improve the revascularisation of artificial grafts, the rate of wound healing and the final cosmetic and functional outcome.
Collapse
Affiliation(s)
- Daniel Markeson
- Stem Cell Research Laboratory, NHS Blood and Transplant, Oxford, UK
- Department of Plastic and Reconstructive Surgery, Stoke Mandeville Hospital, Aylesbury, UK
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- University College London Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, Royal Free Hospital, London, UK
| | - Jonathon M Pleat
- Department of Plastic and Reconstructive Surgery, Stoke Mandeville Hospital, Aylesbury, UK
- Department of Plastic and Reconstructive Surgery, Frenchay Hospital, Bristol, UK
| | - Justin R Sharpe
- Blond McIndoe Research Foundation, Queen Victoria Hospital, East Grinstead, West Sussex, UK
| | - Adrian L Harris
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Alexander M Seifalian
- University College London Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, Royal Free Hospital, London, UK
| | - Suzanne M Watt
- Stem Cell Research Laboratory, NHS Blood and Transplant, Oxford, UK
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Papuga AY, Lukash LL. Different types of biotechnological wound coverages created with the application of alive human cells. ACTA ACUST UNITED AC 2015. [DOI: 10.7124/bc.0008d1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- A. Ye. Papuga
- Institute of Molecular Biology and Genetics, NAS of Ukraine
| | - L. L. Lukash
- Institute of Molecular Biology and Genetics, NAS of Ukraine
| |
Collapse
|
21
|
|
22
|
Chen T, Jiang J, Chen S. Status and headway of the clinical application of artificial ligaments. ASIA-PACIFIC JOURNAL OF SPORT MEDICINE ARTHROSCOPY REHABILITATION AND TECHNOLOGY 2015; 2:15-26. [PMID: 29264235 PMCID: PMC5730644 DOI: 10.1016/j.asmart.2014.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/02/2014] [Accepted: 11/24/2014] [Indexed: 12/20/2022]
Abstract
The authors first reviewed the history of clinical application of artificial ligaments. Then, the status of clinical application of artificial ligaments was detailed. Some artificial ligaments possessed comparable efficacy to, and fewer postoperative complications than, allografts and autografts in ligament reconstruction, especially for the anterior cruciate ligament. At the end, the authors focused on the development of two types of artificial ligaments: polyethylene glycol terephthalate artificial ligaments and tissue-engineered ligaments. In conclusion, owing to the advancements in surgical techniques, materials processing, and weaving methods, clinical application of some artificial ligaments so far has demonstrated good outcomes and will become a trend in the future.
Collapse
Affiliation(s)
- Tianwu Chen
- Fudan University Sports Medicine Centre, Shanghai, China.,Department of Sports Medicine and Arthroscopy Surgery, Huashan Hospital, Shanghai, China
| | - Jia Jiang
- Fudan University Sports Medicine Centre, Shanghai, China.,Department of Sports Medicine and Arthroscopy Surgery, Huashan Hospital, Shanghai, China
| | - Shiyi Chen
- Fudan University Sports Medicine Centre, Shanghai, China.,Department of Sports Medicine and Arthroscopy Surgery, Huashan Hospital, Shanghai, China
| |
Collapse
|
23
|
Tissue Engineering the Cornea: The Evolution of RAFT. J Funct Biomater 2015; 6:50-65. [PMID: 25809689 PMCID: PMC4384100 DOI: 10.3390/jfb6010050] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/13/2015] [Indexed: 12/13/2022] Open
Abstract
Corneal blindness affects over 10 million people worldwide and current treatment strategies often involve replacement of the defective layer with healthy tissue. Due to a worldwide donor cornea shortage and the absence of suitable biological scaffolds, recent research has focused on the development of tissue engineering techniques to create alternative therapies. This review will detail how we have refined the simple engineering technique of plastic compression of collagen to a process we now call Real Architecture for 3D Tissues (RAFT). The RAFT production process has been standardised, and steps have been taken to consider Good Manufacturing Practice compliance. The evolution of this process has allowed us to create biomimetic epithelial and endothelial tissue equivalents suitable for transplantation and ideal for studying cell-cell interactions in vitro.
