1
|
Dai GC, Wang H, Ming Z, Lu PP, Li YJ, Gao YC, Shi L, Cheng Z, Liu XY, Rui YF. Heterotopic mineralization (ossification or calcification) in aged musculoskeletal soft tissues: A new candidate marker for aging. Ageing Res Rev 2024; 95:102215. [PMID: 38325754 DOI: 10.1016/j.arr.2024.102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/21/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Aging can lead to various disorders in organisms and with the escalating impact of population aging, the incidence of age-related diseases is steadily increasing. As a major risk factor for chronic illnesses in humans, the prevention and postponement of aging have become focal points of research among numerous scientists. Aging biomarkers, which mirror molecular alterations at diverse levels in organs, tissues, and cells, can be used to monitor and evaluate biological changes associated with aging. Currently, aging biomarkers are primarily categorized into physiological traits, imaging characteristics, histological features, cellular-level alterations, and molecular-level changes that encompass the secretion of aging-related factors. However, in the context of the musculoskeletal soft tissue system, aging-related biological indicators primarily involve microscopic parameters at the cellular and molecular levels, resulting in inconvenience and uncertainty in the assessment of musculoskeletal soft tissue aging. To identify convenient and effective indicators, we conducted a comprehensive literature review to investigate the correlation between ectopic mineralization and age-related changes in the musculoskeletal soft tissue system. Here, we introduce the concept of ectopic mineralization as a macroscopic, reliable, and convenient biomarker for musculoskeletal soft tissue aging and present novel targets and strategies for the future management of age-related musculoskeletal soft tissue disorders.
Collapse
Affiliation(s)
- Guang-Chun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Hao Wang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Zhang Ming
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Pan-Pan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Ying-Juan Li
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Yu-Cheng Gao
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Liu Shi
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Zhang Cheng
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Xiao-Yu Liu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China
| | - Yun-Feng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Orthopaedic Trauma Institute, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
2
|
Depuydt E, Chiers K, Van Hecke L, Saunders J, Martens A, Pille F, Spaas JH. Assessing the functional properties of tenogenic primed mesenchymal stem cells in ex vivo equine tendon and ligament explants: A preliminary study. Stem Cell Res 2022; 65:102963. [PMID: 36395687 DOI: 10.1016/j.scr.2022.102963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
Injuries to equine tendons and ligaments are career-compromising, causing reduced performance and premature retirement. Promising treatment alternatives have been investigated in the field of mesenchymal stem cells (MSCs). In this study, the tissue adherence and protein expression of tenogenic primed mesenchymal stem cells (tpMSCs) after administration to ex vivo tendon and ligament explants is investigated. First, collagen type I (COL I) and smooth muscle actin (SMA) expression was assessed in cytospins prepared from native MSCs and tpMSCs. Second, equine superficial digital flexor tendon and suspensory ligament explants were cultivated, and a lesion was treated with both cell types. Subsequently, cell adhesion to the explants and the amount of COL I and SMA positive cells was evaluated. The cytospins revealed a significantly higher COL I and lower SMA expression in tpMSCs compared to native MSCs. In the explants, tpMSCs showed a significantly higher tendon and ligament adherence. Furthermore, a significantly higher percentage of COL I positive and a lower percentage of SMA positive cells were observed in the lesions treated with tpMSCs. The results of these explant co-cultures may demonstrate at least a part of the mechanism of action and functional properties of tpMSCs in restoring function to tendons and ligaments.
