1
|
Zhang G, Zhang Z, Cao G, Jin Q, Xu L, Li J, Liu Z, Xu C, Le Y, Fu Y, Ju J, Li B, Hou R. Engineered dermis loaded with confining forces promotes full-thickness wound healing by enhancing vascularisation and epithelialisation. Acta Biomater 2023; 170:464-478. [PMID: 37657662 DOI: 10.1016/j.actbio.2023.08.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Tissue-engineered skin is ideal for clinical wound repair. Restoration of skin tissue defects using tissue-engineered skin remains a challenge owing to insufficient vascularisation. In our previous study, we developed a 3D bioprinted model with confined force loading and demonstrated that the confined force can affect vascular branching, which is regulated by the YAP signalling pathway. The mechanical properties of the model must be optimised to suture the wound edges. In this study, we explored the ability of a GelMA-HAMA-fibrin scaffold to support the confined forces created by 3D bioprinting and promote vascularisation and wound healing. The shape of the GelMA-HAMA-fibrin scaffold containing 3% GelMA was affected by the confined forces produced by the embedded cells. The GelMA-HAMA-fibrin scaffold was easy to print, had optimal mechanical properties, and was biocompatible. The constructs were successfully sutured together after 14 d of culture. Scaffolds seeded with cells were transplanted into skin tissue defects in nude mice, demonstrating that the cell-seeded GelMA-HAMA-fibrin scaffold, under confined force loading, promoted neovascularisation and wound restoration by enhancing blood vessel connections, creating a patterned surface, growth factors, and collagen deposition. These results provide further insights into the production of hydrogel composite materials as tissue-engineered scaffolds under an internal mechanical load that can enhance vascularisation and offer new treatment methods for wound healing. STATEMENT OF SIGNIFICANCE: Tissue-engineered skin is ideal for use in clinical wound repair. However, treatment of tissue defects using synthetic scaffolds remains challenging, mainly due to slow and insufficient vascularization. Our previous study developed a 3D bioprinted model with confined force loading, and demonstrated that confined force can affect vascular branching regulated by the YAP signal pathway. The mechanical properties of the construct need to be optimized for suturing to the edges of wounds. Here, we investigated the ability of a GelMA-HAMA-fibrin scaffold to support the confined forces created by 3D bioprinting and promote vascularization in vitro and wound healing in vivo. Our findings provide new insight into the development of degradable macroporous composite materials with mechanical stimulation as tissue-engineered scaffolds with enhanced vascularization, and also provide new treatment options for wound healing.
Collapse
Affiliation(s)
- Guangliang Zhang
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou Medical College, Soochow University, 5 Tayun Road, Suzhou, Jiangsu 215104, China.
| | - Zhiqiang Zhang
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou Medical College, Soochow University, 5 Tayun Road, Suzhou, Jiangsu 215104, China; Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medicine College of Soochow University, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China
| | - Gaobiao Cao
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou Medical College, Soochow University, 5 Tayun Road, Suzhou, Jiangsu 215104, China
| | - Qianheng Jin
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou Medical College, Soochow University, 5 Tayun Road, Suzhou, Jiangsu 215104, China; Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medicine College of Soochow University, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China
| | - Lei Xu
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou Medical College, Soochow University, 5 Tayun Road, Suzhou, Jiangsu 215104, China; Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medicine College of Soochow University, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China
| | - Jiaying Li
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medicine College of Soochow University, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China
| | - Zhe Liu
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou Medical College, Soochow University, 5 Tayun Road, Suzhou, Jiangsu 215104, China; Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medicine College of Soochow University, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China
| | - Chi Xu
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou Medical College, Soochow University, 5 Tayun Road, Suzhou, Jiangsu 215104, China; Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medicine College of Soochow University, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China
| | - Yingying Le
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi Fu
- Department of Human Anatomy, Histology and Embryology, School of Biology and Basic Medical Sciences, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China
| | - Jihui Ju
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou Medical College, Soochow University, 5 Tayun Road, Suzhou, Jiangsu 215104, China; Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medicine College of Soochow University, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China; Teaching Hospital of Medical College of Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Bin Li
- Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medicine College of Soochow University, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China.
