1
|
Tan FH, Bronner ME. Regenerative loss in the animal kingdom as viewed from the mouse digit tip and heart. Dev Biol 2024; 507:44-63. [PMID: 38145727 PMCID: PMC10922877 DOI: 10.1016/j.ydbio.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The myriad regenerative abilities across the animal kingdom have fascinated us for centuries. Recent advances in developmental, molecular, and cellular biology have allowed us to unearth a surprising diversity of mechanisms through which these processes occur. Developing an all-encompassing theory of animal regeneration has thus proved a complex endeavor. In this chapter, we frame the evolution and loss of animal regeneration within the broad developmental constraints that may physiologically inhibit regenerative ability across animal phylogeny. We then examine the mouse as a model of regeneration loss, specifically the experimental systems of the digit tip and heart. We discuss the digit tip and heart as a positionally-limited system of regeneration and a temporally-limited system of regeneration, respectively. We delve into the physiological processes involved in both forms of regeneration, and how each phase of the healing and regenerative process may be affected by various molecular signals, systemic changes, or microenvironmental cues. Lastly, we also discuss the various approaches and interventions used to induce or improve the regenerative response in both contexts, and the implications they have for our understanding regenerative ability more broadly.
Collapse
Affiliation(s)
- Fayth Hui Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
2
|
Simkin J, Seifert AW. Concise Review: Translating Regenerative Biology into Clinically Relevant Therapies: Are We on the Right Path? Stem Cells Transl Med 2017; 7:220-231. [PMID: 29271610 PMCID: PMC5788874 DOI: 10.1002/sctm.17-0213] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023] Open
Abstract
Despite approaches in regenerative medicine using stem cells, bio‐engineered scaffolds, and targeted drug delivery to enhance human tissue repair, clinicians remain unable to regenerate large‐scale, multi‐tissue defects in situ. The study of regenerative biology using mammalian models of complex tissue regeneration offers an opportunity to discover key factors that stimulate a regenerative rather than fibrotic response to injury. For example, although primates and rodents can regenerate their distal digit tips, they heal more proximal amputations with scar tissue. Rabbits and African spiny mice re‐grow tissue to fill large musculoskeletal defects through their ear pinna, while other mammals fail to regenerate identical defects and instead heal ear holes through fibrotic repair. This Review explores the utility of these comparative healing models using the spiny mouse ear pinna and the mouse digit tip to consider how mechanistic insight into reparative regeneration might serve to advance regenerative medicine. Specifically, we consider how inflammation and immunity, extracellular matrix composition, and controlled cell proliferation intersect to establish a pro‐regenerative microenvironment in response to injuries. Understanding how some mammals naturally regenerate complex tissue can provide a blueprint for how we might manipulate the injury microenvironment to enhance regenerative abilities in humans. Stem Cells Translational Medicine2018;7:220–231
Collapse
Affiliation(s)
- Jennifer Simkin
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
3
|
Boraas LC, Ahsan T. Lack of vimentin impairs endothelial differentiation of embryonic stem cells. Sci Rep 2016; 6:30814. [PMID: 27480130 PMCID: PMC4969593 DOI: 10.1038/srep30814] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/08/2016] [Indexed: 12/18/2022] Open
Abstract
The cytoskeletal filament vimentin is inherent to the endothelial phenotype and is critical for the proper function of endothelial cells in adult mice. It is unclear, however, if the presence of vimentin is necessary during differentiation to the endothelial phenotype. Here we evaluated gene and protein expression of differentiating wild type embryonic stem cells (WT ESCs) and vimentin knockout embryonic stem cells (VIM −/− ESCs) using embryoid bodies (EBs) formed from both cell types. Over seven days of differentiation VIM −/− EBs had altered morphology compared to WT EBs, with a rippled outer surface and a smaller size due to decreased proliferation. Gene expression of pluripotency markers decreased similarly for EBs of both cell types; however, VIM −/− EBs had impaired differentiation towards the endothelial phenotype. This was quantified with decreased expression of markers along the specification pathway, specifically the early mesodermal marker Brachy-T, the lateral plate mesodermal marker FLK1, and the endothelial-specific markers TIE2, PECAM, and VE-CADHERIN. Taken together, these results indicate that the absence of vimentin impairs spontaneous differentiation of ESCs to the endothelial phenotype in vitro.