Collapse
Affiliation(s)
- Eva Depuydt
- Boehringer Ingelheim Veterinary Medicine Belgium, Noorwegenstraat 4, 9940 Evergem, Belgium; Ghent University, Faculty of Veterinary Medicine, Department of Surgery and Anaesthesiology of Domestic Animals, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Koen Chiers
- Ghent University, Faculty of Veterinary Medicine, Department of Pathology, Bacteriology and Poultry diseases, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Lore Van Hecke
- Boehringer Ingelheim Veterinary Medicine Belgium, Noorwegenstraat 4, 9940 Evergem, Belgium.
| | - Jimmy Saunders
- Ghent University, Faculty of Veterinary Medicine, Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Ann Martens
- Ghent University, Faculty of Veterinary Medicine, Department of Surgery and Anaesthesiology of Domestic Animals, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Frederik Pille
- Ghent University, Faculty of Veterinary Medicine, Department of Surgery and Anaesthesiology of Domestic Animals, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | - Jan H Spaas
- Ghent University, Faculty of Veterinary Medicine, Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Salisburylaan 133, 9820 Merelbeke, Belgium; Boehringer Ingelheim Animal Health, 1730 Olympic Drive, 30606 Athens, GA, USA.
| |
Collapse
|
3
|
Depuydt E, Broeckx SY, Chiers K, Patruno M, Da Dalt L, Duchateau L, Saunders J, Pille F, Martens A, Van Hecke L, Spaas JH. Cellular and Humoral Immunogenicity Investigation of Single and Repeated Allogeneic Tenogenic Primed Mesenchymal Stem Cell Treatments in Horses Suffering From Tendon Injuries. Front Vet Sci 2022; 8:789293. [PMID: 35281431 PMCID: PMC8907452 DOI: 10.3389/fvets.2021.789293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022] Open
Abstract
The use of mesenchymal stem cells (MSCs) for the treatment of equine tendon disease is widely investigated because of their regenerative and immunomodulatory potential. However, questions have been raised concerning the immunogenic properties of allogeneic MSCs. Therefore, two studies were conducted to assess the safety of equine allogeneic peripheral blood-derived tenogenic primed MSCs (tpMSCs). The objective was to evaluate if a single and repeated tpMSC administration induced a cellular and humoral immune response in horses suffering from tendon injuries. Horses enrolled in the first study (n = 8) had a surgically induced superficial digital flexor tendon core lesion and were treated intralesionally with tpMSCs. Before and after treatment the cellular immunogenicity was assessed by modified mixed lymphocyte reactions. The humoral immune response was investigated using a crossmatch assay. Presence of anti-bovine serum albumin (BSA) antibodies was detected via ELISA. Horses enrolled in the second study (n = 6) suffered from a naturally occurring tendon injury and were treated twice with tpMSCs. Blood was collected after the second treatment for the same immunological assays. No cellular immune response was found in any of the horses. One out of eight horses in the first study and none of the horses in the second study had anti-tpMSC antibodies. This particular horse had an equine sarcoid and further investigation revealed presence of antibodies against sarcoid cells and epithelial-like stem cells before treatment, which increased after treatment. Additionally, formation of antibodies against BSA was observed. These findings might indicate a non-specific immune response generated after treatment. Serum from the other horses revealed no such antibody formation. These two studies showed that the administration of tpMSCs did not induce a cellular or humoral immune response following an intralesional single or repeated (two consecutive) allogeneic tpMSC treatment in horses with tendon injury, except for one horse. Therefore, a larger field study should confirm these findings and support the safe use of tpMSCs as a therapeutic for horses suffering from tendon injuries.