| | - Ruixing Hou
- Department of Orthopaedics, Suzhou Ruihua Orthopaedic Hospital, Suzhou Medical College, Soochow University, 5 Tayun Road, Suzhou, Jiangsu 215104, China; Department of Orthopedic Surgery, Medical 3D Printing Center, Orthopedic Institute, The First Affiliated Hospital, School of Biology and Basic Medical Sciences, Suzhou Medicine College of Soochow University, Soochow University, 199 Renai Road, Suzhou, Jiangsu 215000, China; Teaching Hospital of Medical College of Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
2
|
Denda M, Nakanishi S. Do epidermal keratinocytes have sensory and information processing systems? Exp Dermatol 2021; 31:459-474. [PMID: 34726302 DOI: 10.1111/exd.14494] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 01/22/2023]
Abstract
It was long considered that the role of epidermal keratinocytes is solely to construct a water-impermeable protective membrane, the stratum corneum, at the uppermost layer of the skin. However, in the last two decades, it has been found that keratinocytes contain multiple sensory systems that detect environmental changes, including mechanical stimuli, sound, visible radiation, electric fields, magnetic fields, temperature and chemical stimuli, and also a variety of receptor molecules associated with olfactory or taste sensation. Moreover, neurotransmitters and their receptors that play crucial roles in the brain are functionally expressed in keratinocytes. Recent studies have demonstrated that excitation of keratinocytes can induce sensory perception in the brain. Here, we review the sensory and information processing capabilities of keratinocytes. We discuss the possibility that epidermal keratinocytes might represent the earliest stage in the development of the brain during the evolution of vertebrates.
Collapse
Affiliation(s)
- Mitsuhiro Denda
- Institute for Advanced Study of Mathematical Sciences, Meiji University, Nakano-ku, Tokyo, 164-8525, Japan
| | - Shinobu Nakanishi
- Shiseido Global Innovation Center, Nishi-ku, Yokohama, 220-0011, Japan
| |
Collapse
|
3
|
Huang R, Hu J, Qian W, Chen L, Zhang D. Recent advances in nanotherapeutics for the treatment of burn wounds. BURNS & TRAUMA 2021; 9:tkab026. [PMID: 34778468 PMCID: PMC8579746 DOI: 10.1093/burnst/tkab026] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/24/2021] [Indexed: 12/24/2022]
Abstract
Moderate or severe burns are potentially devastating injuries that can even cause death, and many of them occur every year. Infection prevention, anti-inflammation, pain management and administration of growth factors play key roles in the treatment of burn wounds. Novel therapeutic strategies under development, such as nanotherapeutics, are promising prospects for burn wound treatment. Nanotherapeutics, including metallic and polymeric nanoformulations, have been extensively developed to manage various types of burns. Both human and animal studies have demonstrated that nanotherapeutics are biocompatible and effective in this application. Herein, we provide comprehensive knowledge of and an update on the progress of various nanoformulations for the treatment of burn wounds.
Collapse
Affiliation(s)
- Rong Huang
- Department of Chemistry, College of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wei Qian
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Liang Chen
- Department of plastic surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, 400038, China
| |
Collapse
|
4
|
Dutta D, Markhoff J, Suter N, Rezwan K, Brüggemann D. Effect of Collagen Nanofibers and Silanization on the Interaction of HaCaT Keratinocytes and 3T3 Fibroblasts with Alumina Nanopores. ACS APPLIED BIO MATERIALS 2021; 4:1852-1862. [DOI: 10.1021/acsabm.0c01538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Deepanjalee Dutta
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Jana Markhoff
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Naiana Suter
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Kurosch Rezwan
- Advanced Ceramics, University of Bremen, Am Biologischen Garten 2, 28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany
| | - Dorothea Brüggemann
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
5
|
Dhavalikar P, Robinson A, Lan Z, Jenkins D, Chwatko M, Salhadar K, Jose A, Kar R, Shoga E, Kannapiran A, Cosgriff-Hernandez E. Review of Integrin-Targeting Biomaterials in Tissue Engineering. Adv Healthc Mater 2020; 9:e2000795. [PMID: 32940020 PMCID: PMC7960574 DOI: 10.1002/adhm.202000795] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/27/2020] [Indexed: 12/12/2022]
Abstract
The ability to direct cell behavior has been central to the success of numerous therapeutics to regenerate tissue or facilitate device integration. Biomaterial scientists are challenged to understand and modulate the interactions of biomaterials with biological systems in order to achieve effective tissue repair. One key area of research investigates the use of extracellular matrix-derived ligands to target specific integrin interactions and induce cellular responses, such as increased cell migration, proliferation, and differentiation of mesenchymal stem cells. These integrin-targeting proteins and peptides have been implemented in a variety of different polymeric scaffolds and devices to enhance tissue regeneration and integration. This review first presents an overview of integrin-mediated cellular processes that have been identified in angiogenesis, wound healing, and bone regeneration. Then, research utilizing biomaterials are highlighted with integrin-targeting motifs as a means to direct these cellular processes to enhance tissue regeneration. In addition to providing improved materials for tissue repair and device integration, these innovative biomaterials provide new tools to probe the complex processes of tissue remodeling in order to enhance the rational design of biomaterial scaffolds and guide tissue regeneration strategies.
