1
|
Wei S, Zhang Y, Luo F, Duan K, Li M, Lv G. Tissue-engineered tracheal implants: Advancements, challenges, and clinical considerations. Bioeng Transl Med 2024; 9:e10671. [PMID: 39036086 PMCID: PMC11256149 DOI: 10.1002/btm2.10671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 07/23/2024] Open
Abstract
Restoration of extensive tracheal damage remains a significant challenge in respiratory medicine, particularly in instances stemming from conditions like infection, congenital anomalies, or stenosis. The trachea, an essential element of the lower respiratory tract, constitutes a fibrocartilaginous tube spanning approximately 10-12 cm in length. It is characterized by 18 ± 2 tracheal cartilages distributed anterolaterally with the dynamic trachealis muscle located posteriorly. While tracheotomy is a common approach for patients with short-length defects, situations requiring replacement arise when the extent of lesion exceeds 1/2 of the length in adults (or 1/3 in children). Tissue engineering (TE) holds promise in developing biocompatible airway grafts for addressing challenges in tracheal regeneration. Despite the potential, the extensive clinical application of tissue-engineered tracheal substitutes encounters obstacles, including insufficient revascularization, inadequate re-epithelialization, suboptimal mechanical properties, and insufficient durability. These limitations have led to limited success in implementing tissue-engineered tracheal implants in clinical settings. This review provides a comprehensive exploration of historical attempts and lessons learned in the field of tracheal TE, contextualizing the clinical prerequisites and vital criteria for effective tracheal grafts. The manufacturing approaches employed in TE, along with the clinical application of both tissue-engineered and non-tissue-engineered approaches for tracheal reconstruction, are discussed in detail. By offering a holistic view on TE substitutes and their implications for the clinical management of long-segment tracheal lesions, this review aims to contribute to the understanding and advancement of strategies in this critical area of respiratory medicine.
Collapse
Affiliation(s)
- Shixiong Wei
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery CenterThe First Hospital of Jilin UniversityChangchunChina
- Department of Thoracic SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Yiyuan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery CenterThe First Hospital of Jilin UniversityChangchunChina
- Department of Thoracic SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Feixiang Luo
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Kexing Duan
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery CenterThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
2
|
Stöth M, Mineif AT, Sauer F, Meyer TJ, Mueller-Diesing F, Haug L, Scherzad A, Steinke M, Rossi A, Hackenberg S. A Tissue Engineered 3D Model of Cancer Cell Invasion for Human Head and Neck Squamous-Cell Carcinoma. Curr Issues Mol Biol 2024; 46:4049-4062. [PMID: 38785518 PMCID: PMC11119844 DOI: 10.3390/cimb46050250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Head and neck squamous-cell carcinoma (HNSCC) is associated with aggressive local invasiveness, being a main reason for its poor prognosis. The exact mechanisms underlying the strong invasive abilities of HNSCC remain to be elucidated. Therefore, there is a need for in vitro models to study the interplay between cancer cells and normal adjacent tissue at the invasive tumor front. To generate oral mucosa tissue models (OMM), primary keratinocytes and fibroblasts from human oral mucosa were isolated and seeded onto a biological scaffold derived from porcine small intestinal submucosa with preserved mucosa. Thereafter, we tested different methods (single tumor cells, tumor cell spots, spheroids) to integrate the human cancer cell line FaDu to generate an invasive three-dimensional model of HNSCC. All models were subjected to morphological analysis by histology and immunohistochemistry. We successfully built OMM tissue models with high in vivo-in vitro correlation. The integration of FaDu cell spots and spheroids into the OMM failed. However, with the integration of single FaDu cells into the OMM, invasive tumor cell clusters developed. Between segments of regular epithelial differentiation of the OMM, these clusters showed a basal membrane penetration and lamina propria infiltration. Primary human fibroblasts and keratinocytes seeded onto a porcine carrier structure are suitable to build an OMM. The HNSCC model with integrated FaDu cells could enable subsequent investigations into cancer cell invasiveness.
Collapse
Affiliation(s)
- Manuel Stöth
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, 97080 Würzburg, Germany; (M.S.); (T.J.M.); (F.M.-D.); (A.S.); (M.S.)
| | - Anna Teresa Mineif
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070 Würzburg, Germany; (A.T.M.)
| | - Fabian Sauer
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070 Würzburg, Germany; (A.T.M.)
| | - Till Jasper Meyer
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, 97080 Würzburg, Germany; (M.S.); (T.J.M.); (F.M.-D.); (A.S.); (M.S.)
| | - Flurin Mueller-Diesing
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, 97080 Würzburg, Germany; (M.S.); (T.J.M.); (F.M.-D.); (A.S.); (M.S.)
| | - Lukas Haug
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany;
| | - Agmal Scherzad
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, 97080 Würzburg, Germany; (M.S.); (T.J.M.); (F.M.-D.); (A.S.); (M.S.)
| | - Maria Steinke
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, 97080 Würzburg, Germany; (M.S.); (T.J.M.); (F.M.-D.); (A.S.); (M.S.)
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg, 97070 Würzburg, Germany; (A.T.M.)
- Fraunhofer Institute for Silicate Research ISC, 97082 Würzburg, Germany;
| | - Angela Rossi
- Fraunhofer Institute for Silicate Research ISC, 97082 Würzburg, Germany;
| | - Stephan Hackenberg
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, 97080 Würzburg, Germany; (M.S.); (T.J.M.); (F.M.-D.); (A.S.); (M.S.)
| |
Collapse
|
3
|
Tseng WH, Liu EW, Cheng KY, Wee SJ, Lee JJ, Chen HC. Tracheal Replacement Techniques and Associated Mortality: A Systematic Review. Laryngoscope 2024; 134:1517-1522. [PMID: 37916766 DOI: 10.1002/lary.31100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVE Tracheal replacement is a crucial operation to enhance the quality of life for patients with extensive tracheal lesions. The most suitable surgical techniques for different clinical conditions remain a topic of debate. Through a reviewing of the relevant literature, this study investigated the association between surgical techniques and mortality rate. DATA SOURCES Studies were collected from PubMed, Embase, the Web of Science, the Cochrane Center Register of Controlled Trials, and ClinicalTrials.gov. METHODS This systematic review encompassed literature from the inception of each database to May 10, 2023, focusing on tracheal replacement for patients who underwent circumferential resection of the trachea or partial resection with preservation of the posterior membranous wall. Non-human and non-clinical studies were excluded. RESULTS About 31 studies were included in the assessment comprising a combination of case reports and case series, and 118 patients underwent tracheal replacement through four underlying methodologies, including tracheal allotransplantation, autologous tissue reconstruction, bioprosthetic reconstruction, or tissue engineering surgery. Each modality exhibits unique advantages and disadvantages, leading to variable outcomes in clinical application. CONCLUSION Tracheal replacement is challenging due to the absence of an ideal substitution or graft material. Despite limited clinical successes observed across various modalities, we believe autologous tissue reconstruction for tracheal replacement has the advantage of broadest indications, low rejection rate, and avoidance of immunosuppressive agents. Future research should focus on achieving tracheal replacement that preserves mucociliary clearance, lateral rigidity, and longitudinal flexibility. LEVEL OF EVIDENCE NA Laryngoscope, 134:1517-1522, 2024.