Collapse
|
24
|
Kasuya A, Tokura Y. Attempts to accelerate wound healing. J Dermatol Sci 2014; 76:169-72. [PMID: 25468357 DOI: 10.1016/j.jdermsci.2014.11.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 11/10/2014] [Accepted: 11/10/2014] [Indexed: 12/23/2022]
Abstract
Wound healing is a well-orchestrated process, where numerous factors are activated or inhibited in a sequence of steps. Immediately after the infliction of damage, the repair of wound stars. The initial step is an inflammatory change with activation of innate immunity, which is followed by proliferation phase, including fibroplasia, angiogenesis and re-epithelialization. Pathological impairment of wound healing process may lead to persistent ulceration as seen in diabetic patients. Various signaling pathways are involved in wound healing. TGFβ/Smad pathway is a representative and well known to participate in fibroplasia, however, its comprehensive effect on wound healing is controversial. Experimental and clinical remedies have been being tried to promote wound healing. Advancement of cell engineering allows us to use stem cells and living skin equivalents.
Collapse
Affiliation(s)
- Akira Kasuya
- Department of Dermatology, Hamamatsu University School of Medicine, Japan.
| | - Yoshiki Tokura
- Department of Dermatology, Hamamatsu University School of Medicine, Japan
| |
Collapse
|
25
|
Alekseeva T, Unger RE, Brochhausen C, Brown RA, Kirkpatrick JC. Engineering a microvascular capillary bed in a tissue-like collagen construct. Tissue Eng Part A 2014; 20:2656-65. [PMID: 24684395 PMCID: PMC4195478 DOI: 10.1089/ten.tea.2013.0570] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 03/19/2014] [Indexed: 01/14/2023] Open
Abstract
Previous studies have shown that plastic compression (PC) of collagen gels allows a rapid and controlled fabrication of matrix- and cell-rich constructs in vitro that closely mimic the structure and characteristics of tissues in vivo. Microvascular endothelial cells, the major cell type making up the blood vessels in the body, were added to the PC collagen to determine whether cells attach, survive, grow, and express endothelial cell characteristics when seeded alone or in coculture with other cells. Endothelial cells seeded on the PC collagen containing human foreskin fibroblasts (HFF) or human osteoblasts (HOS) formed vessel-like structures over 3 weeks in culture without the addition of exogenous growth factors in the medium. In contrast, on the PC scaffolds without HFF or HOS, human dermal microvascular endothelial cells (HDMEC) exhibited a typical cobblestone morphology for 21 days under the same conditions. We propose that the coculture of primary endothelial cells with PC collagen constructs, containing a stromal cell population, is a valuable technique for in vitro modeling of proangiogenic responses toward such biomimetic constructs in vivo. A major observation in the cocultures was the absence of gel contraction, even after 3 weeks of fibroblast culture. This collagen form could, for example, be of great value in tissue engineering of the skin, as contractures are both aesthetically and functionally disabling.