Collapse
Affiliation(s)
- Prachi Dhavalikar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Robinson
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ziyang Lan
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Dana Jenkins
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Malgorzata Chwatko
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Karim Salhadar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Anupriya Jose
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ronit Kar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Erik Shoga
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Aparajith Kannapiran
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | | |
Collapse
|
6
|
Müller WEG, Schepler H, Tolba E, Wang S, Ackermann M, Muñoz-Espí R, Xiao S, Tan R, She Z, Neufurth M, Schröder HC, Wang X. A physiologically active interpenetrating collagen network that supports growth and migration of epidermal keratinocytes: zinc-polyP nanoparticles integrated into compressed collagen. J Mater Chem B 2020; 8:5892-5902. [DOI: 10.1039/d0tb01240h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It is demonstrated that polyphosphate, as a component in wound healing mats together with Zn2+, is essential for growth and migration of skin keratinocytes.
Collapse
|
7
|
Amin K, Moscalu R, Imere A, Murphy R, Barr S, Tan Y, Wong R, Sorooshian P, Zhang F, Stone J, Fildes J, Reid A, Wong J. The future application of nanomedicine and biomimicry in plastic and reconstructive surgery. Nanomedicine (Lond) 2019; 14:2679-2696. [DOI: 10.2217/nnm-2019-0119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Plastic surgery encompasses a broad spectrum of reconstructive challenges and prides itself upon developing and adopting new innovations. Practice has transitioned from microsurgery to supermicrosurgery with a possible future role in even smaller surgical frontiers. Exploiting materials on a nanoscale has enabled better visualization and enhancement of biological processes toward better wound healing, tumor identification and viability of tissues, all cornerstones of plastic surgery practice. Recent advances in nanomedicine and biomimicry herald further reconstructive progress facilitating soft and hard tissue, nerve and vascular engineering. These lay the foundation for improved biocompatibility and tissue integration by the optimization of engineered implants or tissues. This review will broadly examine each of these technologies, highlighting areas of progress that reconstructive surgeons may not be familiar with, which could see adoption into our armamentarium in the not-so-distant future.
Collapse
Affiliation(s)
- Kavit Amin
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Manchester Collaborative Centre for Inflammation Research (MCCIR), Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- The Transplant Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Roxana Moscalu
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Angela Imere
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Materials, School of Natural Sciences, Faculty of Science & Engineering Research Institutes, The University of Manchester, MSS Tower, Manchester, UK
| | - Ralph Murphy
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Simon Barr
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Youri Tan
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard Wong
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Parviz Sorooshian
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Fei Zhang
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Materials, School of Natural Sciences, Faculty of Science & Engineering Research Institutes, The University of Manchester, MSS Tower, Manchester, UK
| | - John Stone
- Manchester Collaborative Centre for Inflammation Research (MCCIR), Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- The Transplant Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - James Fildes
- Manchester Collaborative Centre for Inflammation Research (MCCIR), Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- The Transplant Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Adam Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Jason Wong
- Blond McIndoe Laboratories, Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
8
|
NATURAL RUBBER - PROPOLIS MEMBRANE IMPROVES WOUND HEALING IN SECOND-DEGREE BURNING MODEL. Int J Biol Macromol 2019; 131:980-988. [DOI: 10.1016/j.ijbiomac.2019.03.147] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 11/21/2022]
|
9
|
Sheikholeslam M, Wright MEE, Jeschke MG, Amini-Nik S. Biomaterials for Skin Substitutes. Adv Healthc Mater 2018; 7:10.1002/adhm.201700897. [PMID: 29271580 PMCID: PMC7863571 DOI: 10.1002/adhm.201700897] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/13/2017] [Indexed: 12/13/2022]
Abstract
Patients with extensive burns rely on the use of tissue engineered skin due to a lack of sufficient donor tissue, but it is a challenge to identify reliable and economical scaffold materials and donor cell sources for the generation of a functional skin substitute. The current review attempts to evaluate the performance of the wide range of biomaterials available for generating skin substitutes, including both natural biopolymers and synthetic polymers, in terms of tissue response and potential for use in the operating room. Natural biopolymers display an improved cell response, while synthetic polymers provide better control over chemical composition and mechanical properties. It is suggested that not one material meets all the requirements for a skin substitute. Rather, a composite scaffold fabricated from both natural and synthetic biomaterials may allow for the generation of skin substitutes that meet all clinical requirements including a tailored wound size and type, the degree of burn, the patient age, and the available preparation technique. This review aims to be a valuable directory for researchers in the field to find the optimal material or combination of materials based on their specific application.