Collapse
Affiliation(s)
- Wen-Hui Tseng
- Department of Plastic and Reconstructive Surgery, China Medical University Hospital, Taichung City, Taiwan
| | - En-Wei Liu
- Department of Plastic and Reconstructive Surgery, China Medical University Hospital, Taichung City, Taiwan
| | - Kai-Yuan Cheng
- Department of Plastic and Reconstructive Surgery, China Medical University Hospital, Taichung City, Taiwan
| | - Shyun-Jing Wee
- Department of Plastic and Reconstructive Surgery, China Medical University Hospital, Taichung City, Taiwan
| | - Jian-Jr Lee
- Department of Plastic and Reconstructive Surgery, China Medical University Hospital, Taichung City, Taiwan
- College of Medicine, China Medical University, Taichung City, Taiwan
| | - Hung-Chi Chen
- Department of Plastic and Reconstructive Surgery, China Medical University Hospital, Taichung City, Taiwan
- College of Medicine, China Medical University, Taichung City, Taiwan
| |
Collapse
|
4
|
Soriano L, Khalid T, Whelan D, O'Huallachain N, Redmond KC, O'Brien FJ, O'Leary C, Cryan SA. Development and clinical translation of tubular constructs for tracheal tissue engineering: a review. Eur Respir Rev 2021; 30:30/162/210154. [PMID: 34750116 DOI: 10.1183/16000617.0154-2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Effective restoration of extensive tracheal damage arising from cancer, stenosis, infection or congenital abnormalities remains an unmet clinical need in respiratory medicine. The trachea is a 10-11 cm long fibrocartilaginous tube of the lower respiratory tract, with 16-20 tracheal cartilages anterolaterally and a dynamic trachealis muscle posteriorly. Tracheal resection is commonly offered to patients suffering from short-length tracheal defects, but replacement is required when the trauma exceeds 50% of total length of the trachea in adults and 30% in children. Recently, tissue engineering (TE) has shown promise to fabricate biocompatible tissue-engineered tracheal implants for tracheal replacement and regeneration. However, its widespread use is hampered by inadequate re-epithelialisation, poor mechanical properties, insufficient revascularisation and unsatisfactory durability, leading to little success in the clinical use of tissue-engineered tracheal implants to date. Here, we describe in detail the historical attempts and the lessons learned for tracheal TE approaches by contextualising the clinical needs and essential requirements for a functional tracheal graft. TE manufacturing approaches explored to date and the clinical translation of both TE and non-TE strategies for tracheal regeneration are summarised to fully understand the big picture of tracheal TE and its impact on clinical treatment of extensive tracheal defects.
Collapse
Affiliation(s)
- Luis Soriano
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Tissue Engineering Research Group, Dept of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,SFI Centre for Research in Medical Devices (CÚRAM), RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Joint first authors
| | - Tehreem Khalid
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Tissue Engineering Research Group, Dept of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI University of Medicine and Health Sciences and Trinity College Dublin, Dublin, Ireland.,Joint first authors
| | - Derek Whelan
- Dept of Mechanical, Biomedical and Manufacturing Engineering, Munster Technological University, Cork, Ireland
| | - Niall O'Huallachain
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Karen C Redmond
- National Cardio-thoracic Transplant Unit, Mater Misericordiae University Hospital and UCD School of Medicine, Dublin, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Dept of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,SFI Centre for Research in Medical Devices (CÚRAM), RCSI University of Medicine and Health Sciences, Dublin, Ireland.,SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI University of Medicine and Health Sciences and Trinity College Dublin, Dublin, Ireland.,Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Cian O'Leary
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Tissue Engineering Research Group, Dept of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,SFI Centre for Research in Medical Devices (CÚRAM), RCSI University of Medicine and Health Sciences, Dublin, Ireland.,SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI University of Medicine and Health Sciences and Trinity College Dublin, Dublin, Ireland.,Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.,Both authors contributed equally
| | - Sally-Ann Cryan
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland .,Tissue Engineering Research Group, Dept of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,SFI Centre for Research in Medical Devices (CÚRAM), RCSI University of Medicine and Health Sciences, Dublin, Ireland.,SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI University of Medicine and Health Sciences and Trinity College Dublin, Dublin, Ireland.,Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.,Both authors contributed equally
| |
Collapse
|
5
|
Zhou XB, Li SW, He SQ, Xu SJ, Cai Y, Xu SW, Li XK, Gu BB, Mao XL, Ye LP. Transplantation of acellularized dermis matrix (ADM) plus fully covered metal stent to prevent stricture after circumferential endoscopic submucosal dissection of early esophageal cancer (with video). Regen Ther 2021; 18:441-446. [PMID: 34754889 PMCID: PMC8551526 DOI: 10.1016/j.reth.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/25/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022] Open
Abstract
Backgroud and study aims Esophageal stricture is a serious adverse event occurring after circular endoscopic submucosal dissection (ESD) involving the whole esophagus. However, there is still a lack of effectively preventive methods. The main purpose of this study is to evaluate the efficacy of application of acellularized dermis matrix (ADM) for the prevention of post-ESD esophageal stricture. The main objective of this study was to evaluate the use of decellularized dermal matrix (ADM) in the prevention of post-esophageal ESD strictures. Patients and methods A pilot, single-center, prospective study was conducted. The study enrolled seven patients who had high-risks with extended resection of developing post-ESD esophageal stricture. After undergoing ESD, we attached different size of ADM patches to the mucosal defects using titanium clips then fixed with a metal mesh stent. The stent covered with metal mesh was removed at the median time of 27 days after the endoscopic procedure. Follow-up and repeated outpatient endoscopic screening were performed at appropriate scheduled times. Results The average longitudinal diameter of the resected specimens was 58.3 mm (range 38–90 mm). There were three patients developing strictures postoperatively at a mean time of 87 days (range 42–140). The median number of postoperative endoscopic balloon dilatation (EBD) in patients with stenosis was 2 (range 2–9). There were no deaths during a median follow-up period of 6 moths (range 1–12). Conclusions This study was performed to assess the efficacy and safe method of relieving the severity of esophageal stricture after ESD through transplantation of ADM.
Collapse
Affiliation(s)
- Xian-Bin Zhou
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, LinHai, Zhejiang, China.,Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shao-Wei Li
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, LinHai, Zhejiang, China.,Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Sai-Qin He
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, LinHai, Zhejiang, China
| | - Shan-Jing Xu
- Shaoxing University School of Medicine, Shaoxing, Zhejiang, China
| | - Yue Cai
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, LinHai, Zhejiang, China
| | - Shi-Wen Xu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Bin-Bin Gu
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, LinHai, Zhejiang, China
| | - Xin-Li Mao
- Shaoxing University School of Medicine, Shaoxing, Zhejiang, China.,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, LinHai, Zhejiang, China.,Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Li-Ping Ye
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.,Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, LinHai, Zhejiang, China.,Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
6
|
Regenerative medicine for end-stage fibrosis and tissue loss in the upper aerodigestive tract: a twenty-first century review. The Journal of Laryngology & Otology 2021; 135:473-485. [PMID: 33988100 DOI: 10.1017/s002221512100092x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE This review assesses regenerative medicine of the upper aerodigestive tract during the first two decades of the twenty-first century, focusing on end-stage fibrosis and tissue loss in the upper airways, salivary system, oropharynx and tongue. METHOD PubMed, Embase, Google Scholar, Cochrane Library, Medline and clinicaltrials.org were searched from 2000 to 2019. The keywords used were: bioengineering, regenerative medicine, tissue engineering, cell therapy, regenerative surgery, upper aerodigestive tract, pharynx, oropharynx, larynx, trachea, vocal cord, tongue and salivary glands. Original studies were subcategorised by anatomical region. Original human reports were further analysed. Articles on periodontology, ear, nose and maxillofacial disorders, and cancer immunotherapy were excluded. RESULTS Of 716 relevant publications, 471 were original studies. There were 18 human studies included, within which 8 reported airway replacements, 5 concerned vocal fold regeneration and 3 concerned salivary gland regeneration. Techniques included cell transplantation, injection of biofactors, bioscaffolding and bioengineered laryngeal structures. CONCLUSION Moderate experimental success was identified in the restoration of upper airway, vocal fold and salivary gland function. This review suggests that a shift in regenerative medicine research focus is required toward pathology with a higher disease burden.