Collapse
Affiliation(s)
- Tijna Alekseeva
- REPAIR Lab, Institute of Pathology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ronald E. Unger
- REPAIR Lab, Institute of Pathology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Christoph Brochhausen
- REPAIR Lab, Institute of Pathology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | | | - James C. Kirkpatrick
- REPAIR Lab, Institute of Pathology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
26
|
Cell sheet technology-driven re-epithelialization and neovascularization of skin wounds. Acta Biomater 2014; 10:3145-55. [PMID: 24650971 DOI: 10.1016/j.actbio.2014.03.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 02/12/2014] [Accepted: 03/09/2014] [Indexed: 11/21/2022]
Abstract
Skin regeneration remains a challenge, requiring a well-orchestrated interplay of cell-cell and cell-matrix signalling. Cell sheet (CS) engineering, which has the major advantage of allowing the retrieval of the intact cell layers along with their naturally organized extracellular matrix (ECM), has been poorly explored for the purpose of creating skin substitutes and skin regeneration. This work proposes the use of CS technology to engineer cellular constructs based on human keratinocytes (hKC), key players in wound re-epithelialization, dermal fibroblasts (hDFb), responsible for ECM remodelling, and dermal microvascular endothelial cells (hDMEC), part of the dermal vascular network and modulators of angiogenesis. Homotypic and heterotypic three-dimensional (3-D) CS-based constructs were developed simultaneously to target wound re-vascularization and re-epithelialization. After implantation of the constructs in murine full-thickness wounds, human cells were engrafted into the host wound bed and were present in the neotissue formed up to 14 days post-implantation. Different outcomes were obtained by varying the composition and organization of the 3-D constructs. Both hKC and hDMEC significantly contributed to re-epithelialization by promoting rapid wound closure and early epithelial coverage. Moreover, a significant increase in the density of vessels at day 7 and the incorporation of hDMEC in the neoformed vasculature confirmed its role over neotissue vacularization. As a whole, the obtained results confirmed that the proposed 3-D CS-based constructs provided the necessary cell machinery, when in a specific microenvironment, guiding both re-vascularization and re-epithelialization. Although dependent on the nature of the constructs, the results obtained sustain the hypothesis that different CS-based constructs lead to improved skin healing.
Collapse
|
27
|
Xia Z, Villa MM, Wei M. A Biomimetic Collagen-Apatite Scaffold with a Multi-Level Lamellar Structure for Bone Tissue Engineering. J Mater Chem B 2014; 2:1998-2007. [PMID: 24999428 PMCID: PMC4078891 DOI: 10.1039/c3tb21595d] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Collagen-apatite (Col-Ap) scaffolds have been widely employed for bone tissue engineering. We fabricated a Col-Ap scaffold with a unique multi-level lamellar structure consisting of co-aligned micro and macro pores. The basic building blocks of this scaffold are bone-like mineralized collagen fibers developed via a biomimetic self-assembly process in a collagen-containing modified simulated body fluid (m-SBF). This biomimetic method preserves the structural integrity and great tensile strength of collagen by reinforcing the collagen hydrogel with apatite nano-particles. Unidirectional aligned macro pores with a size of 63.8 to 344 μm are created by controlling the freezing rate and direction. The thickness of Col-Ap lamellae can be adjusted in the range 3.6 to 23 μm depending on the self-compression time. Furthermore, the multi-level lamellar structure has led to a twelve-fold increase in Young's modulus and a two-fold increase in the compression modulus along the aligned direction compared to a scaffold of the same composition with an isotropic equiaxed pore structure. Moreover, this novel lamellar scaffold supports the attachment and spreading of MC3T3-E1osteoblasts. Therefore, owing to the biomimetic composition, tunable structure, improved mechanical strength, and good biocompatibility of this novel scaffold, it has great potential to be used in bone tissue engineering applications.
