1
|
Keshi E, Tang P, Weinhart M, Everwien H, Moosburner S, Seiffert N, Lommel M, Kertzscher U, Globke B, Reutzel-Selke A, Strücker B, Pratschke J, Sauer IM, Haep N, Hillebrandt KH. Surface modification of decellularized bovine carotid arteries with human vascular cells significantly reduces their thrombogenicity. J Biol Eng 2021; 15:26. [PMID: 34819102 PMCID: PMC8611970 DOI: 10.1186/s13036-021-00277-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since autologous veins are unavailable when needed in more than 20% of cases in vascular surgery, the production of personalized biological vascular grafts for implantation has become crucial. Surface modification of decellularized xenogeneic grafts with vascular cells to achieve physiological luminal coverage and eventually thromboresistance is an important prerequisite for implantation. However, ex vivo thrombogenicity testing remains a neglected area in the field of tissue engineering of vascular grafts due to a multifold of reasons. METHODS After seeding decellularized bovine carotid arteries with human endothelial progenitor cells and umbilical cord-derived mesenchymal stem cells, luminal endothelial cell coverage (LECC) was correlated with glucose and lactate levels on the cell supernatant. Then a closed loop whole blood perfusion system was designed. Recellularized grafts with a LECC > 50% and decellularized vascular grafts were perfused with human whole blood for 2 h. Hemolysis and complete blood count evaluation was performed on an hourly basis, followed by histological and immunohistochemical analysis. RESULTS While whole blood perfusion of decellularized grafts significantly reduced platelet counts, platelet depletion from blood resulting from binding to re-endothelialized grafts was insignificant (p = 0.7284). Moreover, macroscopic evaluation revealed thrombus formation only in the lumen of unseeded grafts and histological characterization revealed lack of CD41 positive platelets in recellularized grafts, thus confirming their thromboresistance. CONCLUSION In the present study we were able to demonstrate the effect of surface modification of vascular grafts in their thromboresistance in an ex vivo whole blood perfusion system. To our knowledge, this is the first study to expose engineered vascular grafts to human whole blood, recirculating at high flow rates, immediately after seeding.
Collapse
Affiliation(s)
- Eriselda Keshi
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Peter Tang
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Marie Weinhart
- Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025 - 390648296, Berlin, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany.,Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Hanover, Germany
| | - Hannah Everwien
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Simon Moosburner
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Nicolai Seiffert
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Michael Lommel
- Institute for Cardiovascular Computer-Assisted Medicine, Biofluid Mechanics Lab, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulrich Kertzscher
- Institute for Cardiovascular Computer-Assisted Medicine, Biofluid Mechanics Lab, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Brigitta Globke
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Anja Reutzel-Selke
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Benjamin Strücker
- Department of General, Visceral and Transplant Surgery, Universitätsklinikum Münster, Münster, Germany
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.,Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025 - 390648296, Berlin, Germany
| | - Igor Maximillian Sauer
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany. .,Cluster of Excellence Matters of Activity. Image Space Material funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy - EXC 2025 - 390648296, Berlin, Germany.
| | - Nils Haep
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.,Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Karl Herbert Hillebrandt
- Department of Surgery, Campus Charité Mitte
- Campus Virchow-Klinikum, Experimental Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
2
|
Saito J, Kaneko M, Ishikawa Y, Yokoyama U. Challenges and Possibilities of Cell-Based Tissue-Engineered Vascular Grafts. CYBORG AND BIONIC SYSTEMS 2021; 2021:1532103. [PMID: 36285145 PMCID: PMC9494692 DOI: 10.34133/2021/1532103] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/19/2021] [Indexed: 10/06/2023] Open
Abstract
There is urgent demand for biologically compatible vascular grafts for both adult and pediatric patients. The utility of conventional nonbiodegradable materials is limited because of their thrombogenicity and inability to grow, while autologous vascular grafts involve considerable disadvantages, including the invasive procedures required to obtain these healthy vessels from patients and insufficient availability in patients with systemic atherosclerosis. All of these issues could be overcome by tissue-engineered vascular grafts (TEVGs). A large body of evidence has recently emerged in support of TEVG technologies, introducing diverse cell sources (e.g., somatic cells and stem cells) and novel fabrication methods (e.g., scaffold-guided and self-assembled approaches). Before TEVG can be applied in a clinical setting, however, several aspects of the technology must be improved, such as the feasibility of obtaining cells, their biocompatibility and mechanical properties, and the time needed for fabrication, while the safety of supplemented materials, the patency and nonthrombogenicity of TEVGs, their growth potential, and the long-term influence of implanted TEVGs in the body must be assessed. Although recent advances in TEVG fabrication have yielded promising results, more research is needed to achieve the most feasible methods for generating optimal TEVGs. This article reviews multiple aspects of TEVG fabrication, including mechanical requirements, extracellular matrix components, cell sources, and tissue engineering approaches. The potential of periodic hydrostatic pressurization in the production of scaffold-free TEVGs with optimal elasticity and stiffness is also discussed. In the future, the integration of multiple technologies is expected to enable improved TEVG performance.