Collapse
|
7
|
Niermeyer WL, Rodman C, Li MM, Chiang T. Tissue engineering applications in otolaryngology-The state of translation. Laryngoscope Investig Otolaryngol 2020; 5:630-648. [PMID: 32864434 PMCID: PMC7444782 DOI: 10.1002/lio2.416] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/06/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
While tissue engineering holds significant potential to address current limitations in reconstructive surgery of the head and neck, few constructs have made their way into routine clinical use. In this review, we aim to appraise the state of head and neck tissue engineering over the past five years, with a specific focus on otologic, nasal, craniofacial bone, and laryngotracheal applications. A comprehensive scoping search of the PubMed database was performed and over 2000 article hits were returned with 290 articles included in the final review. These publications have addressed the hallmark characteristics of tissue engineering (cellular source, scaffold, and growth signaling) for head and neck anatomical sites. While there have been promising reports of effective tissue engineered interventions in small groups of human patients, the majority of research remains constrained to in vitro and in vivo studies aimed at furthering the understanding of the biological processes involved in tissue engineering. Further, differences in functional and cosmetic properties of the ear, nose, airway, and craniofacial bone affect the emphasis of investigation at each site. While otolaryngologists currently play a role in tissue engineering translational research, continued multidisciplinary efforts will likely be required to push the state of translation towards tissue-engineered constructs available for routine clinical use. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
| | - Cole Rodman
- The Ohio State University College of MedicineColumbusOhioUSA
| | - Michael M. Li
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Tendy Chiang
- Department of OtolaryngologyNationwide Children's HospitalColumbusOhioUSA
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
8
|
Inci I, Norouz Dizaji A, Ozel C, Morali U, Dogan Guzel F, Avci H. Decellularized inner body membranes for tissue engineering: A review. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1287-1368. [DOI: 10.1080/09205063.2020.1751523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ilyas Inci
- Vocational School of Health Services, Department of Dentistry Services, Dental Prosthetics Technology, Izmir Democracy University, Izmir, Turkey
| | - Araz Norouz Dizaji
- Faculty of Engineering and Natural Sciences, Department of Biomedical Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Ceren Ozel
- Application and Research Center (ESTEM), Cellular Therapy and Stem Cell Production, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ugur Morali
- Faculty of Engineering and Architecture, Department of Chemical Engineering, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Fatma Dogan Guzel
- Faculty of Engineering and Natural Sciences, Department of Biomedical Engineering, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Huseyin Avci
- Faculty of Engineering and Architecture, Department of Metallurgical and Materials Engineering, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
9
|
Wallstabe L, Göttlich C, Nelke LC, Kühnemundt J, Schwarz T, Nerreter T, Einsele H, Walles H, Dandekar G, Nietzer SL, Hudecek M. ROR1-CAR T cells are effective against lung and breast cancer in advanced microphysiologic 3D tumor models. JCI Insight 2019; 4:126345. [PMID: 31415244 DOI: 10.1172/jci.insight.126345] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 08/08/2019] [Indexed: 02/02/2023] Open
Abstract
Solid tumors impose immunologic and physical barriers to the efficacy of chimeric antigen receptor (CAR) T cell therapy that are not reflected in conventional preclinical testing against singularized tumor cells in 2-dimensional culture. Here, we established microphysiologic three-dimensional (3D) lung and breast cancer models that resemble architectural and phenotypical features of primary tumors and evaluated the antitumor function of receptor tyrosine kinase-like orphan receptor 1-specific (ROR1-specific) CAR T cells. 3D tumors were established from A549 (non-small cell lung cancer) and MDA-MB-231 (triple-negative breast cancer) cell lines on a biological scaffold with intact basement membrane (BM) under static and dynamic culture conditions, which resulted in progressively increasing cell mass and invasive growth phenotype (dynamic > static; MDA-MB-231 > A549). Treatment with ROR1-CAR T cells conferred potent antitumor effects. In dynamic culture, CAR T cells actively entered arterial medium flow and adhered to and infiltrated the tumor mass. ROR1-CAR T cells penetrated deep into tumor tissue and eliminated multiple layers of tumor cells located above and below the BM. The microphysiologic 3D tumor models developed in this study are standardized, scalable test systems that can be used either in conjunction with or in lieu of animal testing to interrogate the antitumor function of CAR T cells and to obtain proof of concept for their safety and efficacy before clinical application.
Collapse
Affiliation(s)
| | - Claudia Göttlich
- Tissue Engineering and Regenerative Medicine, Universitätsklinikum Würzburg, Würzburg, Germany.,Fraunhofer Institute for Silicate Research, Translational Center Regenerative Therapies, Würzburg, Germany
| | - Lena C Nelke
- Tissue Engineering and Regenerative Medicine, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Johanna Kühnemundt
- Tissue Engineering and Regenerative Medicine, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Thomas Schwarz
- Tissue Engineering and Regenerative Medicine, Universitätsklinikum Würzburg, Würzburg, Germany.,Fraunhofer Institute for Silicate Research, Translational Center Regenerative Therapies, Würzburg, Germany
| | | | | | - Heike Walles
- Tissue Engineering and Regenerative Medicine, Universitätsklinikum Würzburg, Würzburg, Germany.,Fraunhofer Institute for Silicate Research, Translational Center Regenerative Therapies, Würzburg, Germany
| | - Gudrun Dandekar
- Tissue Engineering and Regenerative Medicine, Universitätsklinikum Würzburg, Würzburg, Germany.,Fraunhofer Institute for Silicate Research, Translational Center Regenerative Therapies, Würzburg, Germany
| | - Sarah L Nietzer
- Tissue Engineering and Regenerative Medicine, Universitätsklinikum Würzburg, Würzburg, Germany
| | | |
Collapse
|
10
|
Cho E, Kim YY, Noh K, Ku S. A new possibility in fertility preservation: The artificial ovary. J Tissue Eng Regen Med 2019; 13:1294-1315. [PMID: 31062444 DOI: 10.1002/term.2870] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/02/2019] [Accepted: 04/22/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Eun Cho
- College of MedicineSeoul National University Seoul South Korea
| | - Yoon Young Kim
- College of MedicineSeoul National University Seoul South Korea
- Department of Obstetrics and GynecologySeoul National University Hospital Seoul South Korea
| | - Kevin Noh
- College of Human EcologyCornell University Ithaca New York USA
| | - Seung‐Yup Ku
- College of MedicineSeoul National University Seoul South Korea
- Department of Obstetrics and GynecologySeoul National University Hospital Seoul South Korea
| |
Collapse
|
11
|
Tint D, Stabler CT, Hanifi A, Yousefi F, Linkov G, Hy K, Soliman AMS, Pleshko N. Spectroscopic Analysis of Human Tracheal Tissue during Decellularization. Otolaryngol Head Neck Surg 2019; 160:302-309. [PMID: 30325714 DOI: 10.1177/0194599818806271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/20/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To use mid-infrared (IR) spectroscopy to assess changes in the cartilaginous framework of human trachea during decellularization. STUDY DESIGN Laboratory-based study. SETTING Research laboratory. METHODS Six cadaveric human tracheas were decellularized using a detergent enzymatic method (DEM). Tissue samples were obtained from each specimen after 0, 1, 10, and 25 DEM cycles for histologic and spectroscopic analysis. Decellularization was confirmed using hematoxylin and eosin (H&E) and 2-(4-amidinophenyl)-1H-indole-6-carboxamidine (DAPI) staining. Changes in cartilaginous framework were examined using Fourier transform infrared imaging spectroscopy (FT-IRIS) and an attenuated total reflectance (ATR) probe in the mid-IR frequencies. Results were statistically analyzed using 1-way analysis of variance (ANOVA) and principal component analysis (PCA). RESULTS Six decellularized tracheal scaffolds were successfully created using a DEM protocol. Histologic examination showed near-complete nuclear loss following 25 DEM cycles. As observed with FT-IRIS analysis, the collagen absorbance signal (1336 cm-1) was predominantly in the perichondria and remained stable after 25 DEM cycles ( P = .132), while the absorbance from sugar rings in proteoglycans and nucleic acids in hyaline cartilage (1080 cm-1) showed a significant decrease after 1 DEM cycle ( P = .0007). Examination of the luminal surface of the trachea with an ATR probe showed raw mid-IR spectra consistent with cartilage. PCA showed significant separation of spectra corresponding to treatment cycle along the principal components 1 and 2. CONCLUSION Mid-IR spectroscopy is a viable method of monitoring changes in extracellular matrix components during the decellularization of human trachea.