Collapse
Affiliation(s)
- Z Xia
- Department of Materials Science and Engineering, University of Connecticut, 97 North Eagleville Road, U-3136, Storrs, CT, 06269
| | - M M Villa
- Department of Materials Science and Engineering, University of Connecticut, 97 North Eagleville Road, U-3136, Storrs, CT, 06269
| | - M Wei
- Department of Materials Science and Engineering, University of Connecticut, 97 North Eagleville Road, U-3136, Storrs, CT, 06269
| |
Collapse
|
28
|
Cerqueira MT, da Silva LP, Santos TC, Pirraco RP, Correlo VM, Marques AP, Reis RL. Human skin cell fractions fail to self-organize within a gellan gum/hyaluronic acid matrix but positively influence early wound healing. Tissue Eng Part A 2014; 20:1369-78. [PMID: 24299468 DOI: 10.1089/ten.tea.2013.0460] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Split-thickness autografts still are the current gold standard to treat skin, upon severe injuries. Nonetheless, autografts are dependent on donor site availability and often associated to poor quality neoskin. The generation of dermal-epidermal substitutes by tissue engineering is seen as a promising strategy to overcome this problematic. However, solutions that can be safely and conveniently transplanted in one single surgical intervention are still very challenging as their production normally requires long culture time, and graft survival is many times compromised by delayed vascularization upon transplantation. This work intended to propose a strategy that circumvents the prolonged and laborious preparation period of skin substitutes and allows skin cells self-organization toward improved healing. Human dermal/epidermal cell fractions were entrapped directly from isolation within a gellan gum/hyaluronic acid (GG-HA) spongy-like hydrogel formed from an off-the-shelf dried polymeric network. Upon transplantation into full-thickness mice wounds, the proposed constructs accelerated the wound closure rate and re-epithelialization, as well as tissue neovascularization. A synergistic effect of the GG-HA matrix and the transplanted cells over those processes was demonstrated at early time points. Despite the human-derived and chimeric blood vessels found, the proposed matrix did not succeed in prolonging cells residence time and in sustaining the self-organization of transplanted human cells possibly due to primitive degradation. Despite this, the herein proposed approach open the opportunity to tackle wound healing at early stages contributing to re-epithelialization and neovascularization.
Collapse
Affiliation(s)
- Mariana T Cerqueira
- 1 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
| | | | | | | | | | | | | |
Collapse
|
29
|
Cerqueira MT, Pirraco RP, Santos TC, Rodrigues DB, Frias AM, Martins AR, Reis RL, Marques AP. Human Adipose Stem Cells Cell Sheet Constructs Impact Epidermal Morphogenesis in Full-Thickness Excisional Wounds. Biomacromolecules 2013; 14:3997-4008. [DOI: 10.1021/bm4011062] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. T. Cerqueira
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark4806-909, Taipas, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - R. P. Pirraco
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark4806-909, Taipas, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - T. C. Santos
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark4806-909, Taipas, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - D. B. Rodrigues
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark4806-909, Taipas, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - A. M. Frias
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark4806-909, Taipas, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - A. R. Martins
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark4806-909, Taipas, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - R. L. Reis
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark4806-909, Taipas, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - A. P. Marques
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark4806-909, Taipas, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
30
|
Sawadkar P, Alexander S, Tolk M, Wong J, McGrouther D, Bozec L, Mudera V. Development of a surgically optimized graft insertion suture technique to accommodate a tissue-engineered tendon in vivo. Biores Open Access 2013; 2:327-35. [PMID: 24083088 PMCID: PMC3776617 DOI: 10.1089/biores.2013.0028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The traumatic rupture of tendons is a common clinical problem. Tendon repair is surgically challenging because the tendon often retracts, resulting in a gap between the torn end and its bony insertion. Tendon grafts are currently used to fill this deficit but are associated with potential complications relating to donor site morbidity and graft necrosis. We have developed a highly reproducible, rapid process technique to manufacture compressed cell-seeded type I collagen constructs to replace tendon grafts. However, the material properties of the engineered constructs are currently unsuitable to withstand complete load bearing in vivo. A modified suture technique has been developed to withstand physiological loading and off load the artificial construct while integration occurs. Lapine tendons were used ex vivo to test the strength of different suture techniques with different sizes of Prolene sutures and tissue-engineered collagen constructs in situ. The data were compared to standard modified Kessler suture using a standard tendon graft. Mechanical testing was carried out and a finite element analysis stress distribution model constructed using COMSOL 3.5 software. The break point for modified suture technique with a tissue-engineered scaffold was significantly higher (50.62 N) compared to a standard modified Kessler suture (12.49 N, p<0.05). Distributing suture tension further proximally and distally from the tendon ends increased the mechanical strength of the repairs. We now have ex vivo proof of concept that this suture technique is suitable for testing in vivo, and this will be the next stage of our research.