Collapse
Affiliation(s)
- Eva Depuydt
- Boehringer Ingelheim Veterinary Medicine Belgium, Evergem, Belgium
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sarah Y. Broeckx
- Boehringer Ingelheim Veterinary Medicine Belgium, Evergem, Belgium
| | - Koen Chiers
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Padova, Italy
| | - Laura Da Dalt
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Padova, Italy
| | - Luc Duchateau
- Biometrics Research Group, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jimmy Saunders
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Frederik Pille
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ann Martens
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lore Van Hecke
- Boehringer Ingelheim Veterinary Medicine Belgium, Evergem, Belgium
| | - Jan H. Spaas
- Boehringer Ingelheim Veterinary Medicine Belgium, Evergem, Belgium
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
4
|
Moretti L, Stalfort J, Barker TH, Abebayehu D. The interplay of fibroblasts, the extracellular matrix, and inflammation in scar formation. J Biol Chem 2022; 298:101530. [PMID: 34953859 PMCID: PMC8784641 DOI: 10.1016/j.jbc.2021.101530] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Various forms of fibrosis, comprising tissue thickening and scarring, are involved in 40% of deaths across the world. Since the discovery of scarless functional healing in fetuses prior to a certain stage of development, scientists have attempted to replicate scarless wound healing in adults with little success. While the extracellular matrix (ECM), fibroblasts, and inflammatory mediators have been historically investigated as separate branches of biology, it has become increasingly necessary to consider them as parts of a complex and tightly regulated system that becomes dysregulated in fibrosis. With this new paradigm, revisiting fetal scarless wound healing provides a unique opportunity to better understand how this highly regulated system operates mechanistically. In the following review, we navigate the four stages of wound healing (hemostasis, inflammation, repair, and remodeling) against the backdrop of adult versus fetal wound healing, while also exploring the relationships between the ECM, effector cells, and signaling molecules. We conclude by singling out recent findings that offer promising leads to alter the dynamics between the ECM, fibroblasts, and inflammation to promote scarless healing. One factor that promises to be significant is fibroblast heterogeneity and how certain fibroblast subpopulations might be predisposed to scarless healing. Altogether, reconsidering fetal wound healing by examining the interplay of the various factors contributing to fibrosis provides new research directions that will hopefully help us better understand and address fibroproliferative diseases, such as idiopathic pulmonary fibrosis, liver cirrhosis, systemic sclerosis, progressive kidney disease, and cardiovascular fibrosis.
Collapse
Affiliation(s)
- Leandro Moretti
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Jack Stalfort
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Thomas Harrison Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Daniel Abebayehu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
5
|
Liang Q, Lu Y, Yu L, Zhu Q, Xie W, Wang Y, Ye L, Li Q, Liu S, Liu Y, Zhu C. Disruption of the mouse Bmal1 locus promotes heterotopic ossification with aging via TGF-beta/BMP signaling. J Bone Miner Metab 2022; 40:40-55. [PMID: 34626248 DOI: 10.1007/s00774-021-01271-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/12/2021] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Heterotopic ossification of tendons and ligaments is a painful and debilitating disease with no effective treatment. Although aging has been reported to be correlated with the occurrence and development of this disease, the mechanism remains unknown. MATERIALS AND METHODS In the present study, we generated Bmal1-/- mice, which disrupted the circadian clock and displayed premature aging, as an aging model to explore the role of Bmal1 in TGF-beta (β)/BMP signaling in progressive heterotopic ossification of tendons and ligaments with aging. RESULTS We first confirmed that BMAL1 expression is downregulated in human fibroblasts from ossification of the posterior longitudinal ligament using online datasets. Bmal1 deficiency in mice caused significantly progressive heterotopic ossification with aging starting at week 6, notably in the Achilles tendons and posterior longitudinal ligaments. Ossification of the Achilles tendons was accompanied by progressive motor dysfunction of the ankle joint. Histology and immunostaining showed markedly increased endochondral ossification in the posterior longitudinal ligaments and Achilles tendons of Bmal1-/- mice. Ligament-derived Bmal1-/- fibroblasts showed an osteoblast-like phenotype, upregulated osteogenic and chondrogenic markers, and activated TGFβ/BMP signaling, which was enhanced by TGFβ1 stimulation. Furthermore, Bmal1-/- mouse embryonic fibroblasts had a stronger potential for osteogenic differentiation with activation of TGFβ/BMP signaling. CONCLUSIONS These findings demonstrated that Bmal1 negatively regulates endochondral ossification in heterotopic ossification of tendons and ligaments with aging via TGFβ/BMP signaling, thereby identifying a new regulatory mechanism in age-related heterotopic ossification of tendons and ligaments.