Collapse
Affiliation(s)
- Mohammadali Sheikholeslam
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
| | - Meghan E E Wright
- Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Marc G Jeschke
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Saeid Amini-Nik
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, Sahandi Zangabad K, Ghamarypour A, Aref AR, Karimi M, Hamblin MR. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv Drug Deliv Rev 2018; 123:33-64. [PMID: 28782570 PMCID: PMC5742034 DOI: 10.1016/j.addr.2017.08.001] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/20/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
Abstract
According to the latest report from the World Health Organization, an estimated 265,000 deaths still occur every year as a direct result of burn injuries. A widespread range of these deaths induced by burn wound happens in low- and middle-income countries, where survivors face a lifetime of morbidity. Most of the deaths occur due to infections when a high percentage of the external regions of the body area is affected. Microbial nutrient availability, skin barrier disruption, and vascular supply destruction in burn injuries as well as systemic immunosuppression are important parameters that cause burns to be susceptible to infections. Topical antimicrobials and dressings are generally employed to inhibit burn infections followed by a burn wound therapy, because systemic antibiotics have problems in reaching the infected site, coupled with increasing microbial drug resistance. Nanotechnology has provided a range of molecular designed nanostructures (NS) that can be used in both therapeutic and diagnostic applications in burns. These NSs can be divided into organic and non-organic (such as polymeric nanoparticles (NPs) and silver NPs, respectively), and many have been designed to display multifunctional activity. The present review covers the physiology of skin, burn classification, burn wound pathogenesis, animal models of burn wound infection, and various topical therapeutic approaches designed to combat infection and stimulate healing. These include biological based approaches (e.g. immune-based antimicrobial molecules, therapeutic microorganisms, antimicrobial agents, etc.), antimicrobial photo- and ultrasound-therapy, as well as nanotechnology-based wound healing approaches as a revolutionizing area. Thus, we focus on organic and non-organic NSs designed to deliver growth factors to burned skin, and scaffolds, dressings, etc. for exogenous stem cells to aid skin regeneration. Eventually, recent breakthroughs and technologies with substantial potentials in tissue regeneration and skin wound therapy (that are as the basis of burn wound therapies) are briefly taken into consideration including 3D-printing, cell-imprinted substrates, nano-architectured surfaces, and novel gene-editing tools such as CRISPR-Cas.
Collapse
Affiliation(s)
- Mirza Ali Mofazzal Jahromi
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences (JUMS), Jahrom, Iran; Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences (JUMS), Jahrom, Iran
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Masoud Moosavi Basri
- Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Bioenvironmental Research Center, Sharif University of Technology, Tehran, Iran; Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - Keyvan Sahandi Zangabad
- Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Polymer Engineering, Sahand University of Technology, PO Box 51335-1996, Tabriz, Iran; Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ameneh Ghamarypour
- Bio-Nano-Interfaces: Convergence of Sciences (BNICS), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad university, Tehran, Iran
| | - Amir R Aref
- Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Dermatology, Harvard Medical School, Boston, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, USA.