Collapse
Affiliation(s)
- Derrick Tint
- 1 Department of Otolaryngology-Head & Neck Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Collin T Stabler
- 2 Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- 3 Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- 4 Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- 5 Penn Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arash Hanifi
- 6 Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, USA
| | - Farzad Yousefi
- 6 Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, USA
| | - Gary Linkov
- 1 Department of Otolaryngology-Head & Neck Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Kenneth Hy
- 6 Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, USA
| | - Ahmed M S Soliman
- 1 Department of Otolaryngology-Head & Neck Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Nancy Pleshko
- 6 Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Martinod E, Chouahnia K, Radu DM, Joudiou P, Uzunhan Y, Bensidhoum M, Santos Portela AM, Guiraudet P, Peretti M, Destable MD, Solis A, Benachi S, Fialaire-Legendre A, Rouard H, Collon T, Piquet J, Leroy S, Vénissac N, Santini J, Tresallet C, Dutau H, Sebbane G, Cohen Y, Beloucif S, d’Audiffret AC, Petite H, Valeyre D, Carpentier A, Vicaut E. Feasibility of Bioengineered Tracheal and Bronchial Reconstruction Using Stented Aortic Matrices. JAMA 2018; 319:2212-2222. [PMID: 29800033 PMCID: PMC6134437 DOI: 10.1001/jama.2018.4653] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IMPORTANCE Airway transplantation could be an option for patients with proximal lung tumor or with end-stage tracheobronchial disease. New methods for airway transplantation remain highly controversial. OBJECTIVE To establish the feasibility of airway bioengineering using a technique based on the implantation of stented aortic matrices. DESIGN, SETTING, AND PARTICIPANTS Uncontrolled single-center cohort study including 20 patients with end-stage tracheal lesions or with proximal lung tumors requiring a pneumonectomy. The study was conducted in Paris, France, from October 2009 through February 2017; final follow-up for all patients occurred on November 2, 2017. EXPOSURES Radical resection of the lesions was performed using standard surgical techniques. After resection, airway reconstruction was performed using a human cryopreserved (-80°C) aortic allograft, which was not matched by the ABO and leukocyte antigen systems. To prevent airway collapse, a custom-made stent was inserted into the allograft. In patients with proximal lung tumors, the lung-sparing intervention of bronchial transplantation was used. MAIN OUTCOMES AND MEASURES The primary outcome was 90-day mortality. The secondary outcome was 90-day morbidity. RESULTS Twenty patients were included in the study (mean age, 54.9 years; age range, 24-79 years; 13 men [65%]). Thirteen patients underwent tracheal (n = 5), bronchial (n = 7), or carinal (n = 1) transplantation. Airway transplantation was not performed in 7 patients for the following reasons: medical contraindication (n = 1), unavoidable pneumonectomy (n = 1), exploratory thoracotomy only (n = 2), and a lobectomy or bilobectomy was possible (n = 3). Among the 20 patients initially included, the overall 90-day mortality rate was 5% (1 patient underwent a carinal transplantation and died). No mortality at 90 days was observed among patients who underwent tracheal or bronchial reconstruction. Among the 13 patients who underwent airway transplantation, major 90-day morbidity events occurred in 4 (30.8%) and included laryngeal edema, acute lung edema, acute respiratory distress syndrome, and atrial fibrillation. There was no adverse event directly related to the surgical technique. Stent removal was performed at a postoperative mean of 18.2 months. At a median follow-up of 3 years 11 months, 10 of the 13 patients (76.9%) were alive. Of these 10 patients, 8 (80%) breathed normally through newly formed airways after stent removal. Regeneration of epithelium and de novo generation of cartilage were observed within aortic matrices from recipient cells. CONCLUSIONS AND RELEVANCE In this uncontrolled study, airway bioengineering using stented aortic matrices demonstrated feasibility for complex tracheal and bronchial reconstruction. Further research is needed to assess efficacy and safety. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT01331863.
Collapse
Affiliation(s)
- Emmanuel Martinod
- Assistance Publique–Hôpitaux de Paris, Hôpitaux Universitaires Paris Seine-Saint-Denis, Hôpital Avicenne, Chirurgie Thoracique et Vasculaire, Université Paris 13, Sorbonne Paris Cité, UFR Santé, Médecine et Biologie Humaine, Bobigny, France
- Université Paris Descartes, Fondation Alain Carpentier, Laboratoire de Recherche Bio-chirurgicale, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Kader Chouahnia
- Assistance Publique–Hôpitaux de Paris, Hôpitaux Universitaires Paris Seine-Saint-Denis, Hôpital Avicenne, Oncologie, Université Paris 13, Sorbonne Paris Cité, UFR Santé, Médecine et Biologie Humaine, Bobigny, France
| | - Dana M. Radu
- Assistance Publique–Hôpitaux de Paris, Hôpitaux Universitaires Paris Seine-Saint-Denis, Hôpital Avicenne, Chirurgie Thoracique et Vasculaire, Université Paris 13, Sorbonne Paris Cité, UFR Santé, Médecine et Biologie Humaine, Bobigny, France
- Université Paris Descartes, Fondation Alain Carpentier, Laboratoire de Recherche Bio-chirurgicale, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Pascal Joudiou
- Assistance Publique–Hôpitaux de Paris, Hôpitaux Universitaires Paris Seine-Saint-Denis, Hôpital Avicenne, Pneumologie, Université Paris 13, Sorbonne Paris Cité, UFR Santé, Médecine et Biologie Humaine, Bobigny, France
| | - Yurdagul Uzunhan
- Assistance Publique–Hôpitaux de Paris, Hôpitaux Universitaires Paris Seine-Saint-Denis, Hôpital Avicenne, Pneumologie, Université Paris 13, Sorbonne Paris Cité, UFR Santé, Médecine et Biologie Humaine, Bobigny, France
| | - Morad Bensidhoum
- B2OA UMR CNRS 7052, Université Paris Diderot, Sorbonne Paris Cité, CNRS, F-75010 Paris, France
- Ecole Nationale Vétérinaire d’Alfort, Université, Paris-Est, Maisons-Alfort, France
| | - Ana M. Santos Portela
- Assistance Publique–Hôpitaux de Paris, Hôpitaux Universitaires Paris Seine-Saint-Denis, Hôpital Avicenne, Chirurgie Thoracique et Vasculaire, Université Paris 13, Sorbonne Paris Cité, UFR Santé, Médecine et Biologie Humaine, Bobigny, France
| | - Patrice Guiraudet
- Assistance Publique–Hôpitaux de Paris, Hôpitaux Universitaires Paris Seine-Saint-Denis, Hôpital Avicenne, Chirurgie Thoracique et Vasculaire, Université Paris 13, Sorbonne Paris Cité, UFR Santé, Médecine et Biologie Humaine, Bobigny, France
- Université Paris Descartes, Fondation Alain Carpentier, Laboratoire de Recherche Bio-chirurgicale, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Marine Peretti
- Assistance Publique–Hôpitaux de Paris, Hôpitaux Universitaires Paris Seine-Saint-Denis, Hôpital Avicenne, Chirurgie Thoracique et Vasculaire, Université Paris 13, Sorbonne Paris Cité, UFR Santé, Médecine et Biologie Humaine, Bobigny, France
| | - Marie-Dominique Destable
- Assistance Publique–Hôpitaux de Paris, Hôpitaux Universitaires Paris Seine-Saint-Denis, Hôpital Avicenne, Chirurgie Thoracique et Vasculaire, Université Paris 13, Sorbonne Paris Cité, UFR Santé, Médecine et Biologie Humaine, Bobigny, France
| | - Audrey Solis
- Assistance Publique–Hôpitaux de Paris, Hôpitaux Universitaires Paris Seine-Saint-Denis, Hôpital Avicenne, Anesthésie-Réanimation, Université Paris 13, Sorbonne Paris Cité, UFR Santé, Médecine et Biologie Humaine, Bobigny, France
| | - Sabiha Benachi
- Assistance Publique–Hôpitaux de Paris, Hôpitaux Universitaires Paris Seine-Saint-Denis, Hôpital Avicenne, Anesthésie-Réanimation, Université Paris 13, Sorbonne Paris Cité, UFR Santé, Médecine et Biologie Humaine, Bobigny, France
| | - Anne Fialaire-Legendre
- Assistance Publique–Hôpitaux de Paris, EFS Ile de France, Banque des Tissus, Creteil, France
| | - Hélène Rouard
- Assistance Publique–Hôpitaux de Paris, EFS Ile de France, Banque des Tissus, Creteil, France
| | - Thierry Collon
- Hôpital Le Raincy-Montfermeil, Pneumologie, Montfermeil, France
| | - Jacques Piquet
- Hôpital Le Raincy-Montfermeil, Pneumologie, Montfermeil, France
| | - Sylvie Leroy
- Université Côte d’Azur, Centre Hospitalier Universitaire de Nice, Pneumologie, Chirurgie Thoracique, Oto-Rhino-Laryngologie, Nice, France
| | - Nicolas Vénissac
- Université Côte d’Azur, Centre Hospitalier Universitaire de Nice, Pneumologie, Chirurgie Thoracique, Oto-Rhino-Laryngologie, Nice, France