Collapse
Affiliation(s)
- Qian Liang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yingsi Lu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Lu Yu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Qingqing Zhu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Wenlin Xie
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yun Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Liping Ye
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Qiji Li
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Shaoyu Liu
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yan Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Chengming Zhu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
6
|
Depuydt E, Broeckx SY, Van Hecke L, Chiers K, Van Brantegem L, van Schie H, Beerts C, Spaas JH, Pille F, Martens A. The Evaluation of Equine Allogeneic Tenogenic Primed Mesenchymal Stem Cells in a Surgically Induced Superficial Digital Flexor Tendon Lesion Model. Front Vet Sci 2021; 8:641441. [PMID: 33748217 PMCID: PMC7973085 DOI: 10.3389/fvets.2021.641441] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/05/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Tendon injuries are very common in horses and jeopardize the athletic performance, and due to the high risk of reinjury may lead to early retirement. The use of mesenchymal stem cells for the treatment of equine tendon disease is widely investigated because of their regenerative potential. The objective of this study is to investigate the safety and efficacy of equine allogeneic tenogenic primed mesenchymal stem cells (tpMSCs) for the management of tendinitis in horses. Methods: A core lesion was surgically induced in the superficial digital flexor tendon of both forelimbs of eight horses. After 7 days, one forelimb was treated with tpMSCs, while the contralateral forelimb served as an intra-individual control and was treated with saline. A prescribed exercise program was started. All horses underwent a daily clinical evaluation throughout the entire study period of 112 days. Blood samples were taken at different time points for hematological and biochemical analysis. Tendon assessment, lameness examination, ultrasound assessment and ultrasound tissue characterization (UTC) were performed at regular time intervals. At the end of the study period, the superficial digital flexor tendons were evaluated macroscopically and histologically. Results: No suspected or serious adverse events occurred during the entire study period. There was no difference in local effects including heat and pain to pressure between a single intralesional injection of allogeneic tpMSCs and a single intralesional injection with saline. A transient moderate local swelling was noted in the tpMSC treated limbs, which dissipated by day 11. Starting at a different time point depending on the parameter, a significant improvement was observed in the tpMSC treated limbs compared to the placebo for echogenicity score, fiber alignment score, anterior-posterior thickness of the tendon and echo type by UTC assessment. Immunohistochemistry 112 days post-injection revealed that the amount of collagen type I and Von Willebrand factor were significantly higher in the tendon tissue of the tpMSC group, while the amount of collagen type III and smooth muscle actin was significantly lower. Conclusion: Equine allogeneic tenogenic primed mesenchymal stem cells were shown to be well-tolerated and may be effective for the management of tendon injuries.
Collapse
Affiliation(s)
- Eva Depuydt
- Global Stem cell Technology, Part of Boehringer Ingelheim, Evergem, Belgium.,Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sarah Y Broeckx
- Global Stem cell Technology, Part of Boehringer Ingelheim, Evergem, Belgium
| | - Lore Van Hecke
- Global Stem cell Technology, Part of Boehringer Ingelheim, Evergem, Belgium
| | - Koen Chiers
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Leen Van Brantegem
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hans van Schie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Research and Development, UTC Imaging, Stein, Netherlands
| | - Charlotte Beerts
- Global Stem cell Technology, Part of Boehringer Ingelheim, Evergem, Belgium.,Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jan H Spaas
- Global Stem cell Technology, Part of Boehringer Ingelheim, Evergem, Belgium.,Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Frederik Pille
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ann Martens
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
7
|
Dai G, Li Y, Liu J, Zhang C, Chen M, Lu P, Rui Y. Higher BMP Expression in Tendon Stem/Progenitor Cells Contributes to the Increased Heterotopic Ossification in Achilles Tendon With Aging. Front Cell Dev Biol 2020; 8:570605. [PMID: 33102476 PMCID: PMC7546413 DOI: 10.3389/fcell.2020.570605] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022] Open
Abstract
Although the mineralization in tendon tissue has been reported in a series of aging and disease models, the underlying mechanisms remain unknown. This study aimed to describe the appearance of heterotopic ossification in rat Achilles tendon and further verify whether this tissue metaplasia is related to the enhanced osteogenic differentiation of tendon stem/progenitor cells (TSPCs) owing to the higher expression of bone morphogenetic proteins (BMP-2/4/7) with aging. The male SD rats, aged 4, 8, and 20 months (M), were used. The analyses of ossification and BMP expression in tendon were tested by radiological view (X-ray and CT), histological staining [hematoxylin and eosin (HE), Alcian blue, and Alizarin red], immunohistochemistry, and Western blot. The osteogenic differentiation potential and BMP expression of TSPCs were examined by Alizarin red S staining and real-time PCR. TSPCs were treated with BMP-2 or noggin, and the osteogenic differentiation potential was also examined. X-ray and CT showed the appearance of heterotopic ossification in tendon, and the volume and density of ossification was increased with aging. Histological staining showed the appearance of calcified region surrounded by chondrocyte-like cells and the increased osteogenesis-related gene and BMP expression in ossified tendon with aging. Moreover, the osteogenic differentiation potential and BMP expression in TSPCs isolated from ossified tendon were increased with aging. Additionally, BMP-2 increased the calcium nodule formation and osteogenesis-related gene expression in TSPCs. The addition of noggin inhibited BMP-induced enhancement of osteogenic differentiation. Thus, these findings suggested that the enhanced osteogenic differentiation of TSPCs contributes to the increased heterotopic ossification in aged tendon, which might be induced by the higher expression of BMPs with aging.