Collapse
Affiliation(s)
- Prasad Sawadkar
- Tissue Repair and Engineering Center, Division of Surgery and Interventional Science, UCL-Stanmore Campus, University College London , London, United Kingdom . ; Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute and London Center for Nanotechnology, University College London , London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
31
|
pH-sensitive IPN hydrogel based on poly (aspartic acid) and poly (vinyl alcohol) for controlled release. Polym Bull (Berl) 2013. [DOI: 10.1007/s00289-013-0990-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Sharpe JR, Martin Y. Strategies Demonstrating Efficacy in Reducing Wound Contraction In Vivo.. Adv Wound Care (New Rochelle) 2013; 2:167-175. [PMID: 24527340 DOI: 10.1089/wound.2012.0378] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Indexed: 01/27/2023] Open
Abstract
SIGNIFICANCE Scarring continues to present a significant clinical problem. Wound contraction leads to scarring and is mediated by myofibroblasts and contractile forces across the wound bed. Contracture formation can have a significant impact on the quality of life of the patient, particularly where function and appearance are affected. RECENT ADVANCES Novel tissue-engineered matrices, cell-based therapies, and medicinal therapeutics have shown significant reduction in wound contraction in in-vivo models, particularly at early time points. These have been accompanied in many cases by reduced numbers of myofibroblasts, and in some by increased angiogenesis and improved neodermal architecture. CRITICAL ISSUES There are no animal models that replicate all aspects of wound healing as seen in patients. Therefore, information obtained from in vivo studies should be assessed critically. Additional studies, in particular those that seek to elucidate the mechanisms by which novel therapies reduce contraction, are needed to gain sufficient confidence to move into clinical testing. FUTURE DIRECTIONS The use of knockout mouse models in particular has generated significant advances in knowledge of the mechanisms behind myofibroblast conversion and other factors involved in generating tension across the wound. Medicinal therapeutics and tissue-engineering approaches that seek to disrupt/alter these pathways hold much promise for future development and translation to clinical practice.
Collapse
Affiliation(s)
- Justin R. Sharpe
- Blond McIndoe Research Foundation, Queen Victoria Hospital, East Grinstead, United Kingdom
| | - Yella Martin
- Blond McIndoe Research Foundation, Queen Victoria Hospital, East Grinstead, United Kingdom
| |
Collapse
|
33
|
Abou Neel EA, Bozec L, Knowles JC, Syed O, Mudera V, Day R, Hyun JK. Collagen--emerging collagen based therapies hit the patient. Adv Drug Deliv Rev 2013; 65:429-56. [PMID: 22960357 DOI: 10.1016/j.addr.2012.08.010] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 08/10/2012] [Accepted: 08/28/2012] [Indexed: 12/11/2022]
Abstract
The choice of biomaterials available for regenerative medicine continues to grow rapidly, with new materials often claiming advantages over the short-comings of those already in existence. Going back to nature, collagen is one of the most abundant proteins in mammals and its role is essential to our way of life. It can therefore be obtained from many sources including porcine, bovine, equine or human and offer a great promise as a biomimetic scaffold for regenerative medicine. Using naturally derived collagen, extracellular matrices (ECMs), as surgical materials have become established practice for a number of years. For clinical use the goal has been to preserve as much of the composition and structure of the ECM as possible without adverse effects to the recipient. This review will therefore cover in-depth both naturally and synthetically produced collagen matrices. Furthermore the production of more sophisticated three dimensional collagen scaffolds that provide cues at nano-, micro- and meso-scale for molecules, cells, proteins and bulk fluids by inducing fibrils alignments, embossing and layered configuration through the application of plastic compression technology will be discussed in details. This review will also shed light on both naturally and synthetically derived collagen products that have been available in the market for several purposes including neural repair, as cosmetic for the treatment of dermatologic defects, haemostatic agents, mucosal wound dressing and guided bone regeneration membrane. There are other several potential applications of collagen still under investigations and they are also covered in this review.
