1
|
Chevalier NR. Physical organogenesis of the gut. Development 2022; 149:276365. [DOI: 10.1242/dev.200765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The gut has been a central subject of organogenesis since Caspar Friedrich Wolff’s seminal 1769 work ‘De Formatione Intestinorum’. Today, we are moving from a purely genetic understanding of cell specification to a model in which genetics codes for layers of physical–mechanical and electrical properties that drive organogenesis such that organ function and morphogenesis are deeply intertwined. This Review provides an up-to-date survey of the extrinsic and intrinsic mechanical forces acting on the embryonic vertebrate gut during development and of their role in all aspects of intestinal morphogenesis: enteric nervous system formation, epithelium structuring, muscle orientation and differentiation, anisotropic growth and the development of myogenic and neurogenic motility. I outline numerous implications of this biomechanical perspective in the etiology and treatment of pathologies, such as short bowel syndrome, dysmotility, interstitial cells of Cajal-related disorders and Hirschsprung disease.
Collapse
Affiliation(s)
- Nicolas R. Chevalier
- Laboratoire Matière et Systèmes Complexes, Université Paris Cité, CNRS UMR 7057 , 10 rue Alice Domon et Léonie Duquet, 75013 Paris , France
| |
Collapse
|
2
|
Biomechanical Force Prediction for Lengthening of Small Intestine during Distraction Enterogenesis. Bioengineering (Basel) 2020; 7:bioengineering7040140. [PMID: 33171760 PMCID: PMC7711478 DOI: 10.3390/bioengineering7040140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/04/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022] Open
Abstract
Distraction enterogenesis has been extensively studied as a potential treatment for short bowel syndrome, which is the most common form of intestinal failure. Different strategies including parenteral nutrition and surgical lengthening to manage patients with short bowel syndrome are associated with high complication rates. More recently, self-expanding springs have been used to lengthen the small intestine using an intraluminal axial mechanical force, where this biomechanical force stimulates the growth and elongation of the small intestine. Differences in physical characteristics of patients with short bowel syndrome would require a different mechanical force—this is crucial in order to achieve an efficient and safe lengthening outcome. In this study, we aimed to predict the required mechanical force for each potential intestinal size. Based on our previous experimental observations and computational findings, we integrated our experimental measurements of patient biometrics along with mechanical characterization of the soft tissue into our numerical simulations to develop a series of computational models. These computational models can predict the required mechanical force for any potential patient where this can be advantageous in predicting an individual’s tissue response to spring-mediated distraction enterogenesis and can be used toward a safe delivery of the mechanical force.
Collapse
|
3
|
Sarvari R, Keyhanvar P, Agbolaghi S, Gholami Farashah MS, Sadrhaghighi A, Nouri M, Roshangar L. Shape-memory materials and their clinical applications. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1833010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Raana Sarvari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Peyman Keyhanvar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Convergence of Knowledge, Technology and Society Network (CKTSN), Universal Scientific Education and Research Network (USERN), Tabriz, Iran
- ARTAN110 Startup Accelerator, Tabriz, Iran
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | | - Amirhouman Sadrhaghighi
- Department of Orthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, University of Medical Sciences, Tabriz, Iran
| | - Laila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Shie MY, Shen YF, Astuti SD, Lee AKX, Lin SH, Dwijaksara NLB, Chen YW. Review of Polymeric Materials in 4D Printing Biomedical Applications. Polymers (Basel) 2019; 11:E1864. [PMID: 31726652 PMCID: PMC6918275 DOI: 10.3390/polym11111864] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/30/2022] Open
Abstract
The purpose of 4D printing is to embed a product design into a deformable smart material using a traditional 3D printer. The 3D printed object can be assembled or transformed into intended designs by applying certain conditions or forms of stimulation such as temperature, pressure, humidity, pH, wind, or light. Simply put, 4D printing is a continuum of 3D printing technology that is now able to print objects which change over time. In previous studies, many smart materials were shown to have 4D printing characteristics. In this paper, we specifically review the current application, respective activation methods, characteristics, and future prospects of various polymeric materials in 4D printing, which are expected to contribute to the development of 4D printing polymeric materials and technology.
Collapse
Affiliation(s)
- Ming-You Shie
- School of Dentistry, China Medical University, Taichung City 404, Taiwan;
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City 404, Taiwan; (A.K.-X.L.); (S.-H.L.)
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413, Taiwan; (Y.-F.S.); (N.L.B.D.)
| | - Yu-Fang Shen
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413, Taiwan; (Y.-F.S.); (N.L.B.D.)