| |
Collapse
|
11
|
Goodarzi P, Falahzadeh K, Nematizadeh M, Farazandeh P, Payab M, Larijani B, Tayanloo Beik A, Arjmand B. Tissue Engineered Skin Substitutes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1107:143-188. [PMID: 29855826 DOI: 10.1007/5584_2018_226] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fundamental skin role is to supply a supportive barrier to protect body against harmful agents and injuries. Three layers of skin including epidermis, dermis and hypodermis form a sophisticated tissue composed of extracellular matrix (ECM) mainly made of collagens and glycosaminoglycans (GAGs) as a scaffold, different cell types such as keratinocytes, fibroblasts and functional cells embedded in the ECM. When the skin is injured, depends on its severity, the majority of mentioned components are recruited to wound regeneration. Additionally, different growth factors like fibroblast growth factor (FGF), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF) are needed to orchestrated wound healing process. In case of large surface area wounds, natural wound repair seems inefficient. Inspired by nature, scientists in tissue engineering field attempt to engineered constructs mimicking natural healing process to promote skin restoration in untreatable injuries. There are three main types of commercially available engineered skin substitutes including epidermal, dermal, and dermoepidermal. Each of them could be composed of scaffold, desired cell types or growth factors. These substitutes could have autologous, allogeneic, or xenogeneic origin. Moreover, they may be cellular or acellular. They are used to accelerate wound healing and recover normal skin functions with pain relief. Although there are a wide variety of commercially available skin substitutes, almost none of them considered as an ideal equivalents required for proper wound healing.
Collapse
Affiliation(s)
- Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Falahzadeh
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehran Nematizadeh
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Farazandeh
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Babitha S, Korrapati PS. Biodegradable zein–polydopamine polymeric scaffold impregnated with TiO
2
nanoparticles for skin tissue engineering. Biomed Mater 2017; 12:055008. [DOI: 10.1088/1748-605x/aa7d5a] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Xu R, Bai Y, Zhao J, Xia H, Kong Y, Yao Z, Yan R, Zhang X, Hu X, Liu M, Yang Q, Luo G, Wu J. Silicone rubber membrane with specific pore size enhances wound regeneration. J Tissue Eng Regen Med 2017; 12:e905-e917. [DOI: 10.1002/term.2414] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/07/2017] [Accepted: 01/13/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Rui Xu
- Department of Neurology, Xinqiao Hospital & The Second Affiliated HospitalThird Military Medical University Chongqing China
| | - Yang Bai
- Institute of Burn Research, Southwest HospitalThird Military Medical University; State Key Laboratory of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics Chongqing China
- Department of Otolaryngology, Southwest HospitalThird Military Medical University Chongqing China
| | - Jian Zhao
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan University Chengdu China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan University Chengdu China
| | - Yi Kong
- Institute of Burn Research, Southwest HospitalThird Military Medical University; State Key Laboratory of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics Chongqing China
| | - Zhihui Yao
- Institute of Burn Research, Southwest HospitalThird Military Medical University; State Key Laboratory of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics Chongqing China
| | - Rongshuai Yan
- Institute of Burn Research, Southwest HospitalThird Military Medical University; State Key Laboratory of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics Chongqing China
| | - Xiaorong Zhang
- Institute of Burn Research, Southwest HospitalThird Military Medical University; State Key Laboratory of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics Chongqing China
| | - Xiaohong Hu
- Institute of Burn Research, Southwest HospitalThird Military Medical University; State Key Laboratory of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics Chongqing China
| | - Meixi Liu
- Institute of Burn Research, Southwest HospitalThird Military Medical University; State Key Laboratory of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics Chongqing China
| | - Qingwu Yang
- Department of Neurology, Xinqiao Hospital & The Second Affiliated HospitalThird Military Medical University Chongqing China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest HospitalThird Military Medical University; State Key Laboratory of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics Chongqing China
| | - Jun Wu
- Institute of Burn Research, Southwest HospitalThird Military Medical University; State Key Laboratory of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics Chongqing China