Collapse
|
34
|
Abstract
The synergy of some promising advances in the fields of cell therapy and biomaterials together with improvements in the fabrication of more refined and tailored microcapsules for drug delivery have triggered the progress of cell encapsulation technology. Cell microencapsulation involves immobilizing the transplanted cells within a biocompatible scaffold surrounded by a membrane in attempt to isolate the cells from the host immune attack and enhance or prolong their function in vivo. This technology represents one strategy which aims to overcome the present difficulties related to local and systemic controlled release of drugs and growth factors as well as to organ graft rejection and thus the requirements for use of immunomodulatory protocols or immunosuppressive drugs. This chapter gives an overview of the current situation of cell encapsulation technology as a controlled drug delivery system, and the essential requirements of the technology, some of the therapeutic applications, the challenges, and the future directions under investigation are highlighted.
Collapse
|
35
|
Acarregui A, Murua A, Pedraz JL, Orive G, Hernández RM. A Perspective on Bioactive Cell Microencapsulation. BioDrugs 2012; 26:283-301. [DOI: 10.1007/bf03261887] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Hartmann-Fritsch F, Biedermann T, Braziulis E, Luginbühl J, Pontiggia L, Böttcher-Haberzeth S, van Kuppevelt TH, Faraj KA, Schiestl C, Meuli M, Reichmann E. Collagen hydrogels strengthened by biodegradable meshes are a basis for dermo-epidermal skin grafts intended to reconstitute human skin in a one-step surgical intervention. J Tissue Eng Regen Med 2012; 10:81-91. [PMID: 23229842 DOI: 10.1002/term.1665] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/28/2012] [Accepted: 11/05/2012] [Indexed: 11/10/2022]
Abstract
Extensive full-thickness skin loss, associated with deep burns or other traumata, represents a major clinical problem that is far from being solved. A promising approach to treat large skin defects is the use of tissue-engineered full-thickness skin analogues with nearly normal anatomy and function. In addition to excellent biological properties, such skin substitutes should exhibit optimal structural and mechanical features. This study aimed to test novel dermo-epidermal skin substitutes based on collagen type I hydrogels, physically strengthened by two types of polymeric net-like meshes. One mesh has already been used in clinical trials for treating inguinal hernia; the second one is new but consists of a FDA-approved polymer. Both meshes were integrated into collagen type I hydrogels and dermo-epidermal skin substitutes were generated. Skin substitutes were transplanted onto immuno-incompetent rats and analyzed after distinct time periods. The skin substitutes homogeneously developed into a well-stratified epidermis over the entire surface of the grafts. The epidermis deposited a continuous basement membrane and dermo-epidermal junction, displayed a well-defined basal cell layer, about 10 suprabasal strata and a stratum corneum. Additionally, the dermal component of the grafts was well vascularized.
Collapse
Affiliation(s)
- Fabienne Hartmann-Fritsch
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Switzerland
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Switzerland
| | - Erik Braziulis
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Switzerland
| | - Joachim Luginbühl
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Switzerland
| | - Luca Pontiggia
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Switzerland
| | - Sophie Böttcher-Haberzeth
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Switzerland.,Department of Surgery, Paediatric Burn Centre, Plastic and Reconstructive Surgery, University Children's Hospital Zurich, Switzerland
| | - Toin H van Kuppevelt
- Department of Matrix Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Kaeuis A Faraj
- Department of Matrix Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Clemens Schiestl
- Department of Surgery, Paediatric Burn Centre, Plastic and Reconstructive Surgery, University Children's Hospital Zurich, Switzerland
| | - Martin Meuli
- Department of Surgery, Paediatric Burn Centre, Plastic and Reconstructive Surgery, University Children's Hospital Zurich, Switzerland
| | - Ernst Reichmann
- Tissue Biology Research Unit, Department of Surgery, University Children's Hospital Zurich, Switzerland.