- 3D Printing Medical Research Institute, Asia University, Taichung City 413, Taiwan
| | - Suryani Dyah Astuti
- Biomedical Engineering Study Program, Department of Physic, Faculty of Science and Technology, Univerisitas Airlangga, Surabaya 61115, Indonesia;
| | - Alvin Kai-Xing Lee
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City 404, Taiwan; (A.K.-X.L.); (S.-H.L.)
- School of Medicine, China Medical University, Taichung City 404, Taiwan
| | - Shu-Hsien Lin
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung City 404, Taiwan; (A.K.-X.L.); (S.-H.L.)
| | - Ni Luh Bella Dwijaksara
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413, Taiwan; (Y.-F.S.); (N.L.B.D.)
- Biomedical Engineering Study Program, Department of Physic, Faculty of Science and Technology, Univerisitas Airlangga, Surabaya 61115, Indonesia;
| | - Yi-Wen Chen
- 3D Printing Medical Research Institute, Asia University, Taichung City 413, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City 404, Taiwan
| |
Collapse
|
5
|
Holloway EM, Capeling MM, Spence JR. Biologically inspired approaches to enhance human organoid complexity. Development 2019; 146:dev166173. [PMID: 30992275 PMCID: PMC6503984 DOI: 10.1242/dev.166173] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Organoids are complex three-dimensional in vitro organ-like model systems. Human organoids, which are derived from human pluripotent stem cells or primary human donor tissue, have been used to address fundamental questions about human development, stem cell biology and organ regeneration. Focus has now shifted towards implementation of organoids for biological discovery and advancing existing systems to more faithfully recapitulate the native organ. This work has highlighted significant unknowns in human biology and has invigorated new exploration into the cellular makeup of human organs during development and in the adult - work that is crucial for providing appropriate benchmarks for organoid systems. In this Review, we discuss efforts to characterize human organ cellular complexity and attempts to make organoid models more realistic through co-culture, transplantation and bioengineering approaches.
Collapse
Affiliation(s)
- Emily M Holloway
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Meghan M Capeling
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Huynh N, Dubrovsky G, Rouch JD, Scott A, Chiang E, Nguyen T, Wu BM, Shekherdimian S, Krummel TM, Dunn JCY. Three-dimensionally printed surface features to anchor endoluminal spring for distraction enterogenesis. PLoS One 2018; 13:e0200529. [PMID: 30001433 PMCID: PMC6042758 DOI: 10.1371/journal.pone.0200529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 06/28/2018] [Indexed: 12/16/2022] Open
Abstract
Spring-mediated distraction enterogenesis has been studied as a novel treatment for short bowel syndrome (SBS). Previous approaches are limited by multiple surgeries to restore intestinal continuity. Purely endoluminal devices require a period of intestinal attachment for enterogenesis. The purpose of this study is to modify the device to prevent premature spring migration in a porcine model. Two models were created in juvenile mini-Yucatan pigs for the placement of three-dimensionally printed springs. (1) Two Roux-en-y jejunojenostomies with two Roux limbs were made. A spring with bidirectional hooked surface features was placed in one Roux limb and a spring with smooth surface was placed in the other Roux limb. (2) The in-continuity model had both hooked and smooth surface springs placed directly in intestinal continuity. Spring location was evaluated by weekly radiographs, and the intestine was retrieved after 2 to 4 weeks. Springs with smooth surfaces migrated between 1 to 3 weeks after placement in both porcine models. Springs with bidirectional hooked surface features were anchored to the intestine for up to 4 weeks without migration. Histologically, the jejunal architecture showed significantly increased crypt depth and muscularis thickness compared to normal jejunum. Bidirectional features printed on springs prevented the premature migration of endoluminal springs. These novel spring anchors allowed for their endoluminal placement without any sutures. This approach may lead to the endoscopic placement of the device for patients with SBS.