| |
Collapse
|
14
|
Nasrollahi S, Banerjee S, Qayum B, Banerjee P, Pathak A. Nanoscale Matrix Topography Influences Microscale Cell Motility through Adhesions, Actin Organization, and Cell Shape. ACS Biomater Sci Eng 2016; 3:2980-2986. [DOI: 10.1021/acsbiomaterials.6b00554] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samila Nasrollahi
- Department of Mechanical
Engineering and Materials Science, Washington University, Saint Louis, Missouri 63130, United States
| | - Sriya Banerjee
- Department of Mechanical
Engineering and Materials Science, Washington University, Saint Louis, Missouri 63130, United States
| | - Beenish Qayum
- Department of Mechanical
Engineering and Materials Science, Washington University, Saint Louis, Missouri 63130, United States
| | - Parag Banerjee
- Department of Mechanical
Engineering and Materials Science, Washington University, Saint Louis, Missouri 63130, United States
| | - Amit Pathak
- Department of Mechanical
Engineering and Materials Science, Washington University, Saint Louis, Missouri 63130, United States
| |
Collapse
|
15
|
Xiao Y, Ahadian S, Radisic M. Biochemical and Biophysical Cues in Matrix Design for Chronic and Diabetic Wound Treatment. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:9-26. [PMID: 27405960 DOI: 10.1089/ten.teb.2016.0200] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Progress in biomaterial science and engineering and increasing knowledge in cell biology have enabled us to develop functional biomaterials providing appropriate biochemical and biophysical cues for tissue regeneration applications. Tissue regeneration is particularly important to treat chronic wounds of people with diabetes. Understanding and controlling the cellular microenvironment of the wound tissue are important to improve the wound healing process. In this study, we review different biochemical (e.g., growth factors, peptides, DNA, and RNA) and biophysical (e.g., topographical guidance, pressure, electrical stimulation, and pulsed electromagnetic field) cues providing a functional and instructive acellular matrix to heal diabetic chronic wounds. The biochemical and biophysical signals generally regulate cell-matrix interactions and cell behavior and function inducing the tissue regeneration for chronic wounds. Some technologies and devices have already been developed and used in the clinic employing biochemical and biophysical cues for wound healing applications. These technologies can be integrated with smart biomaterials to deliver therapeutic agents to the wound tissue in a precise and controllable manner. This review provides useful guidance in understanding molecular mechanisms and signals in the healing of diabetic chronic wounds and in designing instructive biomaterials to treat them.
Collapse
Affiliation(s)
- Yun Xiao
- 1 Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario, Canada .,2 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada
| | - Samad Ahadian
- 2 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada
| | - Milica Radisic
- 1 Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario, Canada .,2 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Ontario, Canada
| |
Collapse
|
16
|
Nanoporous Anodic Alumina for Drug Delivery and Biomedical Applications. NANOPOROUS ALUMINA 2015. [DOI: 10.1007/978-3-319-20334-8_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Muthusubramaniam L, Zaitseva T, Paukshto M, Martin G, Desai T. Effect of collagen nanotopography on keloid fibroblast proliferation and matrix synthesis: implications for dermal wound healing. Tissue Eng Part A 2014; 20:2728-36. [PMID: 24724556 DOI: 10.1089/ten.tea.2013.0539] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Keloids are locally exuberant dermal scars characterized by excessive fibroblast proliferation and matrix accumulation. Although treatment strategies include surgical removal and intralesional steroid injections, an effective regimen is yet to be established due to a high rate of recurrence. The regressing center and growing margin of the keloid have different collagen architecture and also differ in the rate of proliferation. To investigate whether proliferation is responsive to collagen topography, keloid, scar, and dermal fibroblasts were cultured on nanopatterned scaffolds varying in collagen fibril diameter and alignment-small and large diameter, aligned and random fibrils, and compared to cells grown on flat collagen-coated substrates, respectively. Cell morphology, proliferation, and expression of six genes related to proliferation (cyclin D1), phenotype (α-smooth muscle actin), and matrix synthesis (collagens I and III, and matrix metalloproteinase-1 and -2) were measured to evaluate cell response. Fibril alignment was shown to reduce proliferation and matrix synthesis in all three types of fibroblasts. Further, keloid cells were found to be most responsive to nanotopography.