| | - Joseph Santini
- Université Côte d’Azur, Centre Hospitalier Universitaire de Nice, Pneumologie, Chirurgie Thoracique, Oto-Rhino-Laryngologie, Nice, France
| | - Christophe Tresallet
- Assistance Publique–Hôpitaux de Paris, Hôpital La Pitié-Salpêtrière, Chirurgie Digestive et Endocrinienne, Université Paris 6 Pierre et Marie Curie, Paris, France
| | - Hervé Dutau
- Assistance Publique–Hôpitaux de Marseille, Pneumologie, Hôpital Universitaire Nord, Marseille, France
| | - Georges Sebbane
- Assistance Publique–Hôpitaux de Paris, Hôpitaux Universitaires Paris Seine-Saint-Denis, Hôpital Avicenne, Gériatrie, Université Paris 13, Sorbonne Paris Cité, UFR Santé, Médecine et Biologie Humaine, Bobigny, France
| | - Yves Cohen
- Assistance Publique–Hôpitaux de Paris, Hôpitaux Universitaires Paris Seine-Saint-Denis, Hôpital Avicenne, Anesthésie-Réanimation, Université Paris 13, Sorbonne Paris Cité, UFR Santé, Médecine et Biologie Humaine, Bobigny, France
| | - Sadek Beloucif
- Assistance Publique–Hôpitaux de Paris, Hôpitaux Universitaires Paris Seine-Saint-Denis, Hôpital Avicenne, Anesthésie-Réanimation, Université Paris 13, Sorbonne Paris Cité, UFR Santé, Médecine et Biologie Humaine, Bobigny, France
| | | | - Hervé Petite
- B2OA UMR CNRS 7052, Université Paris Diderot, Sorbonne Paris Cité, CNRS, F-75010 Paris, France
- Ecole Nationale Vétérinaire d’Alfort, Université, Paris-Est, Maisons-Alfort, France
| | - Dominique Valeyre
- Assistance Publique–Hôpitaux de Paris, Hôpitaux Universitaires Paris Seine-Saint-Denis, Hôpital Avicenne, Pneumologie, Université Paris 13, Sorbonne Paris Cité, UFR Santé, Médecine et Biologie Humaine, Bobigny, France
| | - Alain Carpentier
- Université Paris Descartes, Fondation Alain Carpentier, Laboratoire de Recherche Bio-chirurgicale, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Eric Vicaut
- Assistance Publique–Hôpitaux de Paris, Unité de Recherche Clinique, Hôpitaux Saint Louis-Lariboisière-Fernand Widal, Université Paris Diderot, Paris, France
| |
Collapse
|
13
|
Dikina AD, Alt DS, Herberg S, McMillan A, Strobel HA, Zheng Z, Cao M, Lai BP, Jeon O, Petsinger VI, Cotton CU, Rolle MW, Alsberg E. A Modular Strategy to Engineer Complex Tissues and Organs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700402. [PMID: 29876200 PMCID: PMC5978945 DOI: 10.1002/advs.201700402] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/28/2017] [Indexed: 05/25/2023]
Abstract
Currently, there are no synthetic or biologic materials suitable for long-term treatment of large tracheal defects. A successful tracheal replacement must (1) have radial rigidity to prevent airway collapse during respiration, (2) contain an immunoprotective respiratory epithelium, and (3) integrate with the host vasculature to support epithelium viability. Herein, biopolymer microspheres are used to deliver chondrogenic growth factors to human mesenchymal stem cells (hMSCs) seeded in a custom mold that self-assemble into cartilage rings, which can be fused into tubes. These rings and tubes can be fabricated with tunable wall thicknesses and lumen diameters with promising mechanical properties for airway collapse prevention. Epithelialized cartilage is developed by establishing a spatially defined composite tissue composed of human epithelial cells on the surface of an hMSC-derived cartilage sheet. Prevascular rings comprised of human umbilical vein endothelial cells and hMSCs are fused with cartilage rings to form prevascular-cartilage composite tubes, which are then coated with human epithelial cells, forming a tri-tissue construct. When prevascular- cartilage tubes are implanted subcutaneously in mice, the prevascular structures anastomose with host vasculature, demonstrated by their ability to be perfused. This microparticle-cell self-assembly strategy is promising for engineering complex tissues such as a multi-tissue composite trachea.
Collapse
Affiliation(s)
- Anna D. Dikina
- Department of Biomedical EngineeringCase Western Reserve University10900 Euclid AveClevelandOH44106USA
| | - Daniel S. Alt
- Department of Biomedical EngineeringCase Western Reserve University10900 Euclid AveClevelandOH44106USA
| | - Samuel Herberg
- Department of Biomedical EngineeringCase Western Reserve University10900 Euclid AveClevelandOH44106USA
| | - Alexandra McMillan
- Department of PathologyCase Western Reserve University10900 Euclid AveClevelandOH44106USA
| | - Hannah A. Strobel
- Department of Biomedical EngineeringWorcester Polytechnic Institute100 Institute RoadWorcesterMA01609USA
| | - Zijie Zheng
- Department of Biomedical EngineeringCase Western Reserve University10900 Euclid AveClevelandOH44106USA
| | - Meng Cao
- Department of Biomedical EngineeringCase Western Reserve University10900 Euclid AveClevelandOH44106USA
| | - Bradley P. Lai
- Department of Biomedical EngineeringCase Western Reserve University10900 Euclid AveClevelandOH44106USA
| | - Oju Jeon
- Department of Biomedical EngineeringCase Western Reserve University10900 Euclid AveClevelandOH44106USA
| | - Victoria Ivy Petsinger
- Department of Biomedical EngineeringCase Western Reserve University10900 Euclid AveClevelandOH44106USA
| | - Calvin U. Cotton
- Department of PediatricsDepartment of Physiology and BiophysicsCase Western Reserve University10900 Euclid AveClevelandOH44106USA
| | - Marsha W. Rolle
- Department of Biomedical EngineeringWorcester Polytechnic Institute100 Institute RoadWorcesterMA01609USA
| | - Eben Alsberg
- Department of Biomedical EngineeringCase Western Reserve University10900 Euclid AveClevelandOH44106USA
- Department of Orthopaedic SurgeryNational Center for Regenerative MedicineCase Western Reserve University10900 Euclid AveClevelandOH44106USA
| |
Collapse
|
14
|
Kress S, Baur J, Otto C, Burkard N, Braspenning J, Walles H, Nickel J, Metzger M. Evaluation of a Miniaturized Biologically Vascularized Scaffold in vitro and in vivo. Sci Rep 2018; 8:4719. [PMID: 29549334 PMCID: PMC5856827 DOI: 10.1038/s41598-018-22688-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 02/28/2018] [Indexed: 02/07/2023] Open
Abstract
In tissue engineering, the generation and functional maintenance of dense voluminous tissues is mainly restricted due to insufficient nutrient supply. Larger three-dimensional constructs, which exceed the nutrient diffusion limit become necrotic and/or apoptotic in long-term culture if not provided with an appropriate vascularization. Here, we established protocols for the generation of a pre-vascularized biological scaffold with intact arterio-venous capillary loops from rat intestine, which is decellularized under preservation of the feeding and draining vascular tree. Vessel integrity was proven by marker expression, media/blood reflow and endothelial LDL uptake. In vitro maintenance persisted up to 7 weeks in a bioreactor system allowing a stepwise reconstruction of fully vascularized human tissues and successful in vivo implantation for up to 4 weeks, although with time-dependent decrease of cell viability. The vascularization of the construct lead to a 1.5× increase in cellular drug release compared to a conventional static culture in vitro. For the first time, we performed proof-of-concept studies demonstrating that 3D tissues can be maintained within a miniaturized vascularized scaffold in vitro and successfully implanted after re-anastomosis to the intrinsic blood circulation in vivo. We hypothesize that this technology could serve as a powerful platform technology in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Sebastian Kress
- University Hospital of Würzburg, Chair of Tissue Engineering and Regenerative Medicine, 97070, Würzburg, Germany
| | - Johannes Baur
- University Hospital of Würzburg, Department of General, Visceral, Vascular and Pediatric Surgery, 97080, Würzburg, Germany
| | - Christoph Otto
- University Hospital of Würzburg, Department of General, Visceral, Vascular and Pediatric Surgery, 97080, Würzburg, Germany
| | - Natalie Burkard
- University Hospital of Würzburg, Department of General, Visceral, Vascular and Pediatric Surgery, 97080, Würzburg, Germany
| | - Joris Braspenning
- University Hospital of Würzburg, Chair of Tissue Engineering and Regenerative Medicine, 97070, Würzburg, Germany
| | - Heike Walles
- University Hospital of Würzburg, Chair of Tissue Engineering and Regenerative Medicine, 97070, Würzburg, Germany.,Fraunhofer Institute of Silicate Research ISC, Translational Center for Regenerative Therapies, 97070, Würzburg, Germany
| | - Joachim Nickel
- University Hospital of Würzburg, Chair of Tissue Engineering and Regenerative Medicine, 97070, Würzburg, Germany.