Collapse
Affiliation(s)
- Guangchun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China.,Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China.,Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yingjuan Li
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Junyan Liu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China.,Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China.,Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Cheng Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China.,Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China.,Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Minhao Chen
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China.,Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China.,Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Panpan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China.,Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China.,Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.,Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China.,Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China.,China Orthopedic Regenerative Medicine Group, Hangzhou, China
| |
Collapse
|
8
|
Shojaee A, Parham A. Strategies of tenogenic differentiation of equine stem cells for tendon repair: current status and challenges. Stem Cell Res Ther 2019; 10:181. [PMID: 31215490 PMCID: PMC6582602 DOI: 10.1186/s13287-019-1291-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tendon injuries, as one of the most common orthopedic disorders, are the major cause of early retirement or wastage among sport horses which mainly affect the superficial digital flexor tendon (SDFT). Tendon repair is a slow process, and tendon tissue is often replaced by scar tissue. The current treatment options are often followed by an incomplete recovery that increases the susceptibility to re-injury. Recently, cell therapy has been used in veterinary medicine to treat tendon injuries, although the risk of ectopic bone formation after cell injection is possible in some cases. In vitro tenogenic induction may overcome the mentioned risk in clinical application. Moreover, a better understanding of treatment strategies for musculoskeletal injuries in horse may have future applications for human and vice versa. This comprehensive review outlines the current strategies of stem cell therapy in equine tendon injury and in vitro tenogenic induction of equine stem cell.
Collapse
Affiliation(s)
- Asiyeh Shojaee
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas Parham
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran. .,Stem Cell Biology and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
9
|
Chen Y, Xie Y, Liu M, Hu J, Tang C, Huang J, Qin T, Chen X, Chen W, Shen W, Yin Z. Controlled-release curcumin attenuates progression of tendon ectopic calcification by regulating the differentiation of tendon stem/progenitor cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109711. [PMID: 31349489 DOI: 10.1016/j.msec.2019.04.090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/19/2019] [Accepted: 04/29/2019] [Indexed: 01/30/2023]
Abstract
Tendon calcification is a common but intractable problem leading to pain and activity limitation when injury or tendinopathy progresses into the late stage. This is because tendon stem/progenitor cells (TSPCs) can undergo aberrant osteogenic differentiation under inflammatory conditions. This study aims to investigate the effect of curcumin, a natural anti-inflammatory agent, on regulating the differentiation of TSPCs in tendon calcification. With inflammatory stimulation, TSPCs showed higher alkaline phosphatase activity and more frequent formation of mineralized nodules which were verified in the culture system; however, curcumin significantly alleviated these pathological changes. In in vivo function analysis, chitosan microsphere-encapsulated curcumin was delivered to injured sites of rat tendon ectopic calcification model. The inflammation in the tendon tissues of the curcumin group was significantly relieved. Controlled-release curcumin partially rescued tendon calcification and enhanced tendon regeneration in animal model. This study demonstrates that controlled-release curcumin can manipulate the fate decision of TSPCs, and that it promotes the tenogenesis and inhibits the osteogenesis of TSPCs in a pathological microenvironment, which provides a possible new therapeutic strategy for tendon disease.