Collapse
Affiliation(s)
- Lalitha Muthusubramaniam
- 1 Department of Bioengineering and Therapeutic Sciences, University of California , San Francisco, San Francisco, California
| | | | | | | | | |
Collapse
|
18
|
Karahaliloğlu Z, Ercan B, Denkbaş EB, Webster TJ. Nanofeatured silk fibroin membranes for dermal wound healing applications. J Biomed Mater Res A 2014; 103:135-44. [DOI: 10.1002/jbm.a.35161] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/19/2014] [Accepted: 02/25/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Zeynep Karahaliloğlu
- Nanotechnology and Nanomedicine Division; Hacettepe University; Beytepe 06800 Ankara Turkey
| | - Batur Ercan
- Chemical Engineering Department; Northeastern University; Boston 02115 Massachusetts
| | - Emir B. Denkbaş
- Chemistry Department; Biochemistry Division, Hacettepe University; Beytepe 06800 Ankara Turkey
| | - Thomas J. Webster
- Chemical Engineering Department; Northeastern University; Boston 02115 Massachusetts
- Center of Excellence for Advanced Materials Research, King Abdulaziz University; Jeddah Saudi Arabia
| |
Collapse
|
19
|
Karahaliloğlu Z, Ercan B, Chung S, Taylor E, Denkbaş EB, Webster TJ. Nanostructured anti-bacterial poly-lactic-co-glycolic acid films for skin tissue engineering applications. J Biomed Mater Res A 2014; 102:4598-608. [PMID: 24677536 DOI: 10.1002/jbm.a.35141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/05/2014] [Accepted: 02/18/2014] [Indexed: 11/08/2022]
Abstract
Major issues faced with the use of today's skin grafts are infection, scar tissue formation, insufficient keratinocyte (or skin producing cells) proliferation and high production costs. To overcome these limitations, we propose here for the first time, a nanofeatured poly(lactide-co-glycolide) (PLGA) membrane as a next generation antibacterial skin graft material. An alkaline surface treatment method was used to create random nanofeatures on PLGA membranes where sodium hydroxide (NaOH) concentration and exposure times were altered to control surface morphology. Most significantly, and without the use of antibiotics, results showed a decrease in Staphylococcus aureus (a dangerous pathogen infecting skin grafts) growth for up to ∼40% after 2 days of culture on nanofeatured PLGA membranes compared to untreated controls. Results also showed that while bacteria growth was stunted, mammalian cell growth was not. Specifically, cell culture results showed an increase in human epidermal keratinocyte density, while the density of scar tissue forming human dermal fibroblasts, did not change on nanofeatured PLGA surfaces compared to the untreated controls after 3 days of culture. These findings indicate that the alkaline treatment of PLGA membranes is a promising quick and effective manner to limit scar tissue formation and bacterial invasion while increasing skin cell proliferation for improving numerous wound-healing applications.
Collapse
Affiliation(s)
- Zeynep Karahaliloğlu
- Nanotechnology and Nanomedicine Division, Hacettepe University, 06800, Beytepe, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
20
|
Yanez-Soto B, Liliensiek SJ, Gasiorowski JZ, Murphy CJ, Nealey PF. The influence of substrate topography on the migration of corneal epithelial wound borders. Biomaterials 2013; 34:9244-51. [PMID: 24016856 PMCID: PMC3839567 DOI: 10.1016/j.biomaterials.2013.08.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/17/2013] [Indexed: 10/26/2022]
Abstract
Currently available artificial corneas can develop post-implant complications including epithelial downgrowth, infection, and stromal melting. The likelihood of developing these disastrous complications could be minimized through improved formation and maintenance of a healthy epithelium covering the implant. We hypothesize that this epithelial formation may be enhanced through the incorporation of native corneal basement membrane biomimetic chemical and physical cues onto the surface of the keratoprosthesis. We fabricated hydrogel substrates molded with topographic features containing specific bio-ligands and developed an in vitro wound healing assay. In our experiments, the rate of corneal epithelial wound healing was significantly increased by 50% in hydrogel surfaces containing topographic features, compared to flat surfaces with the same chemical attributes. We determined that this increased healing is not due to enhanced proliferation or increased spreading of the epithelial cells, but to an increased active migration of the epithelial cells. These results show the potential benefit of restructuring and improving the surface of artificial corneas to enhance epithelial coverage and more rapidly restore the formation of a functional epithelium.
Collapse
Affiliation(s)
- Bernardo Yanez-Soto
- Department of Chemical and Biological Engineering, School of Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|