| | - Marco Metzger
- University Hospital of Würzburg, Chair of Tissue Engineering and Regenerative Medicine, 97070, Würzburg, Germany. .,Fraunhofer Institute of Silicate Research ISC, Translational Center for Regenerative Therapies, 97070, Würzburg, Germany.
| |
Collapse
|
15
|
Beyond dilation: current concepts in endoscopic airway stenting and reconstruction. Curr Opin Otolaryngol Head Neck Surg 2018; 24:516-521. [PMID: 27636982 DOI: 10.1097/moo.0000000000000310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW To discuss current modalities of endoscopic airway management beyond balloon dilation therapy. RECENT FINDINGS Advances continue to be made through technology and bioengineering with exciting potential in the pediatric airway. Smaller robots and instrumentation allow increased endoscopic surgical success. Biodegradable stents and bioengineered grafts are on the horizon for use in airway surgery. Dysphonia following airway reconstruction is of increasing recognition with new endoscopic treatments being performed. Supraglottoplasty is further recognized as a treatment for obstructive sleep apnea for laryngomalacia diagnosed on sleep endoscopy. Interarytenoid injection may be beneficial in the normal larynx for aspiration and dysphagia as well as diagnosing and treating type I laryngeal clefts. SUMMARY Endoscopic airway surgery continues to be a popular and effective method of treating the pediatric airway. Technological advances such as in robotics may have an increasing role in the future of endoscopic airway surgery in children. Bioengineered airway adjuncts including biodegradable airway stents look to be promising in the future treatment of airway stenosis.
Collapse
|
16
|
Abstract
Purpose of Review There is no consensus on the best technology to be employed for tracheal replacement. One particularly promising approach is based upon tissue engineering and involves applying autologous cells to transplantable scaffolds. Here, we present the reported pre-clinical and clinical data exploring the various options for achieving such seeding. Recent Findings Various cell combinations, delivery strategies, and outcome measures are described. Mesenchymal stem cells (MSCs) are the most widely employed cell type in tracheal bioengineering. Airway epithelial cell luminal seeding is also widely employed, alone or in combination with other cell types. Combinations have thus far shown the greatest promise. Chondrocytes may improve mechanical outcomes in pre-clinical models, but have not been clinically tested. Rapid or pre-vascularization of scaffolds is an important consideration. Overall, there are few published objective measures of post-seeding cell viability, survival, or overall efficacy. Summary There is no clear consensus on the optimal cell-scaffold combination and mechanisms for seeding. Systematic in vivo work is required to assess differences between tracheal grafts seeded with combinations of clinically deliverable cell types using objective outcome measures, including those for functionality and host immune response. Electronic supplementary material The online version of this article (10.1007/s40778-017-0108-2) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Wiggenhauser PS, Schantz JT, Rotter N. Cartilage engineering in reconstructive surgery: auricular, nasal and tracheal engineering from a surgical perspective. Regen Med 2017; 12:303-314. [PMID: 28524733 DOI: 10.2217/rme-2016-0160] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This review provides an update on cartilage tissue engineering with particular focus on the head and neck. It is aimed at scientists and clinicians who are interested in tissue engineering and its clinical applicability. Principal tissue engineering strategies are summarized in the first part of this review. In the second part, current clinical approaches to auricular, nasal and tracheal reconstruction are discussed from a surgical perspective. By this approach, the requirements for clinical applicability are outlined and new insight into relevant aims of research is given to accelerate the transfer from bench to bedside.
Collapse
Affiliation(s)
- Paul Severin Wiggenhauser
- sup>Department of Oto-Rhino-Laryngology, Head & Neck Surgery, Ulm University Medical Center, Frauensteige 12, Ulm DE 89075, Germany.,Department of Hand, Plastic & Aesthetic Surgery, Ludwig Maximilian University of Munich, Pettenkoferstrasse 8a, Munich DE 80336, Germany
| | - Jan Thorsten Schantz
- Department of Plastic Surgery & Hand Surgery, München rechts der Isar, Technical University of Munich, Ismaninger Str. 22, Munich DE 81675, Germany
| | - Nicole Rotter
- Department of Hand, Plastic & Aesthetic Surgery, Ludwig Maximilian University of Munich, Pettenkoferstrasse 8a, Munich DE 80336, Germany
| |
Collapse
|
18
|
Abouarab AA, Elsayed HH, Elkhayat H, Mostafa A, Cleveland DC, Nori AE. Current Solutions for Long-Segment Tracheal Reconstruction. Ann Thorac Cardiovasc Surg 2017; 23:66-75. [PMID: 28228614 DOI: 10.5761/atcs.ra.16-00251] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This article is a continuation of previous reviews about the appropriate method for long-segment tracheal reconstruction. We attempted to cover the most recent, successful and promising results of the different solutions for reconstruction that are rather innovative and suitable for imminent clinical application. Latest efforts to minimize the limitations associated with each method have been covered as well. In summary, autologous and allogenic tissue reconstruction of the trachea have been successful methods for reconstruction experimentally and clinically. Autologous tissues were best utilized clinically to enhance revascularization, whether as a definitive airway or as an adjunct to allografts or tissue-engineered trachea (TET). Allogenic tissue transplantation is, currently, the most suitable for clinical application, especially after elimination of the need for immunosuppressive therapy with unlimited supply of tissues. Similar results have been reported in many studies that used TET. However, clinical application of this method was limited to use as a salvage treatment in a few studies with promising results. These results still need to be solidified by further clinical and long-term follow-up reports. Combining different methods of reconstruction was often required to establish a physiological rather than an anatomical trachea and have shown superior outcomes.
Collapse
Affiliation(s)
- Ahmed A Abouarab
- Cardiothoracic Surgery Division, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hany H Elsayed
- Thoracic Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hussein Elkhayat
- Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed Mostafa
- Thoracic Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - David C Cleveland
- Cardiothoracic Surgery Division, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ahmed El Nori
- Thoracic Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
19
|
Schweinlin M, Rossi A, Lodes N, Lotz C, Hackenberg S, Steinke M, Walles H, Groeber F. Human barrier models for the in vitro assessment of drug delivery. Drug Deliv Transl Res 2016; 7:217-227. [DOI: 10.1007/s13346-016-0316-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Fecher D, Hofmann E, Buck A, Bundschuh R, Nietzer S, Dandekar G, Walles T, Walles H, Lückerath K, Steinke M. Human Organotypic Lung Tumor Models: Suitable For Preclinical 18F-FDG PET-Imaging. PLoS One 2016; 11:e0160282. [PMID: 27501455 PMCID: PMC4976941 DOI: 10.1371/journal.pone.0160282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/15/2016] [Indexed: 12/20/2022] Open
Abstract
Development of predictable in vitro tumor models is a challenging task due to the enormous complexity of tumors in vivo. The closer the resemblance of these models to human tumor characteristics, the more suitable they are for drug-development and –testing. In the present study, we generated a complex 3D lung tumor test system based on acellular rat lungs. A decellularization protocol was established preserving the architecture, important ECM components and the basement membrane of the lung. Human lung tumor cells cultured on the scaffold formed cluster and exhibited an up-regulation of the carcinoma-associated marker mucin1 as well as a reduced proliferation rate compared to respective 2D culture. Additionally, employing functional imaging with 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography (FDG-PET) these tumor cell cluster could be detected and tracked over time. This approach allowed monitoring of a targeted tyrosine kinase inhibitor treatment in the in vitro lung tumor model non-destructively. Surprisingly, FDG-PET assessment of single tumor cell cluster on the same scaffold exhibited differences in their response to therapy, indicating heterogeneity in the lung tumor model. In conclusion, our complex lung tumor test system features important characteristics of tumors and its microenvironment and allows monitoring of tumor growth and -metabolism in combination with functional imaging. In longitudinal studies, new therapeutic approaches and their long-term effects can be evaluated to adapt treatment regimes in future.