Collapse
Affiliation(s)
- Liana C Boraas
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Tabassum Ahsan
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| |
Collapse
|
4
|
Quijano LM, Lynch KM, Allan CH, Badylak SF, Ahsan T. Looking Ahead to Engineering Epimorphic Regeneration of a Human Digit or Limb. TISSUE ENGINEERING. PART B, REVIEWS 2016; 22:251-62. [PMID: 26603349 PMCID: PMC4892205 DOI: 10.1089/ten.teb.2015.0401] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/24/2015] [Indexed: 01/08/2023]
Abstract
Approximately 2 million people have had limb amputations in the United States due to disease or injury, with more than 185,000 new amputations every year. The ability to promote epimorphic regeneration, or the regrowth of a biologically based digit or limb, would radically change the prognosis for amputees. This ambitious goal includes the regrowth of a large number of tissues that need to be properly assembled and patterned to create a fully functional structure. We have yet to even identify, let alone address, all the obstacles along the extended progression that limit epimorphic regeneration in humans. This review aims to present introductory fundamentals in epimorphic regeneration to facilitate design and conduct of research from a tissue engineering and regenerative medicine perspective. We describe the clinical scenario of human digit healing, featuring published reports of regenerative potential. We then broadly delineate the processes of epimorphic regeneration in nonmammalian systems and describe a few mammalian regeneration models. We give particular focus to the murine digit tip, which allows for comparative studies of regeneration-competent and regeneration-incompetent outcomes in the same animal. Finally, we describe a few forward-thinking opportunities for promoting epimorphic regeneration in humans.
Collapse
Affiliation(s)
- Lina M. Quijano
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
| | - Kristen M. Lynch
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
| | - Christopher H. Allan
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, Washington
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tabassum Ahsan
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana
| |
Collapse
|
5
|
Kisch T, Klemens JM, Hofmann K, Liodaki E, Gierloff M, Moellmeier D, Stang F, Mailaender P, Habermann J, Brandenburger M. Collection of Wound Exudate From Human Digit Tip Amputations Does Not Impair Regenerative Healing: A Randomized Trial. Medicine (Baltimore) 2015; 94:e1764. [PMID: 26469916 PMCID: PMC4616794 DOI: 10.1097/md.0000000000001764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The regrowth of amputated digit tips represents a unique regenerative healing in mammals with subcutaneous volume regrowth, restoration of dactylogram, and suppression of scar formation. Although factor analysis in amphibians and even in mice is easy to obtain, safety of harvesting biomaterial from human digit tip amputations for analysis has not yet been described.The aim of this study was to evaluate if recovering wound exudate does hamper clinical outcome or influence microbiologic or inflammation status.A predefined cohort of 18 patients with fresh digit tip amputations was randomly assigned to receive standard therapy (debridement, occlusive dressing) with (n = 9) or without (n = 9) collection of the whole wound exudate in every dressing change. Primary endpoint (lengthening) and secondary endpoints (regeneration of dactylogram, nail bed and bone healing, time to complete wound closure, scar formation, 2-point discrimination, microbiologic analysis, inflammatory factors interleukin (IL)-1α, tumor necrosis factor-α, IL-4, and IL-6) were determined by an independent, blinded observer.Patients' characteristics showed no significant differences between the groups. All patients completed the study to the end of 3 months follow-up. Exudate collection did not influence primary and secondary endpoints. Furthermore, positive microbiologic findings as well as pus- and necrosis-like appearance neither impaired tissue restoration nor influenced inflammatory factor release.Here, the authors developed an easy and safe protocol for harvesting wound exudate from human digit tip amputations. For the first time, it was shown that harvesting does not impair regenerative healing. Using this method, further studies can be conducted to analyze regeneration associated factors in the human digit tip.DRKS.de Identifier: DRKS00006882 (UTN: U1111-1166-5723).