Collapse
Affiliation(s)
- Junichi Saito
- Department of Physiology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Makoto Kaneko
- Faculty of Science and Technology, Meijo University, Nagoya, Aichi, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Utako Yokoyama
- Department of Physiology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| |
Collapse
|
3
|
Hagen MW, Hinds MT. The Effects of Topographic Micropatterning on Endothelial Colony-Forming Cells. Tissue Eng Part A 2020; 27:270-281. [PMID: 32600119 DOI: 10.1089/ten.tea.2020.0066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Artificial small-diameter vascular grafts remain an unmet need in modern medicine, due to the thrombosis and neointimal hyperplasia that plague currently available synthetic devices. Tissue engineering techniques, including in vitro endothelialization, could offer a solution to this problem. A potential minimally invasive source of patient autologous endothelium is endothelial colony-forming cells (ECFCs), endothelial-like outgrowth products of circulating progenitors. While ECFCs respond to shear stress similar to mature endothelial cells (ECs), their response to luminal topographic micropatterning (TMP), a biomaterial modification with the potential to flow-independently, enhance the attachment, migration, gene expression, and function of mature ECs, remains unstudied. In this study, case-matched carotid endothelial cells (CaECs) and blood-derived ECFCs are statically cultured on polyurethane substrates with micropatterned pitches (pitch = peak to peak distance) ranging from 3-to 14 μm. On all pattern pitches tested, both CaECs and ECFCs showed significant and robust alignment to the angle of the micropatterns. Using a novel cell-by-cell image analysis technique, it was found that actin fibers similarly and significantly aligned to the angle of micropatterned features on all pitches tested. Microtubules analyzed through the same novel approach showed significant alignment on most pitches examined, with a greater variation in fiber angle overall. Interestingly, only CaECs showed significant cellular elongation, and notably to a lower degree than previously seen either in vivo due to flow or in vitro due to spatial growth restriction micropatterning, but consistent with earlier studies of TMP. Neither cell type displayed any significant micropattern-driven changes in the expression of KLF-2 or the downstream adhesion molecules it regulates. These results demonstrate that TMP flow-independently affects ECFC morphology, but that alignment alone is insufficient to drive protective changes in EC and ECFC function.
Collapse
Affiliation(s)
- Matthew W Hagen
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA.,Work was performed at Oregon Health and Science University, Portland, Oregon, USA
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA.,Work was performed at Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
6
|
Chen R, Chen S, Liao J, Chen X, Xu X. MiR-145 facilitates proliferation and migration of endothelial progenitor cells and recanalization of arterial thrombosis in cerebral infarction mice via JNK signal pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:13770-6. [PMID: 26722607 PMCID: PMC4680552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/28/2015] [Indexed: 02/05/2023]
Abstract
Arterial thrombosis in cerebral infarction severely affects patients' lives. Classical treatment including surgery and medication both had significantly adverse effects, making it necessary to find novel strategy. Endothelial progenitor cells (EPCs) have been shown to enhance the recanalization of thrombosis, while leaving its molecular mechanism unclear. EPCs were separated from peripheral blood, and were transfected by microRNA (miR)-145. The growth, proliferation and migration abilities were quantified by MTT, clone formation and Transwell assays, respectively. Cell apoptosis was evaluated by flow cytometry. The activation of JNK signaling pathway was measured by Western blotting, followed by JNK inhibitor SP600125. In a mouse cerebral infarction model, miR-145 transfected EPCs were injected to observe the condition of arterial thrombosis. MiR-145 transfection enhanced growth, migration and proliferation of EPCs without induction of apoptosis. MiR-145 exerts its effects via JNK signaling pathway, as the blocking inhibited cell migration/proliferation. In vivo injection of miR-145 transfected EPCs also potentiated cell proliferation and migration, in addition to the recanalization of arterial thrombosis. MiR-145 facilitates proliferation and migration of EPCs and recanalization of arterial thrombosis in cerebral infarction mice via JNK signal pathway. This study provided new insights regarding infarction treatment.