Collapse
Affiliation(s)
- David Fecher
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
- * E-mail:
| | - Elisabeth Hofmann
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Andreas Buck
- Department of Nuclear Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ralph Bundschuh
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | - Sarah Nietzer
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Gudrun Dandekar
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
- Translational Center ´Regenerative Therapies for Oncology and Musculoskeletal Diseases`Wuerzburg, branch of the Fraunhofer Institute Interfacial Engineering and Biotechnology (IGB), Wuerzburg, Germany
| | - Thorsten Walles
- Department of Cardiothoracic Surgery, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Heike Walles
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
- Translational Center ´Regenerative Therapies for Oncology and Musculoskeletal Diseases`Wuerzburg, branch of the Fraunhofer Institute Interfacial Engineering and Biotechnology (IGB), Wuerzburg, Germany
| | - Katharina Lückerath
- Department of Nuclear Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Maria Steinke
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
- Translational Center ´Regenerative Therapies for Oncology and Musculoskeletal Diseases`Wuerzburg, branch of the Fraunhofer Institute Interfacial Engineering and Biotechnology (IGB), Wuerzburg, Germany
| |
Collapse
|
21
|
Kilian T, Fidler F, Kasten A, Nietzer S, Landgraf V, Weiß K, Walles H, Westphal F, Hackenberg S, Grüttner C, Steinke M. Stem cell labeling with iron oxide nanoparticles: impact of 3D culture on cell labeling maintenance. Nanomedicine (Lond) 2016; 11:1957-70. [PMID: 27456272 DOI: 10.2217/nnm-2016-0042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AIM We aimed to analyze the suitability of nanoparticles (M4E) for safe human mesenchymal stem cell (hMSC) labeling and determined cell labeling maintenance in 2D and 3D culture. MATERIALS & METHODS We investigated cell-particle interaction and the particles' impact on cell viability, growth and proliferation. We analyzed cell labeling maintenance in 2D and 3D culture invasively and noninvasively. RESULTS M4E do not affect cell viability, growth and proliferation and do not cause chromosomal aberrations. Cell labeling maintenance is up to five-times higher in 3D conditions compared with 2D culture. CONCLUSION M4E allow safe hMSC labeling and noninvasive identification. Our hMSC-loaded, 3D tissue-engineered construct could serve as a graft for regenerative therapies, in which M4E-labeled hMSCs can migrate to their target.
Collapse
Affiliation(s)
- Teresa Kilian
- Fraunhofer Institute for Interfacial Engineering & Biotechnology IGB, Translational Center "Regenerative Therapies for Oncology & Musculoskeletal Diseases" - Würzburg branch, Röntgenring 11, 97070 Würzburg, Germany
| | - Florian Fidler
- Research Center Magnetic-Resonance-Bavaria, Am Hubland, 97074 Würzburg, Germany
| | - Annika Kasten
- Department of Oral & Maxillofacial Surgery, Facial Plastic Surgery, Rostock University Medical Center, Schillingallee 35, 18057 Rostock, Germany
| | - Sarah Nietzer
- Tissue Engineering & Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Veronika Landgraf
- Tissue Engineering & Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Katrin Weiß
- Tissue Engineering & Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Heike Walles
- Fraunhofer Institute for Interfacial Engineering & Biotechnology IGB, Translational Center "Regenerative Therapies for Oncology & Musculoskeletal Diseases" - Würzburg branch, Röntgenring 11, 97070 Würzburg, Germany.,Tissue Engineering & Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Fritz Westphal
- Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
| | - Stephan Hackenberg
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic & Reconstructive Head & Neck Surgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Cordula Grüttner
- Micromod Partikeltechnologie GmbH, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
| | - Maria Steinke
- Fraunhofer Institute for Interfacial Engineering & Biotechnology IGB, Translational Center "Regenerative Therapies for Oncology & Musculoskeletal Diseases" - Würzburg branch, Röntgenring 11, 97070 Würzburg, Germany.,Tissue Engineering & Regenerative Medicine, University Hospital Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| |
Collapse
|
22
|
Chiang T, Pepper V, Best C, Onwuka E, Breuer CK. Clinical Translation of Tissue Engineered Trachea Grafts. Ann Otol Rhinol Laryngol 2016; 125:873-885. [PMID: 27411362 DOI: 10.1177/0003489416656646] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To provide a state-of-the-art review discussing recent achievements in tissue engineered tracheal reconstruction. DATA SOURCES AND REVIEW METHODS A structured PubMed search of the current literature up to and including October 2015. Representative articles that discuss the translation of tissue engineered tracheal grafts (TETG) were reviewed. CONCLUSIONS The integration of a biologically compatible support with autologous cells has resulted in successful regeneration of respiratory epithelium, cartilage, and vascularization with graft patency, although the optimal construct composition has yet to be defined. Segmental TETG constructs are more commonly complicated by stenosis and delayed epithelialization when compared to patch tracheoplasty. IMPLICATIONS FOR PRACTICE The recent history of human TETG recipients represents revolutionary proof of principle studies in regenerative medicine. Application of TETG remains limited to a compassionate use basis; however, defining the mechanisms of cartilage formation, epithelialization, and refinement of in vivo regeneration will advance the translation of TETG from the bench to the bedside.
Collapse
Affiliation(s)
- Tendy Chiang
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA Department of Pediatric Otolaryngology, Nationwide Children's Hospital, Columbus, Ohio, USA Department of Otolaryngology-Head & Neck Surgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Victoria Pepper
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Cameron Best
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Ekene Onwuka
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Christopher K Breuer
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
23
|
Nietzer S, Baur F, Sieber S, Hansmann J, Schwarz T, Stoffer C, Häfner H, Gasser M, Waaga-Gasser AM, Walles H, Dandekar G. Mimicking Metastases Including Tumor Stroma: A New Technique to Generate a Three-Dimensional Colorectal Cancer Model Based on a Biological Decellularized Intestinal Scaffold. Tissue Eng Part C Methods 2016; 22:621-35. [PMID: 27137941 PMCID: PMC4943469 DOI: 10.1089/ten.tec.2015.0557] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Tumor models based on cancer cell lines cultured two-dimensionally (2D) on plastic lack histological complexity and functionality compared to the native microenvironment. Xenogenic mouse tumor models display higher complexity but often do not predict human drug responses accurately due to species-specific differences. We present here a three-dimensional (3D) in vitro colon cancer model based on a biological scaffold derived from decellularized porcine jejunum (small intestine submucosa+mucosa, SISmuc). Two different cell lines were used in monoculture or in coculture with primary fibroblasts. After 14 days of culture, we demonstrated a close contact of human Caco2 colon cancer cells with the preserved basement membrane on an ultrastructural level as well as morphological characteristics of a well-differentiated epithelium. To generate a tissue-engineered tumor model, we chose human SW480 colon cancer cells, a reportedly malignant cell line. Malignant characteristics were confirmed in 2D cell culture: SW480 cells showed higher vimentin and lower E-cadherin expression than Caco2 cells. In contrast to Caco2, SW480 cells displayed cancerous characteristics such as delocalized E-cadherin and nuclear location of β-catenin in a subset of cells. One central drawback of 2D cultures—especially in consideration of drug testing—is their artificially high proliferation. In our 3D tissue-engineered tumor model, both cell lines showed decreased numbers of proliferating cells, thus correlating more precisely with observations of primary colon cancer in all stages (UICC I-IV). Moreover, vimentin decreased in SW480 colon cancer cells, indicating a mesenchymal to epithelial transition process, attributed to metastasis formation. Only SW480 cells cocultured with fibroblasts induced the formation of tumor-like aggregates surrounded by fibroblasts, whereas in Caco2 cocultures, a separate Caco2 cell layer was formed separated from the fibroblast compartment beneath. To foster tissue generation, a bioreactor was constructed for dynamic culture approaches. This induced a close tissue-like association of cultured tumor cells with fibroblasts reflecting tumor biopsies. Therapy with 5-fluorouracil (5-FU) was effective only in 3D coculture. In conclusion, our 3D tumor model reflects human tissue-related tumor characteristics, including lower tumor cell proliferation. It is now available for drug testing in metastatic context—especially for substances targeting tumor–stroma interactions.