Collapse
Affiliation(s)
- Yangwu Chen
- School of Basic Medical Sciences, and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Orthopaedics Research Institute of Zhejiang Univerisity, China
| | - Yubin Xie
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengfei Liu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajie Hu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenqi Tang
- School of Basic Medical Sciences, and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Orthopaedics Research Institute of Zhejiang Univerisity, China
| | - Jiayun Huang
- School of Basic Medical Sciences, and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Orthopaedics Research Institute of Zhejiang Univerisity, China
| | - Tian Qin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Chen
- School of Basic Medical Sciences, and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Weishan Chen
- School of Basic Medical Sciences, and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Orthopaedics Research Institute of Zhejiang Univerisity, China.
| | - Weiliang Shen
- School of Basic Medical Sciences, and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Orthopaedics Research Institute of Zhejiang Univerisity, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), China.
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
10
|
Tenomodulin is essential for prevention of adipocyte accumulation and fibrovascular scar formation during early tendon healing. Cell Death Dis 2017; 8:e3116. [PMID: 29022912 PMCID: PMC5682675 DOI: 10.1038/cddis.2017.510] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 01/08/2023]
Abstract
Tenomodulin (Tnmd) is the best-known mature marker for tendon and ligament lineage cells. It is important for tendon maturation, running performance and has key implications for the resident tendon stem/progenitor cells (TSPCs). However, its exact functions during the tendon repair process still remain elusive. Here, we established an Achilles tendon injury model in a Tnmd knockout (Tnmd−/−) mouse line. Detailed analyses showed not only a very different scar organization with a clearly reduced cell proliferation and expression of certain tendon-related genes, but also increased cell apoptosis, adipocyte and blood vessel accumulation in the early phase of tendon healing compared with their wild-type (WT) littermates. In addition, Tnmd−/− tendon scar tissue contained augmented matrix deposition of biglycan, cartilage oligomeric matrix protein (Comp) and fibronectin, altered macrophage profile and reduced numbers of CD146-positive cells. In vitro analysis revealed that Tnmd−/− TSPCs exhibited significantly reduced migration and proliferation potential compared with that of WT TSPCs. Furthermore, Tnmd−/− TSPCs had accelerated adipogenic differentiation accompanied with significantly increased peroxisome proliferator-activated receptor gamma (Pparγ) and lipoprotein lipase (Lpl) mRNA levels. Thus, our results demonstrate that Tnmd is required for prevention of adipocyte accumulation and fibrovascular scar formation during early tendon healing.
Collapse
|
11
|
Hannan RT, Peirce SM, Barker TH. Fibroblasts: Diverse Cells Critical to Biomaterials Integration. ACS Biomater Sci Eng 2017; 4:1223-1232. [PMID: 31440581 DOI: 10.1021/acsbiomaterials.7b00244] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fibroblasts are key participants in wound healing and inflammation, and are capable of driving the progression of tissue repair to fully functional tissue or pathologic scar, or fibrosis, depending on the specific mechanical and biochemical cues with which they are presented. Thus, understanding and modulating the fibroblastic response to implanted materials is paramount to achieving desirable outcomes, such as long-term implant function or tissue regeneration. However, fibroblasts are remarkably heterogeneous and can differ vastly in their contributions to regeneration and fibrosis. This heterogeneity exists between tissues and within tissues, down to the level of individual cells. This review will discuss the role of fibroblasts, the pitfalls of describing them as a collective, the specifics of their function, and potential future directions to better understand and organize their highly variable biology.