Collapse
Affiliation(s)
- Nhan Huynh
- Department of Surgery, Division of Pediatric Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Surgery, Division of Pediatric Surgery, School of Medicine, Stanford University, Stanford, California, United States of America
| | - Genia Dubrovsky
- Department of Surgery, Division of Pediatric Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Joshua D. Rouch
- Department of Surgery, Division of Pediatric Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Andrew Scott
- Department of Surgery, Division of Pediatric Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Elvin Chiang
- Department of Surgery, Division of Pediatric Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Tommy Nguyen
- School of Engineering, Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Benjamin M. Wu
- School of Engineering, Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Shant Shekherdimian
- Department of Surgery, Division of Pediatric Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Thomas M. Krummel
- Department of Surgery, Division of Pediatric Surgery, School of Medicine, Stanford University, Stanford, California, United States of America
- Department of Bioengineering, School of Medicine, Stanford University, Stanford, California, United States of America
| | - James C. Y. Dunn
- Department of Surgery, Division of Pediatric Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Surgery, Division of Pediatric Surgery, School of Medicine, Stanford University, Stanford, California, United States of America
- School of Engineering, Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Bioengineering, School of Medicine, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
Abstract
Extensive loss of small bowel in all age groups has significant morbidity and mortality consequences. Despite the astonishing ability of the small bowel to compensate for an extensive loss, long-term parenteral nutrition and enteral nutrition, tailored to the need of the patients in relation to the missing intestinal regions is needed. Organ-preserving surgical intervention becomes necessary in patients with a very short intestinal transit time and in an other group of patients with impaired propulsive peristalsis. Intestinal transplantation is indicated in recurrent septical infections or if nearly all of the small bowel is missing. This review discusses indications and risks of the organ-preserving surgical therapies in children with short bowel syndrome.
Collapse
Affiliation(s)
- Michael E Höllwarth
- University Clinic for Pediatric and Adolescent Surgery, Medical University of Graz, Auenbruggerplatz 36, 8034, Graz, Austria.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW This review summarizes recent innovations in the treatment of patients with short bowel syndrome. RECENT FINDINGS The use of surgical procedures, growth factor stimulation, and bioengineering approaches to increase absorptive surface area of the intestine is examined. While the morphology of the intestine is clearly altered by these interventions, it is less clear that the overall function of the intestine is improved. SUMMARY Continued innovations will likely bring about new therapeutic options for patients with short bowel syndrome. Careful evaluations of the impact of these interventions await controlled clinical trials.
Collapse
|
9
|
Koshino K, Kanai N, Yamato M, Okano T, Yamamoto M. Novel isolated cecal pouch model for endoscopic observation in rats. World J Gastroenterol 2015; 21:5242-5249. [PMID: 25954097 PMCID: PMC4419064 DOI: 10.3748/wjg.v21.i17.5242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 12/24/2014] [Accepted: 02/05/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To create a new rat model for drug administration, cell transplantation, and endoscopic examination for the treatment of intestinal diseases.
METHODS: F344/NJc l-rnu/rnu rats (10-wk-old males, 350-400 g) were used in this study. The rats were anesthetized via 2% isoflurane inhalation. The rat’s cecum was isolated from the intestines, and a pouch was created. The remainder of the intestines was rejoined to create an anastomosis. The “side-to-side” anastomosis (SSA) technique initially involves the creation of a 2-cm longitudinal incision into each intestinal wall. To create an anastomosis along the ileal and colonic walls, both intestines were cut, and a continuous suture procedure was performed that included all layers of both intestines. The serous membrane was sutured along the edge and on the anterior wall of the anastomosis. The “end-to-end” anastomosis (EEA) technique was compared with the SSA technique. In the EEA technique, the frontal surfaces of both cut intestinal lumens were joined together by continuous sutures. Additional sutures were made at the serosa. After the anastomotic intestine was successfully constructed, the two intestinal lumens that were cut at the isolated cecum were managed. In addition, one luminal side of the pouch remained open to create an artificial anus on the dorsum as a passage for the residual substances in the pouch. Finally, small animal endoscopy was used to observe the inside of the pouch.
RESULTS: In this animal model, mucus and feces are excreted through the reconstructed passage. Accordingly, the cecal pouch mucosa was not obstructed or contaminated by feces, thus facilitating observations of the luminal surface of the intestine. The endoscopic observation of the cecal pouch provided clear visualization given the absence of feces. The membrane surface of the cecum was clearly observed. Two methods of creating an anastomotic intestine, the “SSA” and “EEA” techniques, were compared with regard to animal survival rate, complication rate, and operation time. The SSA technique resulted in a significantly increased survival rate and a lower incidence of complications in rat models compared with the EEA technique. The complications of stenosis and leakage resulted in death in the EEA technique. Thus, the EEA technique exhibited a lower survival rate compared with the SSA technique. However, the SSA technique required a significantly longer operation time compared with the EEA technique.
CONCLUSION: Our new rat model is potentially useful for the development of a novel treatment for intestinal diseases.
Collapse
|