Collapse
Affiliation(s)
- Sarah Nietzer
- 1 Institute of Tissue Engineering and Regenerative Medicine (TERM), University Hospital of the Julius-Maximilians University , Würzburg, Germany
| | - Florentin Baur
- 1 Institute of Tissue Engineering and Regenerative Medicine (TERM), University Hospital of the Julius-Maximilians University , Würzburg, Germany
| | - Stefan Sieber
- 1 Institute of Tissue Engineering and Regenerative Medicine (TERM), University Hospital of the Julius-Maximilians University , Würzburg, Germany
| | - Jan Hansmann
- 1 Institute of Tissue Engineering and Regenerative Medicine (TERM), University Hospital of the Julius-Maximilians University , Würzburg, Germany
| | - Thomas Schwarz
- 1 Institute of Tissue Engineering and Regenerative Medicine (TERM), University Hospital of the Julius-Maximilians University , Würzburg, Germany
| | - Carolin Stoffer
- 1 Institute of Tissue Engineering and Regenerative Medicine (TERM), University Hospital of the Julius-Maximilians University , Würzburg, Germany
| | - Heide Häfner
- 2 Translational Center Würzburg "Regenerative Therapies in Oncology and Musculoskeletal Disease, " Fraunhofer Institute Interfacial Engineering and Biotechnology IGB , Würzburg, Germany
| | - Martin Gasser
- 3 Department of Surgery I, Molecular Oncology and Immunology, University Hospital of the Julius-Maximilians University , Würzburg, Germany
| | - Ana Maria Waaga-Gasser
- 3 Department of Surgery I, Molecular Oncology and Immunology, University Hospital of the Julius-Maximilians University , Würzburg, Germany
| | - Heike Walles
- 1 Institute of Tissue Engineering and Regenerative Medicine (TERM), University Hospital of the Julius-Maximilians University , Würzburg, Germany .,2 Translational Center Würzburg "Regenerative Therapies in Oncology and Musculoskeletal Disease, " Fraunhofer Institute Interfacial Engineering and Biotechnology IGB , Würzburg, Germany
| | - Gudrun Dandekar
- 1 Institute of Tissue Engineering and Regenerative Medicine (TERM), University Hospital of the Julius-Maximilians University , Würzburg, Germany .,2 Translational Center Würzburg "Regenerative Therapies in Oncology and Musculoskeletal Disease, " Fraunhofer Institute Interfacial Engineering and Biotechnology IGB , Würzburg, Germany
| |
Collapse
|
24
|
Schilders KAA, Eenjes E, van Riet S, Poot AA, Stamatialis D, Truckenmüller R, Hiemstra PS, Rottier RJ. Regeneration of the lung: Lung stem cells and the development of lung mimicking devices. Respir Res 2016; 17:44. [PMID: 27107715 PMCID: PMC4842297 DOI: 10.1186/s12931-016-0358-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/25/2016] [Indexed: 01/07/2023] Open
Abstract
Inspired by the increasing burden of lung associated diseases in society and an growing demand to accommodate patients, great efforts by the scientific community produce an increasing stream of data that are focused on delineating the basic principles of lung development and growth, as well as understanding the biomechanical properties to build artificial lung devices. In addition, the continuing efforts to better define the disease origin, progression and pathology by basic scientists and clinicians contributes to insights in the basic principles of lung biology. However, the use of different model systems, experimental approaches and readout systems may generate somewhat conflicting or contradictory results. In an effort to summarize the latest developments in the lung epithelial stem cell biology, we provide an overview of the current status of the field. We first describe the different stem cells, or progenitor cells, residing in the homeostatic lung. Next, we focus on the plasticity of the different cell types upon several injury-induced activation or repair models, and highlight the regenerative capacity of lung cells. Lastly, we summarize the generation of lung mimics, such as air-liquid interface cultures, organoids and lung on a chip, that are required to test emerging hypotheses. Moreover, the increasing collaboration between distinct specializations will contribute to the eventual development of an artificial lung device capable of assisting reduced lung function and capacity in human patients.
Collapse
Affiliation(s)
- Kim A A Schilders
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Evelien Eenjes
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Sander van Riet
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - André A Poot
- Department of Biomaterials Science and Technology, University of Twente, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, P.O Box 217, 7500 AE, Enschede, The Netherlands
| | - Dimitrios Stamatialis
- Department of Biomaterials Science and Technology, University of Twente, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, P.O Box 217, 7500 AE, Enschede, The Netherlands
| | - Roman Truckenmüller
- Department of Complex Tissue Regeneration, Maastricht University, Faculty of Health, Medicine and Life Sciences, MERLN Institute for Technology-Inspired Regenerative Medicine, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
25
|
Ott LM, Zabel TA, Walker NK, Farris AL, Chakroff JT, Ohst DG, Johnson JK, Gehrke SH, Weatherly RA, Detamore MS. Mechanical evaluation of gradient electrospun scaffolds with 3D printed ring reinforcements for tracheal defect repair. ACTA ACUST UNITED AC 2016; 11:025020. [PMID: 27097554 DOI: 10.1088/1748-6041/11/2/025020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tracheal stenosis can become a fatal condition, and current treatments include augmentation of the airway with autologous tissue. A tissue-engineered approach would not require a donor source, while providing an implant that meets both surgeons' and patients' needs. A fibrous, polymeric scaffold organized in gradient bilayers of polycaprolactone (PCL) and poly-lactic-co-glycolic acid (PLGA) with 3D printed structural ring supports, inspired by the native trachea rings, could meet this need. The purpose of the current study was to characterize the tracheal scaffolds with mechanical testing models to determine the design most suitable for maintaining a patent airway. Degradation over 12 weeks revealed that scaffolds with the 3D printed rings had superior properties in tensile and radial compression, with at least a three fold improvement and 8.5-fold improvement, respectively, relative to the other scaffold groups. The ringed scaffolds produced tensile moduli, radial compressive forces, and burst pressures similar to or exceeding physiological forces and native tissue data. Scaffolds with a thicker PCL component had better suture retention and tube flattening recovery properties, with the monolayer of PCL (PCL-only group) exhibiting a 2.3-fold increase in suture retention strength (SRS). Tracheal scaffolds with ring reinforcements have improved mechanical properties, while the fibrous component increased porosity and cell infiltration potential. These scaffolds may be used to treat various trachea defects (patch or circumferential) and have the potential to be employed in other tissue engineering applications.
Collapse
Affiliation(s)
- Lindsey M Ott
- Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ott LM, Vu CH, Farris AL, Fox KD, Galbraith RA, Weiss ML, Weatherly RA, Detamore MS. Functional Reconstruction of Tracheal Defects by Protein-Loaded, Cell-Seeded, Fibrous Constructs in Rabbits. Tissue Eng Part A 2015; 21:2390-403. [PMID: 26094554 DOI: 10.1089/ten.tea.2015.0157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tracheal stenosis is a life-threatening disease and current treatments include surgical reconstruction with autologous rib cartilage and the highly complex slide tracheoplasty surgical technique. We propose using a sustainable implant, composed of a tunable, fibrous scaffold with encapsulated chondrogenic growth factor (transforming growth factor-beta3 [TGF-β3]) or seeded allogeneic rabbit bone marrow mesenchymal stromal cells (BMSCs). In vivo functionality of these constructs was determined by implanting them in induced tracheal defects in rabbits for 6 or 12 weeks. The scaffolds maintained functional airways in a majority of the cases, with the BMSC-seeded group having an improved survival rate and the Scaffold-only group having a higher occurrence of more patent airways as determined by microcomputed tomography. The BMSC group had a greater accumulation of inflammatory cells over the graft, while also exhibiting normal epithelium, subepithelium, and cartilage formation. Overall, it was concluded that a simple, acellular scaffold is a viable option for tracheal tissue engineering, with the intraoperative addition of cells being an optional variation to the scaffolds.
Collapse
Affiliation(s)
- Lindsey M Ott
- 1 Bioengineering Program, University of Kansas , Lawrence, Kansas
| | - Cindy H Vu
- 2 School of Medicine, University of Kansas , Kansas City, Kansas
| | - Ashley L Farris
- 3 Department of Molecular Biosciences, University of Kansas , Lawrence, Kansas
| | - Katrina D Fox
- 4 College of Veterinary Medicine, Kansas State University , Manhattan, Kansas
| | - Richard A Galbraith
- 5 Anatomic and Clinical Pathology, Lawrence Memorial Hospital , Lawrence, Kansas
| | - Mark L Weiss
- 4 College of Veterinary Medicine, Kansas State University , Manhattan, Kansas
| | - Robert A Weatherly
- 6 Section of Otolaryngology, Children's Mercy Hospital , Kansas City, Missouri
| | - Michael S Detamore
- 1 Bioengineering Program, University of Kansas , Lawrence, Kansas
- 7 Department of Chemical and Petroleum Engineering, University of Kansas , Lawrence, Kansas
| |
Collapse
|