Collapse
Affiliation(s)
- Riley T Hannan
- Department of Pathology, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States.,Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States
| | - Shayn M Peirce
- Department of Pathology, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States.,Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road, Charlottesville, Virginia 22903, United States
| |
Collapse
|
12
|
Fibroblasts as maestros orchestrating tissue regeneration. J Tissue Eng Regen Med 2017; 12:240-251. [DOI: 10.1002/term.2405] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 12/05/2016] [Accepted: 01/09/2017] [Indexed: 12/12/2022]
|
13
|
Chen J, Zhang W, Liu Z, Zhu T, Shen W, Ran J, Tang Q, Gong X, Backman LJ, Chen X, Chen X, Wen F, Ouyang H. Characterization and comparison of post-natal rat Achilles tendon-derived stem cells at different development stages. Sci Rep 2016; 6:22946. [PMID: 26972579 PMCID: PMC4789738 DOI: 10.1038/srep22946] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/24/2016] [Indexed: 12/21/2022] Open
Abstract
Tendon stem/progenitor cells (TSPCs) are a potential cell source for tendon tissue engineering. The striking morphological and structural changes of tendon tissue during development indicate the complexity of TSPCs at different stages. This study aims to characterize and compare post-natal rat Achilles tendon tissue and TSPCs at different stages of development. The tendon tissue showed distinct differences during development: the tissue structure became denser and more regular, the nuclei became spindle-shaped and the cell number decreased with time. TSPCs derived from 7 day Achilles tendon tissue showed the highest self-renewal ability, cell proliferation, and differentiation potential towards mesenchymal lineage, compared to TSPCs derived from 1 day and 56 day tissue. Microarray data showed up-regulation of several groups of genes in TSPCs derived from 7 day Achilles tendon tissue, which may account for the unique cell characteristics during this specific stage of development. Our results indicate that TSPCs derived from 7 day Achilles tendon tissue is a superior cell source as compared to TSPCs derived from 1 day and 56 day tissue, demonstrating the importance of choosing a suitable stem cell source for effective tendon tissue engineering and regeneration.
Collapse
Affiliation(s)
- Jialin Chen
- Centre for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Lab for tissue engineering and regenerative medicine, 310000, Hangzhou, China.,Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, 90187, Sweden
| | - Wei Zhang
- Centre for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Lab for tissue engineering and regenerative medicine, 310000, Hangzhou, China
| | - Zeyu Liu
- Centre for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Lab for tissue engineering and regenerative medicine, 310000, Hangzhou, China
| | - Ting Zhu
- Centre for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Lab for tissue engineering and regenerative medicine, 310000, Hangzhou, China.,Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009, China
| | - Weiliang Shen
- Centre for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Lab for tissue engineering and regenerative medicine, 310000, Hangzhou, China.,Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009, China
| | - Jisheng Ran
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009, China
| | - Qiaomei Tang
- Centre for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Lab for tissue engineering and regenerative medicine, 310000, Hangzhou, China.,Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009, China
| | - Xiaonan Gong
- Centre for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Lab for tissue engineering and regenerative medicine, 310000, Hangzhou, China
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, 90187, Sweden
| | - Xiao Chen
- Centre for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Lab for tissue engineering and regenerative medicine, 310000, Hangzhou, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Xiaowen Chen
- Division of haematology and oncology, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Feiqiu Wen
- Division of haematology and oncology, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Hongwei Ouyang
- Centre for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Lab for tissue engineering and regenerative medicine, 310000, Hangzhou, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
14
|
Zhang C, Zhang Y, Zhong B, Luo CF. SMAD7 prevents heterotopic ossification in a rat Achilles tendon injury model via regulation of endothelial-mesenchymal transition. FEBS J 2016; 283:1275-85. [PMID: 26807862 DOI: 10.1111/febs.13667] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/29/2015] [Accepted: 01/21/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Chi Zhang
- Orthopaedic Department; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; China
| | - Yang Zhang
- Orthopaedic Department; Tongren Hospital affiliated to Shanghai Jiaotong University; China
| | - Biao Zhong
- Orthopaedic Department; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; China
| | - Cong-feng Luo
- Orthopaedic Department; Shanghai Jiao Tong University Affiliated Sixth People's Hospital; China
| |
Collapse
|