Collapse
Affiliation(s)
- Tobias Kisch
- From the Department of Plastic Surgery and Hand Surgery, University Hospital Schleswig-Holstein Campus Lübeck, University of Lübeck (TK, EL, MG, DM, FS, PM); Fraunhofer Research Institution for Marine Biotechnology EMB (JMK, KH, MB); and Department of Surgery, Section for Translational Surgical Oncology and Biobanking, University Hospital Schleswig-Holstein Campus Lübeck, University of Lübeck, Lübeck, Germany (JH)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lynch KM, Ahsan T. Correlating the effects of bone morphogenic protein to secreted soluble factors from fibroblasts and mesenchymal stem cells in regulating regenerative processes in vitro. Tissue Eng Part A 2015; 20:3122-9. [PMID: 24851900 DOI: 10.1089/ten.tea.2014.0278] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The capacity to regenerate complex tissue structures after amputation in humans is limited to the digit tip. In a comparable mouse digit model, which includes both distal regeneration-competent and proximal regeneration-incompetent regions, successful regeneration involves precise orchestration of complex microenvironmental cues, including paracrine signaling via heterogeneous cell-cell interactions. Initial cellular processes, such as proliferation and migration, are critical in the formation of an initial stable cell mass and the ultimate regenerative outcome. Hence, the objective of these in vitro studies was to investigate the effect of soluble factors secreted by fibroblasts and mesenchymal stem cells (MSCs) on the proliferation and migration of cells from the regeneration-competent (P3) and -incompetent (P2) regions of the mouse digit tip. We found that P2 and P3 cells were more responsive to fibroblasts than MSCs and that the effects were mediated by bi-directional communication. To initiate understanding of the specific soluble factors that may be involved in the fibroblast-mediated changes in migration of P2 and P3 cells, bone morphogenic protein 2 (BMP2) was exogenously added to the medium. We found that changes in migration of P3 cells were similar when exposed to BMP2 or co-cultured with fibroblasts, indicating that BMP signaling may be responsible for the migratory response of P3 cells to the presence of fibroblasts. Furthermore, BMP2 expression in fibroblasts was shown to be responsive to tensile strain, as is present during wound closure. Therefore, these in vitro studies indicate that regenerative processes may be regulated by fibroblast-secreted soluble factors, which, in turn, are modulated by both cross-talk between heterogeneous phenotypes and the physical microenvironment of the healing site.
Collapse
Affiliation(s)
- Kristen M Lynch
- Department of Biomedical Engineering, Tulane University , New Orleans, Louisiana
| | | |
Collapse
|
7
|
Simkin J, Sammarco MC, Dawson LA, Schanes PP, Yu L, Muneoka K. The mammalian blastema: regeneration at our fingertips. ACTA ACUST UNITED AC 2015; 2:93-105. [PMID: 27499871 PMCID: PMC4895320 DOI: 10.1002/reg2.36] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/14/2015] [Accepted: 03/16/2015] [Indexed: 02/06/2023]
Abstract
In the mouse, digit tip regeneration progresses through a series of discrete stages that include inflammation, histolysis, epidermal closure, blastema formation, and redifferentiation. Recent studies reveal how each regenerative stage influences subsequent stages to establish a blastema that directs the successful regeneration of a complex mammalian structure. The focus of this review is on early events of healing and how an amputation wound transitions into a functional blastema. The stepwise formation of a mammalian blastema is proposed to provide a model for how specific targeted treatments can enhance regenerative performance in humans.
Collapse
Affiliation(s)
- Jennifer Simkin
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| | - Mimi C Sammarco
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| | - Lindsay A Dawson
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| | - Paula P Schanes
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| | - Ling Yu
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| | - Ken Muneoka
- Division of Developmental Biology, Department of Cell and Molecular Biology Tulane University New Orleans Louisiana 70118 USA
| |
Collapse
|