| |
Collapse
|
37
|
Lu H, Oh HH, Kawazoe N, Yamagishi K, Chen G. PLLA-collagen and PLLA-gelatin hybrid scaffolds with funnel-like porous structure for skin tissue engineering. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2012; 13:064210. [PMID: 27877537 PMCID: PMC5099770 DOI: 10.1088/1468-6996/13/6/064210] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/17/2012] [Indexed: 05/30/2023]
Abstract
In skin tissue engineering, a three-dimensional porous scaffold is necessary to support cell adhesion and proliferation and to guide cells moving into the repair area in the wound healing process. Structurally, the porous scaffold should have an open and interconnected porous architecture to facilitate homogenous cell distribution. Moreover, the scaffolds should be mechanically strong to protect deformation during the formation of new skin. In this study, the hybrid scaffolds were prepared by forming funnel-like collagen or gelatin sponge on a woven poly(l-lactic acid) (PLLA) mesh. The hybrid scaffolds combined the advantages of both collagen or gelatin (good cell-interactions) and PLLA mesh (high mechanical strength). The hybrid scaffolds were used to culture dermal fibroblasts for dermal tissue engineering. The funnel-like porous structure promoted homogeneous cell distribution and extracellular matrix production. The PLLA mesh reinforced the scaffold to avoid deformation. Subcutaneous implantation showed that the PLLA-collagen and PLLA-gelatin scaffolds promoted the regeneration of dermal tissue and epidermis and reduced contraction during the formation of new tissue. These results indicate that funnel-like hybrid scaffolds can be used for skin tissue regeneration.
Collapse
Affiliation(s)
- Hongxu Lu
- International Center for Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Hwan Hee Oh
- International Center for Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Naoki Kawazoe
- International Center for Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Kozo Yamagishi
- Technology Center, Seiren Co. Ltd, Fukui, 913-0036, Japan
| | - Guoping Chen
- International Center for Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
38
|
Lam MT, Nauta A, Meyer NP, Wu JC, Longaker MT. Effective delivery of stem cells using an extracellular matrix patch results in increased cell survival and proliferation and reduced scarring in skin wound healing. Tissue Eng Part A 2012; 19:738-47. [PMID: 23072446 DOI: 10.1089/ten.tea.2012.0480] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Wound healing is one of the most complex biological processes and occurs in all tissues and organs of the body. In humans, fibrotic tissue, or scar, hinders function and is aesthetically unappealing. Stem cell therapy offers a promising new technique for aiding in wound healing; however, current findings show that stem cells typically die and/or migrate from the wound site, greatly decreasing efficacy of the treatment. Here, we demonstrate effectiveness of a stem cell therapy for improving wound healing in the skin and reducing scarring by introducing stem cells using a natural patch material. Adipose-derived stromal cells were introduced to excisional wounds created in mice using a nonimmunogenic extracellular matrix (ECM) patch material derived from porcine small-intestine submucosa (SIS). The SIS served as an attractive delivery vehicle because of its natural ECM components, including its collagen fiber network, providing the stem cells with a familiar structure. Experimental groups consisted of wounds with stem cell-seeded patches removed at different time points after wounding to determine an optimal treatment protocol. Stem cells delivered alone to skin wounds did not survive post-transplantation as evidenced by bioluminescence in vivo imaging. In contrast, delivery with the patch enabled a significant increase in stem cell proliferation and survival. Wound healing rates were moderately improved by treatment with stem cells on the patch; however, areas of fibrosis, indicating scarring, were significantly reduced in wounds treated with the stem cells on the patch compared to untreated wounds.
Collapse
Affiliation(s)
- Mai T Lam
- Department of Surgery, Stanford University School of Medicine, 257 Campus Drive, Stanford, CA 94305, USA.
| | | | | | | | | |
Collapse
|