Collapse
Affiliation(s)
- Rongbo Chen
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Siqia Chen
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Juan Liao
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Xiaopu Chen
- Department of Neurology, The First Affiliated Hospital of Shantou University Medical CollegeShantou 515041, Guangdong, China
| | - Xiaoling Xu
- Department of Nursing, The First Affiliated Hospital of Shantou University Medical CollegeShantou 515041, Guangdong, China
| |
Collapse
|
7
|
Glynn JJ, Jones CM, Anderson DEJ, Pavcnik D, Hinds MT. In vivo assessment of two endothelialization approaches on bioprosthetic valves for the treatment of chronic deep venous insufficiency. J Biomed Mater Res B Appl Biomater 2015; 104:1610-1621. [PMID: 26316151 DOI: 10.1002/jbm.b.33507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/06/2015] [Accepted: 08/14/2015] [Indexed: 12/28/2022]
Abstract
Chronic deep venous insufficiency is a debilitating disease with limited therapeutic interventions. A bioprosthetic venous valve could not only replace a diseased valve, but has the potential to fully integrate into the patient with a minimally invasive procedure. Previous work with valves constructed from small intestinal submucosa (SIS) showed improvements in patients' symptoms in clinical studies; however, substantial thickening of the implanted valve leaflets also occurred. As endothelial cells are key regulators of vascular homeostasis, their presence on the SIS valves may reduce the observed thickening. This work tested an off-the-shelf approach to capture circulating endothelial cells in vivo using biotinylated antikinase insert domain receptor antibodies in a suspended leaflet ovine model. The antibodies on SIS were oriented to promote cell capture and showed positive binding to endothelial cells in vitro; however, no differences were observed in leaflet thickness in vivo between antibody-modified and unmodified SIS. In an alternative approach, valves were pre-seeded with autologous endothelial cells and tested in vivo. Nearly all the implanted pre-seeded valves were patent and functioning; however, no statistical difference was observed in valve thickness with cell pre-seeding. Additional cell capture schemes or surface modifications should be examined to find an optimal method for encouraging SIS valve endothelialization to improve long-term valve function in vivo. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1610-1621, 2016.
Collapse
Affiliation(s)
- Jeremy J Glynn
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, 97239
| | - Casey M Jones
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, 97239.,Department of Chemistry, Lewis & Clark College, Portland, Oregon, 97219
| | - Deirdre E J Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, 97239
| | - Dusan Pavcnik
- Dotter Interventional Institute, Oregon Health & Science University, Portland, Oregon, 97239
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, 97239. .,Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, 97239. .,Department of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, 97006.
| |
Collapse
|
8
|
Anderson DEJ, Glynn JJ, Song HK, Hinds MT. Engineering an endothelialized vascular graft: a rational approach to study design in a non-human primate model. PLoS One 2014; 9:e115163. [PMID: 25526637 PMCID: PMC4272299 DOI: 10.1371/journal.pone.0115163] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 11/19/2014] [Indexed: 12/14/2022] Open
Abstract
After many years of research, small diameter, synthetic vascular grafts still lack the necessary biologic integration to perform ideally in clinical settings. Endothelialization of vascular grafts has the potential to improve synthetic graft function, and endothelial outgrowth cells (EOCs) are a promising autologous cell source. Yet no work has established the link between endothelial cell functions and outcomes of implanted endothelialized grafts. This work utilized steady flow, oscillatory flow, and tumor necrosis factor stimulation to alter EOC phenotype and enable the formulation of a model to predict endothelialized graft performance. To accomplish this, EOC in vitro expression of coagulation and inflammatory markers was quantified. In parallel, in non-human primate (baboon) models, the platelet and fibrinogen accumulation on endothelialized grafts were quantified in an ex vivo shunt, or the tissue ingrowth on implanted grafts were characterized after 1mth. Oscillatory flow stimulation of EOCs increased in vitro coagulation markers and ex vivo platelet accumulation. Steady flow preconditioning did not affect platelet accumulation or intimal hyperplasia relative to static samples. To determine whether in vitro markers predict implant performance, a linear regression model of the in vitro data was fit to platelet accumulation data-correlating the markers with the thromboprotective performance of the EOCs. The model was tested against implant intimal hyperplasia data and found to correlate strongly with the parallel in vitro analyses. This research defines the effects of flow preconditioning on EOC regulation of coagulation in clinical vascular grafts through parallel in vitro, ex vivo, and in vivo analyses, and contributes to the translatability of in vitro tests to in vivo clinical graft performance.
Collapse
Affiliation(s)
- Deirdre E. J. Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States of America
| | - Jeremy J. Glynn
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States of America
| | - Howard K. Song
- Division of Cardiothoracic Surgery, Oregon Health & Science University, Portland, OR, United States of America
| | - Monica T. Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States of America
- * E-mail:
| |
Collapse
|